JPS5824172B2 - Ammonia Osankabunkaisuruhouhou - Google Patents
Ammonia OsankabunkaisuruhouhouInfo
- Publication number
- JPS5824172B2 JPS5824172B2 JP50144002A JP14400275A JPS5824172B2 JP S5824172 B2 JPS5824172 B2 JP S5824172B2 JP 50144002 A JP50144002 A JP 50144002A JP 14400275 A JP14400275 A JP 14400275A JP S5824172 B2 JPS5824172 B2 JP S5824172B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- ammonia
- oxide
- titanium
- activity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
- Incineration Of Waste (AREA)
Description
【発明の詳細な説明】
本発明は排ガス中に含まれるアンモニアガスを分解して
窒素ガスおよび水にする触媒に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a catalyst that decomposes ammonia gas contained in exhaust gas into nitrogen gas and water.
現在、各種排ガス中の窒素酸化物(以下NOxと略記す
る)の除去方法としてアンモニアによる接触還元法が開
発されている。Currently, a catalytic reduction method using ammonia has been developed as a method for removing nitrogen oxides (hereinafter abbreviated as NOx) from various exhaust gases.
この場合、高い脱硝率を維持するためにアンモニアを当
量以上に加えるのが普通である。In this case, it is common to add more than an equivalent amount of ammonia to maintain a high denitrification rate.
そのためNOxは除去されても余剰のアンモニアが流出
してくる可能性がある。Therefore, even if NOx is removed, excess ammonia may flow out.
このアンモニアはそのまま排出されれば新たな公害源と
なる恐れがある。If this ammonia is emitted as it is, there is a risk that it will become a new source of pollution.
また、余剰のアンモニアは排ガス中の酸性ガスと反応し
てアンモニウム塩になるので、脱硝塔後部の配管に付着
して閉塞などのトラブルの原因となる。In addition, excess ammonia reacts with acidic gas in the exhaust gas to form ammonium salts, which adhere to the pipes at the rear of the denitrification tower and cause problems such as blockage.
したがってアンモニア還元脱硝法においては、余剰のア
ンモニアを分解しておくことが重要となる。Therefore, in the ammonia reduction denitrification method, it is important to decompose excess ammonia.
また、アンモニアを使用する各種化学プラントからの排
ガスにはアンモニアが含有されるこさがままあるが、ア
ンモニアは水溶液によく吸収されるのでアンモニアの除
去は比較的容易であった。In addition, exhaust gases from various chemical plants that use ammonia often contain ammonia, but since ammonia is well absorbed by aqueous solutions, it has been relatively easy to remove ammonia.
しかしながら吸収法によりアンモニアを除去する場合、
処理ガス温度が高い時には処理ガスを冷却しなければな
らず、また吸収液の処理にも問題が残る。However, when removing ammonia by absorption method,
When the processing gas temperature is high, the processing gas must be cooled, and problems also remain in the processing of the absorption liquid.
これらの問題を解決するには排ガス中のアンモニアを分
解して窒素と水にして無害化するのが最も良い方法と考
えられる。The best way to solve these problems is to decompose the ammonia in the exhaust gas and turn it into nitrogen and water, making it harmless.
従来、アンモニアを酸化して一酸化窒素とする触媒とし
ては工業的にPt系、Pt−Rh系などが800℃以上
の温度で用いられている。Conventionally, Pt-based catalysts, Pt-Rh-based catalysts, and the like have been used industrially as catalysts for oxidizing ammonia to nitrogen monoxide at temperatures of 800° C. or higher.
しかし、この触媒では窒素酸化物を窒素までに還元する
ものではないので、その処理ガスは依然として人体に有
害である。However, since this catalyst does not reduce nitrogen oxides to nitrogen, the treated gas is still harmful to the human body.
またその他、これまで報告されているアンモニア酸化用
触媒にはNiOCoO+Feze3+ CuO+ Bi
2O3,MnO2などの酸化物触媒がある。Other catalysts for ammonia oxidation that have been reported so far include NiOCoO+Feze3+ CuO+ Bi.
There are oxide catalysts such as 2O3 and MnO2.
しかし、これらの触媒ではアンモニアの酸化分解生成物
として窒素以外にN 20.NOxの生成もかなり多い
。However, with these catalysts, in addition to nitrogen, N20. There is also a considerable amount of NOx produced.
しかも本目的とする反応温度300〜400℃では活性
も充分ではない。Furthermore, the activity is not sufficient at the desired reaction temperature of 300 to 400°C.
