JPS5845887B2 - Method for removing nitrogen oxides from exhaust gas - Google Patents

Method for removing nitrogen oxides from exhaust gas

Info

Publication number
JPS5845887B2
JPS5845887B2 JP54074704A JP7470479A JPS5845887B2 JP S5845887 B2 JPS5845887 B2 JP S5845887B2 JP 54074704 A JP54074704 A JP 54074704A JP 7470479 A JP7470479 A JP 7470479A JP S5845887 B2 JPS5845887 B2 JP S5845887B2
Authority
JP
Japan
Prior art keywords
catalyst
oxide
nitrogen oxides
titanium
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54074704A
Other languages
Japanese (ja)
Other versions
JPS55167026A (en
Inventor
茂男 宇野
秀夫 岡田
明 加藤
友一 加茂
甚一 今橋
臣平 松田
将人 竹内
史登 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP54074704A priority Critical patent/JPS5845887B2/en
Publication of JPS55167026A publication Critical patent/JPS55167026A/en
Publication of JPS5845887B2 publication Critical patent/JPS5845887B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は排ガス中に含有される窒素酸化物を高温で効率
良く窒素に還元除去する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for efficiently reducing and removing nitrogen oxides contained in exhaust gas into nitrogen at high temperatures.

各種固定発生源例えば硝酸製造プラント、火力発電所ボ
イラー等から発生する窒素酸化物(以下NOxと略記す
る)の無害化法には、窒素酸化物ヲ含む排ガスにアンモ
ニアガスを加え、触媒層に接触させて、窒素ガスにする
方法がある。
To detoxify nitrogen oxides (hereinafter abbreviated as NOx) generated from various fixed sources such as nitric acid production plants and thermal power plant boilers, ammonia gas is added to the exhaust gas containing nitrogen oxides and brought into contact with the catalyst layer. There is a way to turn it into nitrogen gas.

反応温度は通常250’C〜450℃が用いられている
The reaction temperature generally used is 250'C to 450C.

用いられる触媒としては本発明者らの発明になる酸化チ
タンをベースとしたもの(特開昭50−128680、
特公昭52−6954、特公昭52−17830、特公
昭52−35342、特公昭54−2912)を始めと
し多くの触媒が知られている。
The catalyst used is a titanium oxide-based catalyst invented by the present inventors (Japanese Patent Application Laid-Open No. 50-128680,
Many catalysts are known, including Japanese Patent Publication No. 52-6954, Japanese Patent Publication No. 52-17830, Japanese Patent Publication No. 52-35342, and Japanese Patent Publication No. 54-2912).

しかしこれらの従来の触媒は主に300〜500℃の温
度領域で比較的高い活性を示すものである。
However, these conventional catalysts mainly exhibit relatively high activity in the temperature range of 300 to 500°C.

本発明者らの詳しい検討によれば従来の触媒の中では酸
化チタン−酸化バナジウムより成る触媒が特に350℃
前後での活性が高いことがわかった。
According to a detailed study by the present inventors, among conventional catalysts, catalysts made of titanium oxide and vanadium oxide are particularly effective at 350°C.
It was found that the activity before and after was high.

ところでガスタービン排ガスのように500℃以上の高
温ガスを処理する脱硝プロセスにおいては上記のものを
始めとする従来の触媒では高温活性が低く実用的でない
ことがわかった。
By the way, it has been found that conventional catalysts such as those mentioned above have low high-temperature activity and are not practical in denitrification processes that treat high-temperature gases of 500° C. or higher, such as gas turbine exhaust gas.

この原因は還元剤として加えたアンモニアがNOxと反
応するだけでなく酸素との反応も併発して起こり、一部
はNOxまで酸化されてしまうため、脱硝率が低下して
いくものと考えられる。
The reason for this is thought to be that ammonia added as a reducing agent not only reacts with NOx but also reacts with oxygen, and some of the ammonia is oxidized to NOx, resulting in a decrease in the denitrification rate.

本発明者らの検討によれば従来の触媒の中では本発明者
らの発明になる酸化チタン−酸化タングステンよりなる
触媒(特公昭52−35342)が比較的高温での活性
が良いことがわかった。
According to the studies conducted by the present inventors, it has been found that among conventional catalysts, the catalyst composed of titanium oxide and tungsten oxide invented by the present inventors (Japanese Patent Publication No. 52-35342) has relatively good activity at high temperatures. Ta.

