JPS5845894B2 - Catalyst activation method - Google Patents

Catalyst activation method

Info

Publication number
JPS5845894B2
JPS5845894B2 JP53105618A JP10561878A JPS5845894B2 JP S5845894 B2 JPS5845894 B2 JP S5845894B2 JP 53105618 A JP53105618 A JP 53105618A JP 10561878 A JP10561878 A JP 10561878A JP S5845894 B2 JPS5845894 B2 JP S5845894B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
regeneration
mixed gas
chromium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53105618A
Other languages
Japanese (ja)
Other versions
JPS5539202A (en
Inventor
昭英 工藤
誠 小谷
光雄 小野房
元夫 川又
一史 大島
武 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP53105618A priority Critical patent/JPS5845894B2/en
Publication of JPS5539202A publication Critical patent/JPS5539202A/en
Publication of JPS5845894B2 publication Critical patent/JPS5845894B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Description

【発明の詳細な説明】 本発明は、反応に使用して活性が低下した酸化クロム含
有触媒を賦活する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for activating a chromium oxide-containing catalyst whose activity has decreased by use in a reaction.

さらに詳しくは、例えば、フエ、/−ル類をメタ、メー
ルなどによりアルキル化する際に使用して活性の低下し
た酸化クロム含有触媒をその外観をほとんど破壊させる
ことなく、容易にかつ比較的短時間で再び使用するに十
分な活性を付与するまで賦活させる方法に関するもので
ある。
More specifically, for example, it can be used to alkylate ferrites and/or compounds by meta-, mer, etc. to easily and relatively quickly convert chromium oxide-containing catalysts with reduced activity without substantially destroying their appearance. The present invention relates to a method of activating the compound over time until it has sufficient activity to be used again.

フェノールを選択的にアルキル化させるような酸化クロ
ム含有触媒としては次のようなものが知られ、また提示
されている。
The following catalysts are known and proposed as chromium oxide-containing catalysts that selectively alkylate phenol.

(%公昭51−12610号、特願昭52−12959
0号、145630号、155683号、および特願昭
53−6733号) このような酸化クロム含有触媒を用いて、フェノール類
のアルキル化反応を連続して行なわせると、程度の違い
こそあれ、触媒活11は次第に触媒表面への酸素含有炭
化水素様(以下、CHO種と略す)の付着および触媒活
性サイトの化学的・物理的変化などにより低下していく
(% Publication No. 51-12610, Patent Application No. 52-12959
No. 0, No. 145630, No. 155683, and Japanese Patent Application No. 53-6733) When the alkylation reaction of phenols is carried out continuously using such a catalyst containing chromium oxide, the catalyst The activity 11 gradually decreases due to adhesion of oxygen-containing hydrocarbons (hereinafter abbreviated as CHO species) to the catalyst surface and chemical/physical changes in the catalyst active site.

また、一般的に流通系で気相接触反応を行なわせる場合
、触媒の破壊が原因で、反応装置内での差圧の発生、部
分的なガス流速線速度の変化など、反応の均一性が保た
れない事態が起こることがある。
Additionally, when a gas phase catalytic reaction is generally carried out in a flow system, due to the destruction of the catalyst, the uniformity of the reaction may be affected, such as the generation of differential pressure within the reactor and partial changes in the linear gas flow velocity. Situations that cannot be maintained may occur.

本発明者らは、前記の反応に使用する酸化クロム含有触
媒の活性の低下および形状の破壊を防止し、継続的な使
用性能を向上させる方法について研究を進めた結果、触
媒上の吸着CR0種を酸素と水蒸気の混合ガスを用いて
酸化除去する際に、再生しようとする触媒表面の付着酸
素官有炭化水素様割合の値の変化に応じて混合ガス中の
酸素濃度および酸素流量を変化させて混合ガスを供給す
ることにより、触媒破壊の原因となる触媒自身および触
媒層内での過剰な熱の発生を最小限度にとどめ、かつ触
媒再生時間を長びかせず、合理的に触媒を賦活できるこ
とを見い出した。
The present inventors conducted research on a method to prevent the activity of the chromium oxide-containing catalyst used in the above reaction from decreasing and to prevent the shape from being destroyed, and to improve its continuous use performance. When removing by oxidation using a mixed gas of oxygen and water vapor, the oxygen concentration and oxygen flow rate in the mixed gas are changed according to changes in the proportion of oxygen-owned hydrocarbons adhering to the surface of the catalyst to be regenerated. By supplying a mixed gas with a gas mixture, the generation of excessive heat within the catalyst itself and the catalyst layer, which can cause catalyst destruction, can be minimized, and the catalyst can be activated rationally without prolonging the catalyst regeneration time. I found out what I can do.