本発明の目的は上記した従来技術の欠点をなくして、広
い温度範囲で高活性を示し、かつ他のガス例えばSO2
,CO2等の存在下でも選択性の良い触媒を用いてアン
モニアを窒素と水とに無害化する方法を提供することに
ある。The object of the present invention is to eliminate the above-mentioned drawbacks of the prior art, to exhibit high activity over a wide temperature range, and to be able to use other gases such as SO2.
The object of the present invention is to provide a method for detoxifying ammonia into nitrogen and water using a catalyst with good selectivity even in the presence of , CO2, etc.
本発明の特徴はアンモニアおよび酸素を含有するガスを
接触させ、(1)式のように該ガス中のアンモニアを酸
化分解し、窒素と水に無害化するため4NH3+302
→2 N2 + 6 N20 (1)の方法(こ関
し、その反応を促進する触媒としてチタンおよび銅にモ
リブデン、タングステン、バナジウム、セリウム、鉄の
少くとも1種以上を活性主成分として含有する触媒を用
いることにある。The feature of the present invention is that a gas containing ammonia and oxygen is brought into contact with each other, and the ammonia in the gas is oxidized and decomposed as shown in equation (1), and the ammonia is rendered harmless to nitrogen and water.
→2 N2 + 6 N20 Method (1) (for this, a catalyst containing at least one of titanium and copper as an active main component of molybdenum, tungsten, vanadium, cerium, and iron to promote the reaction) is used. It's about using it.
本発明になる触媒を用いてアンモニアを分解除去する場
合、反応温度は250〜450℃、好ましくは300〜
400℃の広い温度範囲で効率的にNH3を分解できる
。When ammonia is decomposed and removed using the catalyst of the present invention, the reaction temperature is 250 to 450°C, preferably 300 to 450°C.
NH3 can be decomposed efficiently over a wide temperature range of 400°C.
反応温度250℃以下では反応速度が小さく、高いアン
モニア分解率を得るためには空間速度を下げる必要があ
り、装置が大きくなって経済性が悪くなる。At a reaction temperature of 250° C. or lower, the reaction rate is low, and in order to obtain a high ammonia decomposition rate, it is necessary to lower the space velocity, which increases the size of the apparatus and makes it uneconomical.
また反応温度450℃以上ではNOx生成率が高くなる
。Furthermore, when the reaction temperature is 450° C. or higher, the NOx production rate increases.
反応圧力は特に限定されないが、大気圧から10kg/
cyttあるいはそれ以上でもよい。The reaction pressure is not particularly limited, but from atmospheric pressure to 10 kg/
cytt or higher.
本発明になる触媒を用いてガス中のアンモニアを分解除
去するにあっては、(1)式で示されるように化学量論
的にアンモニアの374モル倍ノ酸素を必要とする。When decomposing and removing ammonia in a gas using the catalyst of the present invention, as shown in equation (1), 374 moles of oxygen is required as much as the amount of ammonia stoichiometrically.
実際のプロセスにおいては反応速度を充分早くするため
酸素はアンモニアの数倍以上あることが好ましい。In an actual process, the amount of oxygen is preferably several times or more that of ammonia in order to sufficiently increase the reaction rate.
この点については処理ガスが充分量の酸素を含有しない
場合には、処理ガス中に酸素あるいは空気を混入するこ
とにより容易に解決できる。If the processing gas does not contain a sufficient amount of oxygen, this problem can be easily solved by mixing oxygen or air into the processing gas.
この点ボイラー排ガス中の窒素酸化物をアンモニア還元
した後の余剰アンモニアの分解には充分に酸素を有する
のでそのまま反応させうる。At this point, there is enough oxygen to decompose surplus ammonia after nitrogen oxides in the boiler exhaust gas are reduced to ammonia, so the reaction can be carried out as is.
また空間速度は反応温度およびガス中の他の共存成分に
よっても異なるが1,000〜100.0OOh=’、
好ましくは2,000〜30.000h−1の範囲で効
率よくアンモニアを分解できる。Although the space velocity varies depending on the reaction temperature and other coexisting components in the gas, it is 1,000 to 100.0OOh=',
Preferably, ammonia can be decomposed efficiently within the range of 2,000 to 30,000 h-1.
本発明の触媒は第1成分としてチタン、第2成分吉して
銅に更に第3成分としてモリブデン、タングステン、バ
ナジウム、セリウム、鉄のうちから選ばれた少くとも1
種以上を触媒調製終了時において第1成分に対する第2
成分の原子比が0.02〜1望ましくは0.05〜0.