しかしこの触媒でも500℃以上、特に600℃前後で
は活性が低下し、実用的には充分でないことがわかった
However, even with this catalyst, the activity decreased at temperatures above 500°C, particularly around 600°C, and it was found that this catalyst was not sufficient for practical use.

また高温排ガス処理する方法としては従来は無触媒下に
おいて800〜1100℃の温度の下で、アンモニアを
NOxと反応させる気相還元法も知られている。
Furthermore, as a method for treating high-temperature exhaust gas, a gas phase reduction method in which ammonia is reacted with NOx at a temperature of 800 to 1100° C. in the absence of a catalyst is also known.

しかしこの方法は800℃以上の温度が必要とされ、本
発明の目的とする500〜700℃では高い脱硝率の値
が得られず、またこの反応は選択性がやや低いという欠
点もある。
However, this method requires a temperature of 800 DEG C. or higher, and a high denitrification rate cannot be obtained at 500 DEG to 700 DEG C., which is the objective of the present invention, and this reaction also has the drawback of being somewhat low in selectivity.

本発明の目的は上記した従来技術の欠点をなくして排ガ
ス中の窒素酸化物を高温で効率良く窒素に還元除去する
方法を提供することにある。
An object of the present invention is to provide a method for efficiently reducing and removing nitrogen oxides in exhaust gas to nitrogen at high temperatures, eliminating the drawbacks of the prior art described above.

本発明の方法の特徴は本方法に用いる触媒として、活性
の第1成分として酸化チタン、活性の第2成分として酸
化タングステン、活性の第3成分として酸化スズ、酸化
ニッケル、酸化マンガン、酸化アンチモンの中から選ば
れた少なくとも1種以上を含み、かつチタンに対するタ
ングステンの原子比がチタン1に対して0.01〜0.
5の範囲にあり、スズ、ニッケル、マンガン、アンチモ
ンの中から選ばれた少なくとも1種以上の成分の原子比
がチタン1に対して0.01〜0.1の範囲にあり、か
つ500〜850’Cで焼成したものを用いるところに
ある。
The feature of the method of the present invention is that the catalyst used in the method includes titanium oxide as the first active component, tungsten oxide as the second active component, and tin oxide, nickel oxide, manganese oxide, and antimony oxide as the third active component. The atomic ratio of tungsten to titanium is 0.01 to 0.01 to titanium.
5, the atomic ratio of at least one component selected from tin, nickel, manganese, and antimony is in the range of 0.01 to 0.1 to 1 titanium, and 500 to 850 'C-fired material is used.

本発明者らの研究によると酸化チタンと酸化タングステ
ンを組み合せた触媒は400℃〜500℃の高温におい
てアンモニアとNOxの反応に対し比較的良い性能を示
したが、この触媒に第3成分として上記の物質を加える
と500℃以上での高温部でのアンモニアの酸化反応に
よる活性の低下が小さくなり、一段と高性能の触媒とな
ることがわかった。
According to research conducted by the present inventors, a catalyst combining titanium oxide and tungsten oxide showed relatively good performance in the reaction between ammonia and NOx at high temperatures of 400°C to 500°C. It was found that the addition of this substance reduces the decrease in activity due to the oxidation reaction of ammonia in the high-temperature section above 500°C, resulting in a catalyst with even higher performance.

この場合の触媒組成は上記のような範囲が良く、例えば
チタンに対するタングステンの原子比が0.01以下ま
たは0.5以上の場合には活性が低くなり実用的に好ま
しくない。
In this case, the catalyst composition should preferably be within the above-mentioned range; for example, if the atomic ratio of tungsten to titanium is less than 0.01 or more than 0.5, the activity will be low and this is not practical.

またチタンに対する第3成分の原子比が0.01以下で
は第3成分添加の効果があまり現れず活性が低く、また
0、1以上でも活性が低下するようになる。
Further, if the atomic ratio of the third component to titanium is less than 0.01, the effect of the addition of the third component will not be apparent and the activity will be low, and if it is more than 0 or 1, the activity will decrease.

本発明の方法の第2番目の特徴は触媒の焼成を500℃
以上、850℃以下で行うことにある。
The second feature of the method of the present invention is that the catalyst is calcined at 500°C.
The above is to be carried out at a temperature of 850°C or lower.

