JPS62270404A - Production of chlorine - Google Patents

Production of chlorine

Info

Publication number
JPS62270404A
JPS62270404A JP61110839A JP11083986A JPS62270404A JP S62270404 A JPS62270404 A JP S62270404A JP 61110839 A JP61110839 A JP 61110839A JP 11083986 A JP11083986 A JP 11083986A JP S62270404 A JPS62270404 A JP S62270404A
Authority
JP
Japan
Prior art keywords
catalyst
hydrogen chloride
exhaust gas
chromium
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61110839A
Other languages
Japanese (ja)
Other versions
JPH053404B2 (en
Inventor
Masanobu Ajioka
正伸 味岡
Shinji Takenaka
竹中 慎司
Hiroyuki Ito
洋之 伊藤
Masafumi Kataita
片板 真文
Yoshitsugu Jinno
神野 嘉嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP61110839A priority Critical patent/JPS62270404A/en
Priority to IL81532A priority patent/IL81532A/en
Priority to US07/013,426 priority patent/US4774070A/en
Priority to AU68731/87A priority patent/AU571383B2/en
Priority to CA000529942A priority patent/CA1260228A/en
Priority to DE8787301334T priority patent/DE3763399D1/en
Priority to EP87301334A priority patent/EP0233773B1/en
Priority to BR8700757A priority patent/BR8700757A/en
Priority to KR1019870001313A priority patent/KR900000079B1/en
Priority to CN87101999.XA priority patent/CN1003852B/en
Publication of JPS62270404A publication Critical patent/JPS62270404A/en
Publication of JPH053404B2 publication Critical patent/JPH053404B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To prevent reduction in catalytic life and vaporization of chromium content in a catalyst, by reducing a CO amount in an exhaust gas containing hydrogen chloride into a fixed range and carrying out oxidation reaction in the presence of the catalyst comprising chromium oxide as a main component. CONSTITUTION:A hydrogen chloride-containing exhaust gas prepared in a reaction process of organic compound as a by-product is treated by an ordinary method and CO content in the exhaust gas is reduced to 10vol%. Then, hydrogen chloride is oxidized in the presence of a catalyst comprising chromium oxide as a main component so hydrogen chloride is converted into chlorine. Chromium oxide which is obtained by precipitating a chromic salt with a basic compound to give chromium oxide and by calcining the chromium hydroxide is used as the catalyst.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は塩素の製造方法、より詳細には有機化合物の塩
素化反応やホスゲン化反応などの工程で副生ずる塩化水
素ガスを含酸素ガスで酸化し塩素を製造する工業的方法
に関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a method for producing chlorine, and more specifically, to a method for producing chlorine, which is a method for producing chlorine, and more specifically, a method for producing chlorine, which is produced as a by-product in processes such as chlorination reaction and phosgenation reaction of organic compounds. This invention relates to an industrial method for producing chlorine by oxidizing hydrogen gas with an oxygen-containing gas.

〔発明の技術背景〕[Technical background of the invention]

塩素は食塩電解により大規模に製造されており、塩素の
需要は年々増大するにもかかわらず、食塩電解の際に同
時に生成する苛性ソーダの需要は塩素のそれより少ない
ために、各々の不均衡をうまく調整するのは困難な状況
が生じているロ一方、有機化合物の塩素化反応またはホ
スゲン化反応の際に大量の塩化水素が副生じており、副
生塩化水素の量は、塩酸の需要量より大巾に多いため、
大量の塩化水素が未利用のままで排ガスとして無駄に廃
棄されている。またこの廃棄のための処理コストもかな
りの額に達する。
Chlorine is produced on a large scale by salt electrolysis, and although the demand for chlorine increases year by year, the demand for caustic soda, which is simultaneously produced during salt electrolysis, is less than that of chlorine, so the imbalance between each On the other hand, a large amount of hydrogen chloride is produced as a by-product during the chlorination or phosgenation reaction of organic compounds, and the amount of by-product hydrogen chloride is proportional to the demand for hydrochloric acid. Because it is more common,
Large amounts of hydrogen chloride remain unused and wastefully disposed of as exhaust gas. Moreover, the processing costs for this disposal amount to a considerable amount.

上記のように大量の廃棄されている塩化水素から効率よ
く塩素を回収出来れば、化学工業において苛性ソーダ生
産量とのアンバランスを生じることなく、塩素の需要を
満たすことが出来る。
If chlorine can be efficiently recovered from large amounts of discarded hydrogen chloride as described above, the demand for chlorine can be met in the chemical industry without creating an imbalance with the production of caustic soda.