5の範囲にあり、かつ第1成分に対する第3成分の原子
比が0.01〜05、望ましくは0.02〜0.5の範
囲の比率で含有している。The catalyst of the present invention has titanium as a first component, copper as a second component, and at least one selected from molybdenum, tungsten, vanadium, cerium, and iron as a third component.
At the end of catalyst preparation, the second component is added to the first component.
The atomic ratio of the components is 0.02-1, preferably 0.05-0.
5, and the atomic ratio of the third component to the first component is from 0.01 to 0.5, preferably from 0.02 to 0.5.
また、上述の活性成分を耐火性多孔質担体に担持して用
いたり、相体成分と混合して触媒を調製することができ
るが、この場合には上記3種の触媒成分の重量の和が触
媒全重量の3%以上、望ましくは5%以上とすると活性
の良い触媒を得る。In addition, a catalyst can be prepared by supporting the above-mentioned active component on a refractory porous carrier or by mixing it with a phase component, but in this case, the sum of the weights of the above three catalyst components is When the amount is 3% or more, preferably 5% or more of the total weight of the catalyst, a highly active catalyst can be obtained.
本発明になる触媒の調製には1通常の製造に利用される
沈澱法、混練法などいずれも使用することが出来、特に
限定されない。For the preparation of the catalyst of the present invention, any of the precipitation methods, kneading methods, etc. that are commonly used in production can be used, and there are no particular limitations.
また最終的な触媒の成型法としても通常の打錠成型法、
押出し成型法、転勤造粒法など目的に応じて任意の方法
を採用することが出来る。In addition, the final catalyst molding method is the usual tablet molding method.
Any method can be used depending on the purpose, such as an extrusion molding method or a transfer granulation method.
本発明になる触媒を調製する場合のチタン原料としては
各種の酸化チタン、また加熱することにより酸化チタン
を生成するチタン酸(T 102・nN20)、四塩化
チタン、硫酸チタン、硫酸チタニル(T i O204
)などを用いることが出来る。When preparing the catalyst of the present invention, titanium raw materials include various titanium oxides, titanic acid (T 102・nN20), which produces titanium oxide when heated, titanium tetrachloride, titanium sulfate, titanyl sulfate (T i O204
) etc. can be used.
あるいは四塩化チタン、硫酸チタンなどの水溶液をアン
モニア水、力性アルカリ、炭酸アルカリ、尿素などで中
和して沈澱を生成せしめ、それを加熱分解して酸化物を
得るのも好ましい方法である。Alternatively, a preferred method is to neutralize an aqueous solution of titanium tetrachloride, titanium sulfate, etc. with aqueous ammonia, aqueous alkali, alkali carbonate, urea, etc. to form a precipitate, and then thermally decompose the precipitate to obtain an oxide.
高温焼成されたルチル型あるいはアナターゼ型酸化チタ
ンを用いて本発明の触媒を調製した場合にはその活性は
充分でないが、これらの酸化チタンを熱濃硫酸で処理す
ることにより、酸化チタンの一部あるいは全部を硫酸チ
タンに変え、上記沈澱物をつくることにより高活性の本
発明触媒を調製できる。When the catalyst of the present invention is prepared using rutile-type or anatase-type titanium oxide calcined at high temperature, its activity is not sufficient, but by treating these titanium oxides with hot concentrated sulfuric acid, some of the titanium oxides can be recovered. Alternatively, a highly active catalyst of the present invention can be prepared by replacing the entire titanium sulfate with titanium sulfate and producing the above precipitate.
銅の原料としては酸化銅、または加熱することにより酸
化銅を生成する水酸化銅、硫酸銅、硝酸銅などいずれも
使用し得る。As a raw material for copper, copper oxide, or copper hydroxide, copper sulfate, copper nitrate, etc., which produce copper oxide by heating, can be used.
またこれら各種銅塩の水溶液に上記アルカリ性の沈澱剤
を加えて銅の水酸化物となし、これを加熱分解すること
により酸化銅を得るのも良い方法である。It is also a good method to obtain copper oxide by adding the above-mentioned alkaline precipitant to an aqueous solution of these various copper salts to form a copper hydroxide, and then thermally decomposing this.
またモリブデンの原料としては酸化モリブデン、モリブ
デン酸、モリブデン酸アンモニウムなどを使用出来る。Further, as a raw material for molybdenum, molybdenum oxide, molybdic acid, ammonium molybdate, etc. can be used.
鉄原料としては各種の酸化鉄、水酸化鉄、硝酸鉄、硫酸
鉄、塩化鉄、酢酸鉄などいずれも使用し得る。As the iron raw material, any of various iron oxides, iron hydroxides, iron nitrates, iron sulfates, iron chlorides, iron acetates, etc. can be used.