本発明の原理としては、 (1)触媒表面付着CR2種の量が多いときには、比較
的低酸素濃度の混合ガスを低流速で流し、触媒自身およ
び触媒層内での異常な熱の発生を減少させること。
The principles of the present invention are as follows: (1) When the amount of two CR species adhering to the catalyst surface is large, a mixed gas with a relatively low oxygen concentration is flowed at a low flow rate to reduce abnormal heat generation within the catalyst itself and the catalyst layer. to let

(11)触媒表面付着CR2種の量が少ないときには、
比較的高酸素濃度の混合ガスを高流速で流し、再生に要
する時間を短縮させること。
(11) When the amount of the two CR species attached to the catalyst surface is small,
To shorten the time required for regeneration by flowing a mixed gas with a relatively high oxygen concentration at a high flow rate.

(rlo 触媒表面付着CR2種の量がさらに少なく
なった場合においても、再生時の比表面積値を触媒再生
のパラメータとして導入したことにより、完全な賦活化
が可能になること。
(rlo Even if the amount of the two CR species adhering to the catalyst surface becomes even smaller, complete activation is possible by introducing the specific surface area value at the time of regeneration as a parameter for catalyst regeneration.

(IV)混合ガス中に水蒸気を添加させることで、触媒
自身および触媒層内で異常な熱の発生があった場合にお
いても、燃焼反応の暴走を防ぐこと。
(IV) Adding water vapor to the mixed gas prevents the combustion reaction from running out of control even when abnormal heat is generated within the catalyst itself and the catalyst layer.

など、4点があげられる。I can give you 4 points.

すなわち本発明は、フェノール類をメタ、ノールなどに
よってアルキル化する際に使用して活性の低下した酸化
クロム含有触媒を酸素および水蒸気を含有する混合ガス
と接触再生させる方法において、式(1)で定義される
触媒表面付着CHO種割合(RT)の値の の変化と共に触媒と接触させる(n+1)回再生時にお
ける混合ガス中の(1)酸素濃度、および(11)酸素
流量を下記式にしたがって変化させ、前記触媒を賦活す
る方法である。
That is, the present invention provides a method for catalytically regenerating a chromium oxide-containing catalyst whose activity has decreased when alkylating phenols with methanol, ethanol, etc., with a mixed gas containing oxygen and water vapor. The (1) oxygen concentration and (11) oxygen flow rate in the mixed gas during the (n+1) regeneration of contact with the catalyst are determined according to the following formula as the defined catalyst surface adhesion CHO species ratio (RT) changes. This is a method of changing the catalyst and activating the catalyst.

酸素濃度(PO2)および酸素流量(”’02 )が前
記範囲を上まわった場合、触媒表面および触媒層内で異
常な熱が発生し、触媒の物性的な変化や触媒の破壊を引
き起こし、完全な賦活が望めない。
If the oxygen concentration (PO2) and oxygen flow rate ('02) exceed the above ranges, abnormal heat will be generated on the catalyst surface and within the catalyst layer, causing changes in the physical properties of the catalyst and destruction of the catalyst, resulting in complete failure. I can't hope for any kind of activation.

また前記範囲を下まわった場合、賦活が完了するまでの
時間を長引かせ、かつ触媒表面CR2種の十分な除去が
できず、この場合もまた完全な賦活とは言い難い。
Further, when the amount is below the above range, the time until activation is completed is prolonged, and the two CR species on the catalyst surface cannot be sufficiently removed, and in this case as well, it cannot be said that the activation is complete.

本発明において、賦活の対象となる酸化クロム含有触媒
は、フエ、/−ル類を気相でアルキル化剤を用い、アル
キル化させる際に触媒として使用されある程度活性の低
下したものなら良く、その組成は酸化クロム単独のもの
に限らず、それを含むものなら良い。
In the present invention, the chromium oxide-containing catalyst to be activated may be one that is used as a catalyst when alkylating ferrite and/or compounds in the gas phase using an alkylating agent, and whose activity has decreased to some extent. The composition is not limited to chromium oxide alone, but may be any composition containing chromium oxide.