500℃以下で焼成された触媒は使用条件下において不
安定であり、安定した高い活性を示さないのみならず全
般に活性が低いことがわかった。
It has been found that catalysts calcined at temperatures below 500° C. are unstable under the conditions in which they are used, and not only do they not exhibit stable high activity, but also have low activity overall.

また850°C以上で焼成したものは、触媒の焼結が進
み比表面積の急激な減少をもたらすため活性が低くなる
In addition, if the catalyst is fired at a temperature of 850°C or higher, sintering of the catalyst progresses and the specific surface area rapidly decreases, resulting in low activity.

本発明においては反応温度は500℃以上、700℃以
下が選ばれる。
In the present invention, the reaction temperature is selected to be 500°C or higher and 700°C or lower.

本触媒においてはこの温度範囲領域において高い活性を
得ることができる。
In this catalyst, high activity can be obtained in this temperature range.

500℃以下においては本触媒以外の従来の触媒例えば
酸化チタン−酸化タングステンなどでも高い脱硝率を得
ることができるため、特に本発明触媒を用いるメリット
がなく、また700℃以上では還元剤として加えたアン
モニアが酸素と反応してNOxを生成するためNOxの
除去率が低下する。
At temperatures below 500°C, conventional catalysts other than the present catalyst, such as titanium oxide-tungsten oxide, can also achieve a high denitrification rate, so there is no particular advantage to using the catalyst of the present invention, and at temperatures above 700°C, the catalyst added as a reducing agent is Since ammonia reacts with oxygen to generate NOx, the NOx removal rate decreases.

本発明においては還元剤として加えるアンモニアの量は
NOxに対してモル比でO15〜2.0の範囲が好まし
い。
In the present invention, the amount of ammonia added as a reducing agent is preferably in the range of O15 to 2.0 in molar ratio to NOx.

本発明の方法に用いられる触媒の調製法は特に限定され
るものではなく、通常触媒の製造に一般に利用されてい
る沈殿法、混線法、含浸法などの常法により容易に製造
される。
The method for preparing the catalyst used in the method of the present invention is not particularly limited, and it can be easily produced by conventional methods such as precipitation, cross-contact method, and impregnation method that are commonly used in the production of catalysts.

また、最終的な触媒の成型法としても通常の押出成型法
、打錠成型法、転動製造粒など目的に応じて任意の成型
法を採用できる。
Further, as the final method for molding the catalyst, any molding method can be employed depending on the purpose, such as the usual extrusion molding method, tablet molding method, rolling granulation method, etc.

また触媒の製造法として触媒成分をスラリー状にしたも
のを担体、好ましくはハニカム状の担体にコーティング
する方法を用いることもできる。
Further, as a method for producing the catalyst, it is also possible to use a method in which a slurry of catalyst components is coated on a carrier, preferably a honeycomb-shaped carrier.

触媒の形状としてはペレット状、球状、板状、ハニカム
状、パイプ状、エンベロツブ状などのものを用いること
ができる。
The shape of the catalyst may be pellets, spheres, plates, honeycombs, pipes, envelopes, or the like.

本発明の方法に用いる触媒を調製する場合の原料として
は、酸化物、水酸化物、硝酸塩、硫酸塩、塩化物など焼
成により酸化物を生成するものを用いることができる。
As raw materials for preparing the catalyst used in the method of the present invention, those that produce oxides upon calcination, such as oxides, hydroxides, nitrates, sulfates, and chlorides, can be used.

また各種の塩類の溶液にアンモニア水あるいは炭酸ソー
ダ溶液などの沈殿剤を加えて沈殿させて水酸化物、炭酸
塩などを生成させた後加熱分解により酸化物を生成する
方法も好ましい方法である。
Another preferred method is to add a precipitant such as aqueous ammonia or sodium carbonate solution to a solution of various salts to precipitate it to produce hydroxides, carbonates, etc., and then thermally decompose it to produce oxides.

また本発明の触媒には上記の成分以外にもアルミナ、シ
リカ・アルミナ、マグネシア、酸化カルシウムを重量と
して50俤以下含んでいても構わない。
In addition to the above-mentioned components, the catalyst of the present invention may also contain 50 or less by weight of alumina, silica/alumina, magnesia, and calcium oxide.