バナジウムの原料としては酸化バナジウム、メタバナジ
ン酸アンモニウム、硫酸バナジルなどを用いることが出
来る。As raw materials for vanadium, vanadium oxide, ammonium metavanadate, vanadyl sulfate, etc. can be used.
セリウムの原料としては酸化セリウム、硝酸セリウム、
硫酸セリウム、塩化セリウム、酢酸セリウム、炭酸セリ
ウム、シュウ酸セリウムなどいずれも使用し得る。Cerium raw materials include cerium oxide, cerium nitrate,
Any of cerium sulfate, cerium chloride, cerium acetate, cerium carbonate, cerium oxalate, etc. can be used.
またタングステン原料としては酸化タングステン、タン
グステン酸、パラタングステン酸アンモニウムなどが好
ましい。Further, as the tungsten raw material, tungsten oxide, tungstic acid, ammonium paratungstate, etc. are preferable.
また担体成分であるシリカを含有したケイタングステン
酸およびその塩も好ましい原料である。Tungstic silicic acid and its salts containing silica as a carrier component are also preferred raw materials.
以下、実施例をあげて本発明の内容をより詳細に説明す
る。Hereinafter, the content of the present invention will be explained in more detail with reference to Examples.
実施例−1
本発明の方法に用いる触媒および比較例として用いる触
媒を下記のように調製した。Example-1 A catalyst used in the method of the present invention and a catalyst used as a comparative example were prepared as follows.
実施例触媒 1
メタチタン酸スラリー5002をとり(T i 02と
して150?)、これに硝酸銅(Cu Q’JO3)
2 ・3 N20) 53.4 i1i’およびモリブ
デン酸アンモニウム((NH4)6MO7024・4
N20) 19.5 Fを加える。Example Catalyst 1 Take metatitanic acid slurry 5002 (150? as T i 02) and add copper nitrate (Cu Q'JO3) to it.
2 ・3 N20) 53.4 i1i′ and ammonium molybdate ((NH4)6MO7024・4
N20) Add 19.5F.
更に蒸留水500m1を加え、この混合物をニーダ−に
て充分に混練する、。Furthermore, 500 ml of distilled water was added, and the mixture was sufficiently kneaded in a kneader.
得られたペースト状の混合物を300℃で5時間予備焼
成した後に、グラファイトを3重量%加え成型圧力約5
00kg/cyyiで直径6mrrt、厚さ6朋の大き
さに打錠成型する。After preliminarily firing the resulting paste mixture at 300°C for 5 hours, 3% by weight of graphite was added and the molding pressure was approximately 5%.
00 kg/cyyi, the tablet is compressed into a size of 6 mrrt in diameter and 6 mm in thickness.
得られた成型品を500℃で4時間焼成した。The obtained molded product was fired at 500° C. for 4 hours.
かくして得られた触媒は原子比でTi:Cu:Mo=8
5:10:5の組成を有する。The catalyst thus obtained has an atomic ratio of Ti:Cu:Mo=8
It has a composition of 5:10:5.
比較例触媒 1
ヘキサクロロ白金酸(N2 P t C1e )水溶液
(10rPt/100グ 溶液)577Ilを蒸留水に
希釈して全量を70m1にして、これを10〜20メツ
シユに粉砕した活性アルミナ担体100ノに含浸し。Comparative Example Catalyst 1 577 Il of hexachloroplatinic acid (N2PtC1e) aqueous solution (10rPt/100g solution) was diluted with distilled water to make a total volume of 70ml, and this was added to 100 pieces of activated alumina carrier pulverized into 10 to 20 meshes. Impregnated.
120℃で5時間乾燥後、水素気流中で450℃にて3
時間焼成還元する。After drying at 120°C for 5 hours, drying at 450°C in a hydrogen stream for 3 hours.
Reduce baking time.
この触媒は0.5%(wt)アルミナ担体付白金触媒で
ある。The catalyst is a 0.5% (wt) platinum catalyst on an alumina support.
触媒の活性試験装置は通常の常圧固定床流通方式であり
、反応管は内径16rnrnのパイレックスガラス製で
内部に外径5rn1nのパイレックスガラス製の熱電対
保護管を有している。The catalyst activity testing apparatus was of a normal atmospheric pressure fixed bed flow system, and the reaction tube was made of Pyrex glass with an inner diameter of 16 rnrn and had a thermocouple protection tube made of Pyrex glass with an outer diameter of 5 rnrn inside.