このような触媒としては、酸化クロム単独、あるいはそ
の中にSn、Fe、Mn、Si、At、B、Ca。
Such catalysts include chromium oxide alone, or Sn, Fe, Mn, Si, At, B, and Ca in it.

Mg、Sr、Na、に、Rb、Csなどの一種以上の金
属酸化物または/および硫酸根などを含む酸化クロム含
有触媒があげられる。
Examples include chromium oxide-containing catalysts containing one or more metal oxides such as Mg, Sr, Na, Rb, and Cs, and/or sulfate groups.

この酸化クロム3有触媒は、種々の形状で使用されるが
、一般に、球・円柱・円筒・リング・直方体または立方
体などあげられるが、どれでも良い。
This chromium 3 oxide-containing catalyst is used in various shapes, and generally, it can be a sphere, a cylinder, a cylinder, a ring, a rectangular parallelepiped, or a cube, but any shape is acceptable.

また、このような触媒を用いて気相接触アルキル化反応
させる際に使用されるフェノール類としては、少なくと
も一個の水素原子をオルト位に有するフェノール類で、
一般式(If) (式中、R1,R2,R3およびR4は、水素原子また
はメチル エチル n−プロピル 1so−プロピル、
n−ブチル、1so−ブチル、tert−ブチルなどの
アルキル基、あるいは各種の芳香族基を示す。
In addition, the phenols used in the gas phase catalytic alkylation reaction using such a catalyst include phenols having at least one hydrogen atom in the ortho position,
General formula (If) (wherein R1, R2, R3 and R4 are hydrogen atoms or methyl ethyl n-propyl 1so-propyl,
It represents an alkyl group such as n-butyl, 1so-butyl, tert-butyl, or various aromatic groups.

)で表わされる化合物である。使用されるアルキル化剤
としては、炭素原子数l〜4の低級飽和アルコールであ
り、例えば、メタ、メール、エタノール、n−プロパツ
ール、is。
) is a compound represented by The alkylating agents used are lower saturated alcohols having 1 to 4 carbon atoms, such as meta, mer, ethanol, n-propanol, is.

−プロパ、/−ル n−ブタ、ノール 1so−ブタ、
ノールおよびter t−ブタ、メールなどである。
-propa, /-ru n-buta, nor 1so-buta,
Nord and tert-pig, Mer, etc.

本発明に使用する混合ガスは、酸素および水蒸気を含有
する混合ガス、またはそれに不活性ガスを混合したガス
であって、その不活性ガスとしては、一般的に窒素が用
いられ、その他、炭酸ガス、ヘリウム、ネオン、アルゴ
ンなどを用いてもよい。
The mixed gas used in the present invention is a mixed gas containing oxygen and water vapor, or a gas mixed with an inert gas. As the inert gas, nitrogen is generally used, and other gases include carbon dioxide and other gases. , helium, neon, argon, etc. may also be used.

混合ガス中の水蒸気含量は、好ましくは、0.1〜99
モル%、とくに好ましくは、10〜70モル%であり、
水蒸気添加の効果は、局部的に発生する反応熱の全体へ
の拡散効率を上げることと考えられる。
The water vapor content in the mixed gas is preferably 0.1 to 99
mol%, particularly preferably 10 to 70 mol%,
The effect of adding water vapor is considered to be to increase the diffusion efficiency of locally generated reaction heat throughout the reaction.

本発明において、賦活化しようとする触媒と混合ガスを
接触させる温度は、一般に、250’C〜700℃であ
り、好ましくは350°C〜600°Cの範囲である。
In the present invention, the temperature at which the catalyst to be activated and the mixed gas are brought into contact is generally in the range of 250'C to 700C, preferably in the range of 350C to 600C.

この温度範囲よりも接触温度が高ければ、再生に要する
時間は短縮されるが、触媒の形状の変化、物性の変化な
どが起こり、触媒活性の完全な回復は期待できない。
If the contact temperature is higher than this temperature range, the time required for regeneration will be shortened, but changes in the shape and physical properties of the catalyst will occur, and complete recovery of catalyst activity cannot be expected.