〔従来の技術及び発明が解決しようとする問題点〕塩化
水素を酸化して塩素を製造する反応は古くからDeac
on反応として知られている。1868年DeacqH
の発明による銅系の触媒が、従来液も優れた活性を示す
触媒とされ、塩化銅と塩化カリに第三成分として種々な
化合物を添加した触媒が多数提案されている。しかしな
がら、これらの触媒で工業的に充分な反応速度で塩化水
素を酸化するためには、反応温度を少なくとも400℃
以上にする必要があり、触媒成分の飛散に伴う触媒寿命
の低下等が問題となる。
[Problems to be solved by the prior art and the invention] The reaction of oxidizing hydrogen chloride to produce chlorine has been known since ancient times as Deac.
This is known as the ON reaction. 1868 DeacqH
The copper-based catalyst according to the invention is considered to be a catalyst that exhibits excellent activity even in conventional solutions, and many catalysts have been proposed in which various compounds are added as third components to copper chloride and potassium chloride. However, in order to oxidize hydrogen chloride with these catalysts at an industrially sufficient reaction rate, the reaction temperature must be at least 400°C.
It is necessary to do more than this, and problems such as a reduction in catalyst life due to scattering of catalyst components become a problem.

以上の観点から、銅系以外の触媒として、酸化クロムは
銅等に比較すると高温に対する安定性、耐久性があるの
で、酸化クロムを塩化水素の酸化触媒として用いる方法
が、英国特許584790号、676667号、846
832号などに提案されている。
From the above point of view, as a non-copper-based catalyst, chromium oxide is more stable and durable at high temperatures than copper, etc., so a method using chromium oxide as an oxidation catalyst for hydrogen chloride is proposed in British Patent Nos. 584790 and 676667. No. 846
It has been proposed in No. 832, etc.

しかし、これらの従来公知の方法でも比較的反応温度を
高くする必要があり、空間速度も低いために工業的に満
足できる状態にはなかつた。
However, even these conventionally known methods require a relatively high reaction temperature and have low space velocities, so they are not industrially satisfactory.

本発明者らは、酸化クロムを主成分とする触媒の存在下
、塩化水素を含酸素ガスで酸化し、塩素を製造する方法
を種々検討した結果、酸化クロム触媒(CrzOa) 
の中、三価クロム塩に硝酸クロムまたは塩化クロムなど
を用い、その沈澱触媒を得るための中和剤として塩基性
化合物にアンモニアなどを用いて1qられた水酸化クロ
ムを、800°Cにて成型した触媒は高活性を維持でき
ることを見出し、先に出願した。
The present inventors investigated various methods for producing chlorine by oxidizing hydrogen chloride with an oxygen-containing gas in the presence of a catalyst whose main component is chromium oxide, and found that a chromium oxide catalyst (CrzOa)
In the process, 1q of chromium hydroxide was prepared by using chromium nitrate or chromium chloride as a trivalent chromium salt and using ammonia as a basic compound as a neutralizing agent to obtain a precipitated catalyst at 800°C. They discovered that molded catalysts can maintain high activity and filed an application earlier.

しかし、さらに検討をすすめこのような三価クロム塩と
塩基性化合物により沈澱させて合成した水酸化クロムを
焼成して得られた酸化クロム触媒を長時間反応に使用し
た結果、該触媒は活性が非常に高いため原料の塩化水素
ガス中に一酸化炭素が多量に含まれていると触媒の寿命
の低下、及び触媒成分であるクロム分の揮散量が増大す
るという問題を生じることが判った。
However, as a result of further investigation and using a chromium oxide catalyst obtained by calcining chromium hydroxide synthesized by precipitation with trivalent chromium salts and basic compounds for long-term reactions, it was found that the catalyst had no activity. It has been found that if a large amount of carbon monoxide is contained in the hydrogen chloride gas as a raw material, the life of the catalyst is shortened and the amount of chromium, which is a catalyst component, volatilized increases.

この揮散クロム分は、反応生成ガスと共に反応器より流
出する。この揮散クロムを除去せずに塩原料として使用
する場合にはその取り扱いについて労働衛生上や公害防
止上、充分な配慮がなされなければならない。
This volatile chromium content flows out of the reactor together with the reaction product gas. If this volatile chromium is used as a raw material for salt without being removed, sufficient consideration must be given to its handling from the standpoint of occupational hygiene and pollution prevention.

このような点からもクロムの揮散を防止することが必要
である。
From this point of view as well, it is necessary to prevent volatilization of chromium.

本発明の目的は触媒の寿命低下を防止し、更に触媒成分
のクロム分の揮散を防止することを目的とする。
The purpose of the present invention is to prevent the life of the catalyst from decreasing and further to prevent the chromium content of the catalyst component from volatilizing.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、鋭意倹約の結果、排ガス中に含まれる一
酸化炭素の含有量を一定範囲内に減少させることによっ
て上記の目的を達成させることを見出し、本発明を完成
させた。
As a result of careful frugality, the present inventors have discovered that the above object can be achieved by reducing the content of carbon monoxide contained in exhaust gas within a certain range, and have completed the present invention.