この反応管を電気炉で加熱して反応温度を設定する。This reaction tube is heated in an electric furnace to set the reaction temperature.
反応管の中央部に触媒4m1(実施例触媒は10〜20
メツシユに整粒したのち)を充填し、下記組成のガスを
空間速度(以下SVと略す)約30,000h ’で
触媒層に流通して、触媒層入口と出口のアンモニアNH
3300pp[1I
02 3 %
N2 残部
の濃度を測定しアンモニア分解率を求め、また触媒層出
口のNOxの濃度を測定してNOx生成率を、N20濃
度を測定してN20生成率を求めた。Place 4 ml of catalyst in the center of the reaction tube (the example catalyst is 10 to 20
After sizing) into a mesh, a gas with the following composition is passed through the catalyst bed at a space velocity (hereinafter abbreviated as SV) of approximately 30,000h', and ammonia, NH,
The concentration of the remaining 3300 pp[1I 02 3% N2 was measured to determine the ammonia decomposition rate, the NOx concentration at the outlet of the catalyst layer was measured to determine the NOx production rate, and the N20 concentration was measured to determine the N20 production rate.
なおアンモニアの分析はインドフェノール法により行っ
た。Note that ammonia analysis was performed using the indophenol method.
NOxの測定はケミルミネッセンス方式のNOx分析計
を用いた。NOx was measured using a chemiluminescence NOx analyzer.
N20の測定は赤外線吸収法により行った。N20 was measured by infrared absorption method.
アンモニア分解率、NOx生・成率およびN20生成率
は次式より求めた。The ammonia decomposition rate, NOx generation rate, and N20 generation rate were determined from the following equations.
実施例触媒1と比較例としてあげた白金触媒の活性を上
記条件で測定して第1図に示す結果を得た。The activity of Example Catalyst 1 and the platinum catalyst given as a comparative example was measured under the above conditions, and the results shown in FIG. 1 were obtained.
この図に示されるごとく比較例触媒は実施例触媒と同じ
程度の高い活性を示している。As shown in this figure, the comparative example catalyst exhibits high activity comparable to that of the example catalyst.
しかし比較例触媒ではアンモニアの酸化分解生成物が窒
素以外にNOx +N20が多い。However, in the comparative example catalyst, the oxidative decomposition products of ammonia include NOx +N20 in addition to nitrogen.
このためアンモニアを無害化するという目的には不適で
ある。Therefore, it is unsuitable for the purpose of making ammonia harmless.
一方、実施例触媒は高活性であるPt系触媒と同程度の
活性を示すうえに、生成物としてNOxが450℃にお
いても1卿程度であり、N20も定量分析下限の10廃
以下と少なく、非常に優れた性能を示した。On the other hand, the example catalyst shows the same level of activity as the highly active Pt-based catalyst, and the NOx product is about 1% even at 450°C, and the N20 is also low at less than 10%, which is the lower limit of quantitative analysis. It showed very good performance.
実施例−2
チタンと銅とモリブデンの組成比を変えた以外は実施例
−1と同様な方法で調製した触媒を用い、実施例−1で
示したのと同じ組成のガスを5V−30,000h
’で流通して触媒の活性試験を行い、第1表に示す結果
を得た。Example-2 Using a catalyst prepared in the same manner as in Example-1 except for changing the composition ratio of titanium, copper, and molybdenum, a gas having the same composition as shown in Example-1 was heated at 5V-30, 000h
The activity test of the catalyst was carried out by distributing it in ', and the results shown in Table 1 were obtained.
第1表に示されるとと<Ti/Cu (90:10)触
媒に比較して、モリブデンを添加したTi/Cu/Mo
(85:10:5)触媒は明らかにアンモニア分解活性
が上昇している。Ti/Cu/Mo with molybdenum added compared to <Ti/Cu (90:10) catalyst as shown in Table 1.
(85:10:5) The ammonia decomposition activity of the catalyst has clearly increased.
しかもNOx生成率は低くなっており、選択性も増加し
ている。Furthermore, the NOx production rate is lower and the selectivity is increased.
またTi/Cu/Mo触媒は銅を含まないTi/Mo(
90:10)触媒に比較して低温活性が向上しているこ
とも明らかであろう。In addition, the Ti/Cu/Mo catalyst is a Ti/Mo catalyst that does not contain copper (
The improved low temperature activity compared to the 90:10) catalyst will also be evident.
なお、N20の生成は250〜450℃の範囲ではいず
れの触媒においてもiop毘以下と少なく・無視できる
量であった。In addition, in the range of 250 to 450° C., the amount of N20 produced was small and negligible at less than iop per biliter for all catalysts.