また逆に低い場合には、表面付着CH2種の除去が非常
に困難となる。
On the other hand, if it is low, it becomes very difficult to remove the CH2 species adhering to the surface.

本発明で用いられる(再生途中での)表面付着CHO種
重畳重量酸化クロム含有触媒と混合ガスを接触再生する
際、発生する一酸化炭素、二酸化炭素および水を測定、
積算することによって知ることができる。
Measurement of carbon monoxide, carbon dioxide, and water generated during catalytic regeneration of a mixed gas with a surface-adhered CHO species superimposed weight chromium oxide-containing catalyst used in the present invention (during regeneration),
You can find out by integrating.

例えば、同一条件でフェノール類のアルキル化反応に使
用した触媒付着CHO種重量を前記の方法で測定し、こ
の表面付着CHO種量より実際の触媒の再生条件を設定
することもでき、また、多管式反応器を使用した場合に
は、多数の反応管中の極く少数の反応管の表面性71i
CHO種重量を測定することにより、全体の再生条件を
設定することも可能である。
For example, it is possible to measure the weight of CHO species attached to the catalyst used in the alkylation reaction of phenols under the same conditions using the method described above, and set the actual regeneration conditions of the catalyst based on the amount of CHO species attached to the surface. When a tubular reactor is used, the surface properties of a very small number of reaction tubes among a large number of reaction tubes 71i
By measuring the weight of CHO species, it is also possible to set the overall regeneration conditions.

一方、再生中の触媒BET比表面積の値は、実際の値を
知らなくとも、賦活前後での値より推定して用いること
が可能であり、またそれで十分である。
On the other hand, the value of the BET specific surface area of the catalyst during regeneration can be estimated and used from the values before and after activation without knowing the actual value, and this is sufficient.

再生が終わりに近づき、発生ガス量が減少し、上記表面
付着CHO種重畳重量定が不正確になった場合、触媒B
ET比表面積値がわかれば、完全に終点を定めることが
できる。
When regeneration approaches the end, the amount of gas generated decreases, and the determination of the superimposed weight of the surface-attached CHO species becomes inaccurate, catalyst B
Once the ET specific surface area value is known, the end point can be completely determined.

本発明は触媒層にほぼ均一に表面付着CH2種が存在し
ている場合、一般に使用可能であり、また、触媒層の一
部位に他部位と比較して、多量のCH2種が存在する場
合においても、あらかしめ、低酸素濃度の前記混合ガス
を用い、かつ、低酸素流量下で前処理を行なっておくこ
とで、本発明を完全に遠戚することができる。
The present invention can generally be used when the surface-attached CH2 species is present almost uniformly on the catalyst layer, and can also be used when a large amount of CH2 species is present in one part of the catalyst layer compared to other parts. However, by using the mixed gas with a low oxygen concentration and performing pretreatment at a low oxygen flow rate, the present invention can be completely related to the present invention.

以上、本発明によれば、表面付着CH2種により被毒さ
れ、活性の低下した酸化クロム含有触媒を、破壊するこ
となく、かつ、活性、選択性を比較的短時間にほぼ完全
に回復せしめることができる。
As described above, according to the present invention, it is possible to almost completely recover the activity and selectivity of a chromium oxide-containing catalyst that has been poisoned by surface-attached CH2 species and whose activity has decreased in a relatively short time without destroying it. Can be done.

以下、実施例を掲げて本発明を詳述する。Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例 1 硝酸クロム9水塩10kg、塩化第1錫2水塩1kgお
よび硝酸鉄9水塩1kgを水300tに溶解させ、尿素
6kgを加えヒーター上で煮沸させ、沈殿を生じさせた
Example 1 10 kg of chromium nitrate nonahydrate, 1 kg of stannous chloride dihydrate, and 1 kg of iron nitrate nonahydrate were dissolved in 300 t of water, and 6 kg of urea was added and boiled on a heater to form a precipitate.

生成した沈殿を水洗流過後、約150℃で20時間乾燥
させた。
The generated precipitate was washed with water and then dried at about 150° C. for 20 hours.

乾燥した沈殿を破砕し、既知の方法により、直径4.8
m11L、高さ3、2 mmの筒状ベレットに圧縮成
型した。
The dried precipitate was crushed and crushed to a diameter of 4.8 mm by known methods.
It was compression molded into a cylindrical pellet of m11L and height of 3.2 mm.