もちろんこれらの成分より成る担体、特にハニカム状の
担体に本発明の成分をコーティングして使用する場合に
は、全体として担体の重量が50%以上になることもあ
る。
Of course, when a carrier made of these components, particularly a honeycomb-shaped carrier, is coated with the components of the present invention, the total weight of the carrier may be 50% or more.

以下、実施例をあげて本発明の内容をより詳細に説明す
る。
Hereinafter, the content of the present invention will be explained in more detail with reference to Examples.

実施例 1 本発明の方法に用いる触媒を下記のように調製した。Example 1 The catalyst used in the method of the invention was prepared as follows.

実施例触媒 1 四塩化チタン(T iC4) 189.7 gをとり、
11の氷水中に注ぐ、これに3規定アンモニア水を加え
、中和する。
Example Catalyst 1 Take 189.7 g of titanium tetrachloride (T iC4),
Pour into ice water from step 11 and add 3N ammonia water to neutralize.

生じた沈殿を炉別し、充分に蒸留水で洗浄する。Separate the resulting precipitate and wash thoroughly with distilled water.

かくして得られたケーキ173.59 (T t 02
に換算して32.0 g、 0.4モル相当)をとり、
これにパラタングステン酸アンモン61.4gを200
m1の蒸留水に、硝酸ニッケル2.33gを200mA
’の蒸留水に夫々溶解したも中本のを加え、充分に混練
しつつ水分を蒸発させる。
The cake thus obtained was 173.59 (T t 02
(converted to 32.0 g, equivalent to 0.4 mol),
Add 200 g of ammonium paratungstate to this.
Add 2.33 g of nickel nitrate to 1 m of distilled water at 200 mA.
Add the mochumoto dissolved in each of the distilled water and evaporate the water while thoroughly kneading.

えられたケーキを乾燥した後、蒸留水を加え30分分間
湿式磨砕後、直径6山に押出成型する。
After drying the obtained cake, distilled water is added and wet milling is performed for 30 minutes, followed by extrusion molding into a diameter of 6 mounds.

得られた成型品を乾燥し、マツフル炉にて800℃5時
間焼成する。
The obtained molded product is dried and fired in a Matsufuru furnace at 800° C. for 5 hours.

かくして得られた触媒は金属原子比でTi:W:N1=
1:0.05:0.02の組成を有する。
The catalyst thus obtained had a metal atomic ratio of Ti:W:N1=
It has a composition of 1:0.05:0.02.

これを長さ6關に切断し、以下の反応に使用した。This was cut into 6 lengths and used in the following reaction.

反応管は内径40關の石英製反応管で内部に外径4mm
の石英製の熱電対挿入管を有し、外部を電気炉で加熱す
る。
The reaction tube is a quartz reaction tube with an inner diameter of 40 mm and an outer diameter of 4 mm inside.
It has a quartz thermocouple insertion tube, and the outside is heated with an electric furnace.

反応ガスは下記の組成を有する。NO300ppm NH3360ppm 02 15% N20 8咎 CO28饅 N2 残 部 この組成のガスを空間速度(NTP換算空塔基準、以下
SVと表示すル) 10,000 hr−1テ通ずる。
The reaction gas has the following composition. NO 300 ppm NH 3 360 ppm 02 15% N20 8 tons CO2 8 rice cake N2 The remainder A gas having this composition is passed through at a space velocity (NTP equivalent space column standard, hereinafter referred to as SV) of 10,000 hr-1.

反応温度を順次変えて得られたNOxの除去率を第1表
に示す。
Table 1 shows the NOx removal rates obtained by sequentially changing the reaction temperature.

なおNOxの分析はケミルミネッセンス型のNOx分析
計を用い、NOxの除去率は次式により求めた。
Note that the NOx analysis was performed using a chemiluminescence type NOx analyzer, and the NOx removal rate was determined using the following formula.

比較例 1 実施例触媒1と同様にして四塩化チタンより調製した含
水酸化チタンのケーキとメタバナジン酸アンモンを原料
とし、焼成温度を450℃に変えた以外は実施例触媒1
と同様の方法で比較例触媒1を調製した。
Comparative Example 1 Example Catalyst 1 except that the raw materials were a hydrous titanium oxide cake prepared from titanium tetrachloride and ammonium metavanadate in the same manner as Example Catalyst 1, and the calcination temperature was changed to 450°C.
Comparative Example Catalyst 1 was prepared in the same manner as above.