そして高温になっても比較的NOxの生成率が少ないと
いう特徴を有する。It is also characterized by a relatively low NOx production rate even at high temperatures.
実施例−3
モリブデン酸アンモンの代りに硫酸第1鉄の溶液にアン
モニア水を滴下して生成した水酸化鉄の沈澱を用い、モ
リブデンと鉄を入れ換えた以外は実施例−1と同様な方
法で調製したTi/Cu/Fe触媒のTi : Cu
:Feの組成比を変化させ、実施例−2と同様の条件下
で活性試験を行い第2表に示す結果を得た。Example-3 The same method as Example-1 was used except that instead of ammonium molybdate, iron hydroxide precipitate produced by dropping aqueous ammonia into a solution of ferrous sulfate was used, and molybdenum and iron were replaced. Ti:Cu of the prepared Ti/Cu/Fe catalyst
:The activity test was conducted under the same conditions as in Example 2 by changing the composition ratio of Fe, and the results shown in Table 2 were obtained.
第2表に示されるとと<Ti/Cu (90: 10)
触媒に比較して、鉄を添加したT i/Cu//Fe
(80:10:10)触媒は明らかにアンモニア分解活
性が上昇している。As shown in Table 2, <Ti/Cu (90: 10)
Compared to the catalyst, T i/Cu//Fe with added iron
(80:10:10) The ammonia decomposition activity of the catalyst is clearly increased.
しかもNOx生成率は低くなっており、選択性も増加し
ている。Furthermore, the NOx production rate is lower and the selectivity is increased.
またTi/Cu/Fe触媒は銅を含まないTi/’Fe
(90: 10 )触媒に比較して低温活性が向上し
ていることも明らかであろう。In addition, the Ti/Cu/Fe catalyst is a Ti/'Fe catalyst that does not contain copper.
It will also be clear that the low temperature activity is improved compared to the (90:10) catalyst.
そして高温でより充分な活性を示す。And it shows more sufficient activity at high temperatures.
実施例−4
モリブデン酸アンモニウムの代りにメタバナジン酸アン
モニウムを用い、モリブデンとバナジウムを入れ換えた
以外は実施例−1と同様な方法で調製したTi/Cu/
V触媒の’I’i:Cu:Vの組酸比を変化させ、実施
例−2と同様の条件下で活性試験を行い第3表に示す結
果を得た。Example-4 Ti/Cu/
The activity test was carried out under the same conditions as in Example 2 by changing the combined acid ratio of 'I'i:Cu:V of the V catalyst, and the results shown in Table 3 were obtained.
第3表に示されるごと<Ti/Cu (90:10)
触媒に比較して、バナジウム添加したTi/Cu/v(
85:10:5)触媒は明らかに低温でのアンモニア分
解活性が上昇している。As shown in Table 3 <Ti/Cu (90:10)
Compared to the catalyst, vanadium-doped Ti/Cu/v (
85:10:5) The catalyst clearly has increased ammonia decomposition activity at low temperatures.
またTi/Cu/V触媒は銅を含まないTi/V(90
: 10 )触媒に比較して格段に活性が向上している
ことも明らかであろう。In addition, the Ti/Cu/V catalyst is Ti/V (90
: 10) It is also clear that the activity is significantly improved compared to the catalyst.
実施例−5
モリブデン酸アンモニウムの代りに硝酸セリウムの溶液
にアンモニア水を滴下して生成した水酸化セリウムの沈
澱を用い、モリブデンとセリウムを入れ換えた以外は実
施例−1と同様な方法で調製したTi/Cu/Ce触媒
のTi:Cu:Ceの組成比を変化させ、実施例−2と
同様の条件下で活性試験を行い第4表に示す結果を得た
。Example-5 It was prepared in the same manner as in Example-1 except that instead of ammonium molybdate, cerium hydroxide precipitate produced by dropping aqueous ammonia into a solution of cerium nitrate was used, and molybdenum and cerium were replaced. The Ti:Cu:Ce composition ratio of the Ti/Cu/Ce catalyst was changed and an activity test was conducted under the same conditions as in Example 2, and the results shown in Table 4 were obtained.
第4表に示されるごと<Ti/Cu (90: 10)
触媒に比較して、セリウムを添加したT i / Cu
/Ce(80:10:10)触媒は明らかに低温でのア
ンモニア分解活性が上昇している。As shown in Table 4 <Ti/Cu (90: 10)
Ti/Cu with cerium compared to catalyst
/Ce (80:10:10) catalyst has clearly increased ammonia decomposition activity at low temperatures.