こうして得られた触媒を、550℃で5時間焼成した後
、内径2Lmrnのステンレス製反応管に1kg、破壊
しないように注意深く充填した。
The thus obtained catalyst was calcined at 550° C. for 5 hours, and then 1 kg was carefully filled into a stainless steel reaction tube with an inner diameter of 2 Lmrn so as not to break.

反応使用前の触媒BET比表面積は93 (ml&)で
あった。
The BET specific surface area of the catalyst before use in the reaction was 93 (ml&).

フェノールとメタ、メールのモル比を1:5にし調製し
た反応原料液を、250℃に温度調節した気化器を用い
気化させた後、380℃に内温を保つた反応管中に毎時
350.!i/の速度で導入し、反応を行なった。
A reaction raw material solution prepared with a molar ratio of phenol, meta, and mer of 1:5 was vaporized using a vaporizer whose temperature was adjusted to 250°C, and then heated at 350°C per hour in a reaction tube whose internal temperature was maintained at 380°C. ! The reaction was carried out by introducing the solution at a rate of i/.

反応生成物は、ガスク用こより分析した。The reaction products were analyzed by gas column.

反応開始後150時間経過した時点で反応を停止し、反
応器内触媒上への表面付着CHO種重量(ωT)および
触媒BET比表面積(ST)を調べたところ、ωT =
1.013 (kg)、ST二26(戒4)、となり、
表面付着CHO種割合CRT)の値として、)jT==
、4.65X10 を得た。
The reaction was stopped 150 hours after the start of the reaction, and the weight of CHO species attached to the surface of the catalyst in the reactor (ωT) and the catalyst BET specific surface area (ST) were examined, and it was found that ωT =
1.013 (kg), ST226 (Precept 4),
As the value of surface-attached CHO species ratio CRT), )jT==
, 4.65×10 was obtained.

つぎに反応器を380℃に保持し、反応器内に気化器で
気化させた脱イオン水を0.7C9/m1n)で送り、
同時に空気を0.05 (t/m1n)で反応器上部よ
り送り込み、再生を開始した。
Next, the reactor was maintained at 380°C, and deionized water vaporized with a vaporizer was fed into the reactor at a rate of 0.7 C9/ml.
At the same time, air was fed from the top of the reactor at 0.05 (t/ml) to start regeneration.

反応器外へ排出される一酸化炭素、二酸化炭素および水
の量を追跡することにより、反応器内の残存付着CHO
H2O量算をし、この値を用いて、その時点での触媒B
ET比表面積値を推定し、RT**の値を求めた。
By tracking the amount of carbon monoxide, carbon dioxide, and water discharged outside the reactor, the remaining deposited CHO inside the reactor can be detected.
Calculate the amount of H2O and use this value to determine the catalyst B at that point.
The ET specific surface area value was estimated and the value of RT** was determined.

RTの値は除々に減少していき、それにしたがって空気
流量を計算し、増加させていった。
The value of RT was gradually decreased and the air flow rate was calculated and increased accordingly.

例えば、RT=lOのとき、0.1 (t/mvr)、
RT=10 のとき、0.5 (17m1ft )
、RTTiO2’のとき、2.0 (t/ml!t)で
流し、排ガス中に一酸化炭素および二酸化炭素が検出さ
れなくなるまで、再生を実施した。
For example, when RT=IO, 0.1 (t/mvr),
When RT=10, 0.5 (17m1ft)
, RTTiO2', the flow rate was 2.0 (t/ml!t), and regeneration was performed until carbon monoxide and carbon dioxide were no longer detected in the exhaust gas.

この様にして再生した触媒を、最初と同様の条供にして
、反応を行なわせた。
The catalyst thus regenerated was subjected to the same conditions as the initial reaction to carry out the reaction.

第1表に、この様にして反応、再生をくり返した結果を
示す。
Table 1 shows the results of repeated reactions and regenerations in this manner.

前記の反応、再生操作を10回くり返した後、反応器内
触媒を取り出したところ、はぼすべての触媒ペレットは
原型を保っていた。
After repeating the above reaction and regeneration operation 10 times, the catalyst in the reactor was taken out, and almost all catalyst pellets had retained their original shape.