この触媒は原子比でTi:V=1:0.05の組成を有
する。
This catalyst has a composition of Ti:V=1:0.05 in atomic ratio.

実施例1と同様の方法で性能を試験した結果を第1表に
併記する。
The results of performance tests performed in the same manner as in Example 1 are also listed in Table 1.

なお600’C以上では活性が低すぎるので測定は行わ
なかった。
Note that the activity was too low at temperatures above 600'C, so measurements were not carried out.

比較例 2 実施例触媒1において硝酸ニッケルを添加せず、また焼
成温度を450℃で行った以外は実施例触媒1と同様の
方法で比較例触媒2を調製した。
Comparative Example 2 Comparative Example Catalyst 2 was prepared in the same manner as Example Catalyst 1 except that nickel nitrate was not added to Example Catalyst 1 and the calcination temperature was 450°C.

この触媒は原子比でTi:W=1:0.05の組成を有
する実施例1と同様の方法で性能を試験した結果を第1
表に併記する。
This catalyst has a composition of Ti:W=1:0.05 in atomic ratio, and the performance was tested in the same manner as in Example 1.
Also listed in the table.

実施例 2〜8 触媒原料の割合を変え、触媒組成を変えた以外は実施例
触媒1と同様の方法で調製した触媒を用い、実施例−1
と同様にして反応させた結果を第1表に併記する。
Examples 2 to 8 Example 1 was prepared using a catalyst prepared in the same manner as Example Catalyst 1, except that the ratio of catalyst raw materials was changed and the catalyst composition was changed.
The results of the reaction were also shown in Table 1.

実施例 9〜16 触媒の第3成分を酸化スズに変えた以外は実施例1〜8
と同様の方法で調製した触媒の性能を試験した結果を第
2表に示す。
Examples 9-16 Examples 1-8 except that the third component of the catalyst was changed to tin oxide
Table 2 shows the results of testing the performance of catalysts prepared in the same manner as above.

実施例 17〜24 触媒の第3成分を酸化マンガンに変えた以外は実施例1
〜8と同様の方法で調製した触媒の性能を試験した結果
を第3表に示す。
Examples 17-24 Example 1 except that the third component of the catalyst was changed to manganese oxide
Table 3 shows the results of testing the performance of catalysts prepared in the same manner as in 8.-8.

実施例 25〜32 触媒の第3成分を酸化アンチモンに変えた以外は実施例
1〜8と同様の方法で調製した触媒の性能を試験した結
果を第4表に示す。
Examples 25 to 32 Table 4 shows the results of testing the performance of catalysts prepared in the same manner as in Examples 1 to 8, except that the third component of the catalyst was changed to antimony oxide.

実施例 33 実施例触媒1において焼成温度を変えた以外は同様の方
法で調製した触媒の性能を試験した結果を第5表に示す
Example 33 Table 5 shows the results of testing the performance of catalysts prepared in the same manner as Example Catalyst 1 except that the calcination temperature was changed.

実施例 34 実施例触媒9において焼成温度を変えた以外は同様の方
法で調製した触媒の性能を試験した結果を第6表に示す
Example 34 Table 6 shows the results of testing the performance of a catalyst prepared in the same manner as Example Catalyst 9 except that the calcination temperature was changed.

実施例 35 実施例触媒17において焼成温度を変えた以外は同様の
方法で調製した触媒の性能を試験した結果を第7表に示
す。
Example 35 Table 7 shows the results of testing the performance of a catalyst prepared in the same manner as Example Catalyst 17 except that the calcination temperature was changed.

実施例 36 実施例触媒25において焼成温度を変えた以外は同様の
方法で調製した触媒の性能を試験した結果を第8表に示
す。
Example 36 Table 8 shows the results of testing the performance of a catalyst prepared in the same manner as Example Catalyst 25 except that the calcination temperature was changed.