またTi/Cu/Ce触媒は銅を含まないTi/Ce(
90:10)触媒に比較して格段に活性が向上している
ことも明らかであろう。In addition, Ti/Cu/Ce catalyst is a Ti/Ce catalyst that does not contain copper (
It is also clear that the activity is significantly improved compared to the 90:10) catalyst.
そして400℃付近でのNOx生成率が少ない傾向があ
る。There is also a tendency for the NOx generation rate to be low near 400°C.
実施例−6
モリブデン酸アンモニウムの代りにタングステン酸アン
モニウムを用い、モリブデンとタングステンを入れ換え
た以外は実施例−1と同様な方法で調製したTi/Cu
/W触媒のTi:Cu:Wの組成比を変化させ、実施例
−2と同様の条件下で活性試験を行い、第5表に示す結
果を得た。Example-6 Ti/Cu prepared in the same manner as Example-1 except that ammonium tungstate was used instead of ammonium molybdate and molybdenum and tungsten were replaced.
An activity test was conducted under the same conditions as in Example 2 by changing the Ti:Cu:W composition ratio of the /W catalyst, and the results shown in Table 5 were obtained.
第5表に示されるごと<Ti/Cu(90: 10)触
媒に比較して、タングステンを添加したTi /Cu/
W (85: 10 : 5 )触媒は明らかに低温で
のアンモニア分解活性が上昇している。As shown in Table 5, compared to <Ti/Cu (90: 10) catalyst, Ti/Cu/ with tungsten added
The W (85:10:5) catalyst clearly has increased ammonia decomposition activity at low temperatures.
またTi/Cu /W触媒は銅を含まないTi/W(9
0:10)触媒に比較して格段に活性が向上しているこ
とも明らかであろう。In addition, the Ti/Cu/W catalyst is Ti/W (9
It is also clear that the activity is significantly improved compared to the 0:10) catalyst.
このように量を多くするに従って低温活性を示す傾向が
ある。Thus, as the amount increases, it tends to exhibit low temperature activity.
実施例−7
本実施例では実施例−1の触媒を用いて、反応温度35
0℃一定の条件でSvとNH3分解率およびNOx生成
率の関係を調べた結果について述べる。Example 7 In this example, the catalyst of Example 1 was used, and the reaction temperature was 35.
The results of investigating the relationship between Sv, NH3 decomposition rate, and NOx production rate under constant conditions of 0°C will be described.
Sv、すなわちガス流量を変えた以外は実施例−1と同
様の条件で反応させた結果を第6表に示す。Table 6 shows the results of the reaction conducted under the same conditions as in Example-1 except that Sv, that is, the gas flow rate, was changed.
この結果から、本発明になる触媒ではSvを30.00
0h’に設定しても充分実用に供する触媒活性を示す。From this result, the catalyst of the present invention has an Sv of 30.00.
Even when set to 0h', the catalyst shows sufficient catalytic activity for practical use.
第1図は本発明の一実施例になる触媒のアンモニア分解
率とNOxおよびNOの生成率と温度の関係を示すグラ
フである。FIG. 1 is a graph showing the relationship between the ammonia decomposition rate, NOx and NO production rate, and temperature of a catalyst according to an embodiment of the present invention.