さらに、第1表に示すように再生回数にかかわらず、触
媒活性および選択性は完全に回復していることがわかる
Furthermore, as shown in Table 1, it can be seen that the catalyst activity and selectivity were completely recovered regardless of the number of regenerations.

実施例 2 実施例1と同条件で、表面付着CHO種割合(RT)の
値を10 より大きくして、触媒1kg当り、脱イ
オン水0.7 (97m1!l)、空気を20(i/m
vt )で再生、反応をくり返した結果を第2表に示し
た。
Example 2 Under the same conditions as in Example 1, the surface-attached CHO species ratio (RT) was made larger than 10, and 0.7 (97 ml) of deionized water and 20 (i/i/l) of deionized water and 20 (i/l) of air were added per 1 kg of catalyst. m
Table 2 shows the results of repeated regeneration and reaction with vt).

前記の反応、再生操作を5回くり返した後、反応器内触
媒を取り出したところ、約6%の触媒ベレットが破壊し
ていた。
After repeating the above reaction and regeneration operation five times, when the catalyst in the reactor was taken out, about 6% of the catalyst pellets were found to have been destroyed.

また実際に再生、反応をくり返すうちに、反応器内に若
干の差圧が発生し、触媒層で目づまりが起こっているこ
とが解った。
In addition, as the regeneration and reaction were repeated, it was discovered that a slight pressure difference was generated within the reactor, causing clogging in the catalyst layer.

しかしながら、第2表に示すように、再生回数にかかわ
らず触媒の活性および生成物選択性は、はぼ完全に回復
している。
However, as shown in Table 2, the activity and product selectivity of the catalyst are almost fully recovered regardless of the number of regenerations.

実施例 3 実施例1と同条件下で、表面付着CHO種割合(RT)
の値を、約5×10 として、触媒1kg当り、脱イ
オン水0.7(g/m1!t)、空気を15(t/mm
)で再生、反応をくり返した場合の、反応器内触媒の破
壊割合の値を第3表に示した。
Example 3 Under the same conditions as Example 1, the proportion of CHO species attached to the surface (RT)
Assuming that the value of
Table 3 shows the destruction ratio of the catalyst in the reactor when the regeneration and reaction were repeated.

実施例 4 実施例1と同条件下で、表面付着CHO種割合(RT)
の値を、約10 として、触媒1kg当り、脱イオン
水0.7(9/mm)、空気をi o (z、m)で再
生、反応をくり返した場合の、反応器内触媒の破壊割合
の値を第3表に示した。
Example 4 Under the same conditions as Example 1, the proportion of CHO species attached to the surface (RT)
Assuming that the value of is approximately 10, the destruction rate of the catalyst in the reactor when the reaction is repeated by regenerating deionized water at 0.7 (9/mm) and air at i o (z, m) per 1 kg of catalyst. The values are shown in Table 3.

実施例 5 実施例1と同条件下で、表面付着CHO種割合(RT)
の値を、約5×IOとして、触媒1kg当り、脱イオン
水0.7C11/m玩)、空気を30(t/m1ft)
で再生、反応をくり返した場合の、反応器内触媒の破壊
割合の値を第3表に示した。
Example 5 Under the same conditions as Example 1, the proportion of CHO species attached to the surface (RT)
Assuming the value of about 5 x IO, per 1 kg of catalyst, 0.7 C11/m of deionized water) and 30 (t/m 1 ft) of air.
Table 3 shows the destruction rate of the catalyst in the reactor when the regeneration and reaction were repeated.

−以上実施例3〜5、いずれの場合においても触媒の再
生、反応のくり返しによって、明らかな活性および生成
物選択性の低下は認められない。
- In any of the above Examples 3 to 5, no obvious decrease in activity or product selectivity was observed by regenerating the catalyst and repeating the reaction.

比較例 1 実施例1と同条件下で、表面付着CHO種割合(RT
)の値に関係なく、触媒1kg当り、脱イオン水5(9
/m1yt)、空気を50 (7/mvt)で再生、反
応をくり返した場合の結果を第4表に示す。
Comparative Example 1 Under the same conditions as Example 1, the proportion of CHO species attached to the surface (RT
) of deionized water per kg of catalyst, regardless of the value of
Table 4 shows the results when the reaction was repeated by regenerating air at 50 (7/mvt).