Claims (1)

【特許請求の範囲】[Claims] 1 窒素酸化物を含有する排ガスをアンモニアとともに
触媒に接触させ、500〜700℃で該ガス中の窒素酸
化物を還元除去する方法において、該触媒は500〜8
50℃の温度で焼成して得られ、かつ活性の第1成分と
して酸化チタン、活性の第2成分として酸化タングステ
ン、活性の第3戒分として酸化スズ、酸化ニッケル、酸
化マンガン、酸化アンチモンの中から選ばれた少なくと
も1種以上を含み、かつチタンに対するタングステンの
原子比がチタン1に対して0.01〜0.5の範囲にあ
り、スズ、ニッケル、マンガン、アンチモンの中から選
ばれた少なくとも1種以上の成分の原子比がチタンlに
対して0.01〜0.1の範囲にあることを特徴とする
排ガス中の窒素酸化物の除去法。
1. A method in which exhaust gas containing nitrogen oxides is brought into contact with a catalyst together with ammonia, and nitrogen oxides in the gas are reduced and removed at 500 to 700°C, wherein the catalyst has a temperature of 500 to 8
It is obtained by firing at a temperature of 50°C, and contains titanium oxide as the first active component, tungsten oxide as the second active component, and among tin oxide, nickel oxide, manganese oxide, and antimony oxide as the third active component. The atomic ratio of tungsten to titanium is in the range of 0.01 to 0.5 to 1 titanium, and at least one selected from tin, nickel, manganese, and antimony. A method for removing nitrogen oxides from exhaust gas, characterized in that the atomic ratio of one or more components to titanium is in the range of 0.01 to 0.1.
JP54074704A 1979-06-15 1979-06-15 Method for removing nitrogen oxides from exhaust gas Expired JPS5845887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54074704A JPS5845887B2 (en) 1979-06-15 1979-06-15 Method for removing nitrogen oxides from exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54074704A JPS5845887B2 (en) 1979-06-15 1979-06-15 Method for removing nitrogen oxides from exhaust gas

Publications (2)

Publication Number Publication Date
JPS55167026A JPS55167026A (en) 1980-12-26
JPS5845887B2 true JPS5845887B2 (en) 1983-10-13

Family

ID=13554876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54074704A Expired JPS5845887B2 (en) 1979-06-15 1979-06-15 Method for removing nitrogen oxides from exhaust gas

Country Status (1)

Country Link
JP (1) JPS5845887B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0335839Y2 (en) * 1984-11-20 1991-07-30
DE4121531A1 (en) * 1990-06-29 1992-01-02 Mitsubishi Electric Corp Motion control system for machine tool - uses position correcting delays to be used to modify cycle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2361653A (en) * 2000-04-28 2001-10-31 Johnson Matthey Plc Improvements in catalytic reduction of NOx

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0335839Y2 (en) * 1984-11-20 1991-07-30
DE4121531A1 (en) * 1990-06-29 1992-01-02 Mitsubishi Electric Corp Motion control system for machine tool - uses position correcting delays to be used to modify cycle
DE4121531C2 (en) * 1990-06-29 2000-05-31 Mitsubishi Electric Corp Motion control device

Also Published As

Publication number Publication date
JPS55167026A (en) 1980-12-26

Similar Documents

Publication Publication Date Title
US4003978A (en) Method for treating ammonia-containing gases
ES2691393T3 (en) Denitrification catalyst, smoke denitrification process using said catalyst and manufacturing process of said catalyst
JPS5915022B2 (en) Catalyst for removing nitrogen oxides from exhaust gas
US5116801A (en) Catalysts for the selective reduction of nitrogen oxides and process for preparing the catalyst
EP0208434B1 (en) Process for removing nitrogen oxides and carbon monoxide simultaneously
US4946661A (en) Process for removing nitrogen oxides
JPS6211892B2 (en)
JPS63291628A (en) Method for removing nitrogen oxide
JP3465350B2 (en) Method for producing catalyst for methacrylic acid production
JPH01201023A (en) Titanium oxide having stabilized characteristics
JPS5845887B2 (en) Method for removing nitrogen oxides from exhaust gas
JPS5812057B2 (en) Shiyokubaisosabutsu
JPH0356779B2 (en)
JPS5823136B2 (en) How to remove nitrogen oxides from exhaust gas
JPS5824172B2 (en) Ammonia Osankabunkaisuruhouhou
JPH0417091B2 (en)
US4105745A (en) Catalyst and process for reducing nitrogen oxides
JP3500400B2 (en) Exhaust gas purification catalyst
JPS61274729A (en) Removal of hydrogen cyanide in exhaust gas
JPS5841897B2 (en) Higasutyuunochitsusosankabutuno
JPS6344010B2 (en)
JPS6115727B2 (en)
JPH0563222B2 (en)
JPS5827623A (en) Catalytic decomposition of nitrogen oxide
JPH0438455B2 (en)