Claims (1)
ガスを、 (a) チタン酸化物と (b) 銅酸化物および (c)モリブデン酸化物、タングステン酸化物、バナジ
ウム酸化物、セリウム酸化物及び鉄酸化物の少なくとも
1つ を活性の主成分とし、チタンに対する銅の原子比がチタ
ン1に対して0.02〜1の範囲にあり、且つチタンに
対するモリブデン、タングステン、バナジウム、セリウ
ム及び鉄の少なくとも1つの原子比がチタン1に対して
0.01〜0.5の範囲にある触媒(高温焼成されたル
チル型或はアナターゼ型酸化チタンを用いて調製したも
のを除く)を用いて、ガス中のアンモニアを窒素と水と
に変換することを特徴とするアンモニアを酸化分解する
方法。[Claims] 1. A gas containing ammonia and oxygen but not containing nitrogen oxides, (a) titanium oxide, (b) copper oxide, and (c) molybdenum oxide, tungsten oxide, vanadium oxide. , at least one of cerium oxide and iron oxide is an active main component, the atomic ratio of copper to titanium is in the range of 0.02 to 1 to titanium, and molybdenum, tungsten, vanadium, A catalyst in which the atomic ratio of at least one of cerium and iron to titanium is in the range of 0.01 to 0.5 (excluding those prepared using high-temperature calcined rutile or anatase titanium oxide). A method for oxidatively decomposing ammonia, which is characterized by converting ammonia in a gas into nitrogen and water.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP50144002A JPS5824172B2 (en) | 1975-12-05 | 1975-12-05 | Ammonia Osankabunkaisuruhouhou |
FR7630582A FR2327814A1 (en) | 1975-10-15 | 1976-10-12 | PROCESS FOR TREATING BY CATALYSIS AN EXHAUST GAS CONTAINING GASEOUS AMMONIA AND GASEOUS OXYGEN. |
US05/731,929 US4081510A (en) | 1975-10-15 | 1976-10-13 | Process for catalytically treating an exhaust gas containing ammonia gas and oxygen gas to reduce said ammonia gas to nitrogen |
GB42781/76A GB1554953A (en) | 1975-10-15 | 1976-10-14 | Process for catalytically treating an exhaust gas containing ammonia and osxgen |
DE2646753A DE2646753C3 (en) | 1975-10-15 | 1976-10-15 | Process for the catalytic treatment of exhaust gases |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP50144002A JPS5824172B2 (en) | 1975-12-05 | 1975-12-05 | Ammonia Osankabunkaisuruhouhou |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5268858A JPS5268858A (en) | 1977-06-08 |
JPS5824172B2 true JPS5824172B2 (en) | 1983-05-19 |
Family
ID=15352021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP50144002A Expired JPS5824172B2 (en) | 1975-10-15 | 1975-12-05 | Ammonia Osankabunkaisuruhouhou |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5824172B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0324046Y2 (en) * | 1987-08-12 | 1991-05-24 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57127426A (en) * | 1981-01-29 | 1982-08-07 | Nippon Shokubai Kagaku Kogyo Co Ltd | Method for removal of nitrogen oxide |
JPS6097047A (en) * | 1983-11-01 | 1985-05-30 | Toyota Central Res & Dev Lab Inc | Oxidizing catalyst |
JPS62140647A (en) * | 1985-12-13 | 1987-06-24 | Bridgestone Corp | Catalyst for purifying exhaust gas |
-
1975
- 1975-12-05 JP JP50144002A patent/JPS5824172B2/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0324046Y2 (en) * | 1987-08-12 | 1991-05-24 |
Also Published As
Publication number | Publication date |
---|---|
JPS5268858A (en) | 1977-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4138469A (en) | Process for catalytically treating exhaust gas containing NOx in the presence of ammonia gas | |
JP2651981B2 (en) | Method for the selective reduction of nitrogen oxides contained in gas streams | |
US4003978A (en) | Method for treating ammonia-containing gases | |
US4010238A (en) | Proces for selective removal of nitrogen oxides from waste gases | |
US4351811A (en) | Process for reducing an eliminating nitrogen oxides in an exhaust gas | |
JP2682628B2 (en) | Nitrogen oxide removal method and removal catalyst | |
EP0208434B1 (en) | Process for removing nitrogen oxides and carbon monoxide simultaneously | |
US4141959A (en) | Process for removing nitrogen oxides from combustion flue gas | |
EP0292310B1 (en) | Process for removing nitrogen oxides | |
EP0643991A1 (en) | Nitrogen oxide decomposing catalyst and denitration method using the same | |
JPS5820303B2 (en) | Chitsusosankabutsunokangenyoushiyokubaisosebutsu | |
US3976745A (en) | Process for reducing nitrogen oxides to nitrogen | |
JPS5824172B2 (en) | Ammonia Osankabunkaisuruhouhou | |
CN113908837B (en) | MOFs derivative denitration catalyst, preparation method and application thereof | |
JPS6029288B2 (en) | Catalyst manufacturing method and denitrification method | |
WO2023084825A1 (en) | Method for regenerating catalyst for nitrous oxide decomposition and method for decomposing nitrous oxide | |
JPH0356779B2 (en) | ||
JPH09313940A (en) | Ammonia oxidation decomposition catalyst | |
JPS5823136B2 (en) | How to remove nitrogen oxides from exhaust gas | |
JPS62270404A (en) | Production of chlorine | |
JPS5824171B2 (en) | Ammonia Sankabunkaihouhou | |
JPS6335298B2 (en) | ||
JP2619470B2 (en) | Catalyst for simultaneous removal of nitrogen oxides and carbon monoxide | |
JPS6268541A (en) | Preparation of catalyst for removing nitrogen oxide | |
JPH06262079A (en) | Catalyst for nitrogen oxide purification and nitrogen oxide purification |