前記の反応、再生をくり返した後、反応器内触媒を取り
出したところ、約23%のベレットが破壊していた。
After repeating the above reaction and regeneration, when the catalyst in the reactor was taken out, about 23% of the pellets were found to have been destroyed.

しかしながら、第4表から明らかな様に、触媒の再生回
数にかかわらず、触媒の活性および生成物選択性はほぼ
回復していることがわかる。
However, as is clear from Table 4, the activity and product selectivity of the catalyst are almost recovered regardless of the number of times the catalyst is regenerated.

Claims (1)

【特許請求の範囲】 1 フエ、/−ル類をメタノールなどによってアルキル
化する際に使用して、活性の低下した酸化クロム官有触
媒を酸素および水蒸気を含有する混合ガスと接触再生さ
せる方法において、式(I)で定義される触媒表面付着
酸素含有炭化水素様割合(RT)の値の変化 に応じて、触媒と接触させる(n+1)回再生時におけ
る混合ガス中のm酸素濃度および(11)酸素流量を下
記式にしたがって変化させ酸化クロム含有触媒を賦活す
る方法。
[Scope of Claims] 1. A method for catalytically regenerating a chromium oxide-based catalyst whose activity has decreased by contacting it with a mixed gas containing oxygen and water vapor, which is used when alkylating Fe,/-ols with methanol or the like. , m oxygen concentration in the mixed gas during regeneration (n+1) times of contact with the catalyst and (11 ) A method of activating a chromium oxide-containing catalyst by changing the oxygen flow rate according to the formula below.
JP53105618A 1978-08-31 1978-08-31 Catalyst activation method Expired JPS5845894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53105618A JPS5845894B2 (en) 1978-08-31 1978-08-31 Catalyst activation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53105618A JPS5845894B2 (en) 1978-08-31 1978-08-31 Catalyst activation method

Publications (2)

Publication Number Publication Date
JPS5539202A JPS5539202A (en) 1980-03-19
JPS5845894B2 true JPS5845894B2 (en) 1983-10-13

Family

ID=14412475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53105618A Expired JPS5845894B2 (en) 1978-08-31 1978-08-31 Catalyst activation method

Country Status (1)

Country Link
JP (1) JPS5845894B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246674Y2 (en) * 1985-12-07 1990-12-10

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5827522A (en) * 1996-10-30 1998-10-27 Troy Corporation Microemulsion and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246674Y2 (en) * 1985-12-07 1990-12-10

Also Published As

Publication number Publication date
JPS5539202A (en) 1980-03-19

Similar Documents

Publication Publication Date Title
JPS6155416B2 (en)
TW200414920A (en) Adsorption composition and process for removing carbon monoxide from substance streams
JPH0570503B2 (en)
US3993731A (en) Selective removal of nitrogen oxides from waste gas
JPS5915022B2 (en) Catalyst for removing nitrogen oxides from exhaust gas
JPH0638915B2 (en) New catalysts for selective reduction of nitrogen oxides
JPH01130720A (en) Method for removing nitrogen oxides and catalyst to be used in same method
JPS5845894B2 (en) Catalyst activation method
JPS5812057B2 (en) Shiyokubaisosabutsu
JP2001113134A (en) Method for cleaning waste gas containing nox
JPH09313940A (en) Ammonia oxidation decomposition catalyst
JPH09173842A (en) High dispersion-type catalyst for vapor modification and manufacture of hydrogen
JP2017001010A (en) Catalyst for ammonia decomposition and manufacturing method of hydrogen using the catalyst
JPS61274729A (en) Removal of hydrogen cyanide in exhaust gas
JPS6057896B2 (en) How to activate catalyst
JPS6361931B2 (en)
JPS593219B2 (en) High-gastric Unochitsuso Sankabutsu Omugai Kasurutexita
JPS58121262A (en) Ammoxidation of organic compound
JPS6039652B2 (en) Method for producing lower oxygen-containing organic compounds
JPS62114657A (en) Catalyst for removing carbon monoxide or carbon monoxide and nitrogen oxide in exhaust gas
JP3429722B2 (en) Catalyst for dehydrogenation of ethane using diamond as carrier and process for producing ethylene using the catalyst
JPS6115727B2 (en)
JPS6152729B2 (en)
JPH05115751A (en) Method and catalyst for treating gas combustion exhaust gas
JPS5845887B2 (en) Method for removing nitrogen oxides from exhaust gas