即ち、本発明は有機化合物の反応における反応工程で副
生ずる塩化水素を含む排ガスから、塩化水素を、含酸素
ガスを用いて酸化反応させて塩素を製造する方法におい
て、排ガス中に含まれる一酸化炭素の含有量を10容量
係未満にあらかじめ処理した後、三価クロムの塩を塩基
性化合物によ酸化反応させることを特徴とする塩素の製
造方法である。
That is, the present invention provides a method for producing chlorine by oxidizing hydrogen chloride from exhaust gas containing hydrogen chloride, which is produced as a by-product in a reaction step in the reaction of organic compounds, using an oxygen-containing gas. This is a method for producing chlorine, which is characterized in that the carbon content is previously treated to be less than 10 parts by volume, and then trivalent chromium salt is subjected to an oxidation reaction with a basic compound.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

排気ガス中の一酸化炭素は、10容量係以上含有されて
いると酸化クロム触媒の寿命が低下し、又触媒からのク
ロム分の揮散する量が増大する。
If carbon monoxide in the exhaust gas is contained in a volume ratio of 10 or more, the life of the chromium oxide catalyst will be shortened, and the amount of chromium vaporized from the catalyst will increase.

この揮散クロム分は、反応生成ガスと共に反応器より流
出する。この揮散クロムを除去せずに塩素の分離を行な
うと製品塩素の中のクロム分が問題となる場合がある。
This volatile chromium content flows out of the reactor together with the reaction product gas. If chlorine is separated without removing this volatile chromium, the chromium content in the product chlorine may pose a problem.

しかしながら、排ガス中に一酸化炭素の含有量が10容
量係未満であれば、触媒の寿命の低下、およびクロム分
の揮散が防止できる。
However, if the content of carbon monoxide in the exhaust gas is less than 10 parts by volume, a decrease in the life of the catalyst and volatilization of the chromium content can be prevented.

含有一酸化炭素を低減させるため塩化水素ガスの処理法
としてはアルミナ担体としたパラジウム触媒で、一酸化
炭素を燃焼させ炭酸ガスとする方法。排ガス中の塩化水
素を液化・分離後塩化水素を蒸発させ原料ガスとする方
法。排ガスを塩化銅溶液で洗浄し、一酸化炭素を低減す
る方法。等いずれでも良いが、アルミナ担体のパラジウ
ム触媒を用いる方法が簡便で効果的である。
In order to reduce the carbon monoxide content, a method for treating hydrogen chloride gas is to burn carbon monoxide into carbon dioxide gas using a palladium catalyst supported on alumina. A method of liquefying and separating hydrogen chloride in exhaust gas and then evaporating the hydrogen chloride to use it as raw material gas. A method to reduce carbon monoxide by cleaning exhaust gas with a copper chloride solution. Although any method may be used, a method using a palladium catalyst on an alumina carrier is simple and effective.

ペレット状のアルミナを担体とした1係パラジウム触媒
を固定床方式の酸化器に充填し、温度を約300″Cと
して、排ガス中の一酸化炭素を10容量係未満にするに
充分な酸素を加えて、排ガスを酸化塔にSV  2,0
OONl/に9. cat、 hrにて装入し、一酸化
炭素の二酸化炭素への酸化を行なう。排ガス中の二酸化
炭素は塩化水素の塩素への転化には無関係で、その後の
精製工程で除去される。
A fixed-bed type oxidizer was filled with a 1-volume palladium catalyst supported by pelletized alumina, the temperature was set to approximately 300"C, and sufficient oxygen was added to reduce the carbon monoxide in the exhaust gas to less than 10 volume fractions. and send the exhaust gas to the oxidation tower at SV 2,0
OONl/ni9. The oxidation of carbon monoxide to carbon dioxide is carried out. Carbon dioxide in the exhaust gas is not involved in the conversion of hydrogen chloride to chlorine and is removed in subsequent purification steps.

本発明において、このように塩化水素の塩素への酸化反
応に先立ち、あらかじめ処理して一酸化炭素の含有量を
特定以下の量に減少させた後、塩素への酸化反応に付さ
れるが、その反応温度は、300〜500℃に維持して
行い、通常は350〜450℃が好ましい。
In the present invention, prior to the oxidation reaction of hydrogen chloride to chlorine, the hydrogen chloride is treated in advance to reduce the content of carbon monoxide to a specific amount or less, and then subjected to the oxidation reaction to chlorine. The reaction temperature is maintained at 300 to 500°C, and usually preferably 350 to 450°C.

が大きくなり、触媒を長時間使用する上で問題となる。becomes large, which poses a problem when using the catalyst for a long time.

また、300℃以下では塩化水素の塩素への転化速度が
小さく、工業上十分な空間速度で塩化水素を供給するこ
とができない。
Furthermore, below 300°C, the rate of conversion of hydrogen chloride to chlorine is low, making it impossible to supply hydrogen chloride at an industrially sufficient space velocity.

また、本発明において反応に供する塩化水素と含酸素ガ
ス中の酸素のモル比は0.25〜10がよく、理論量の
0.25より酸素が少ないと、塩化水素の塩素への転化
率が低くなる。
In addition, in the present invention, the molar ratio of hydrogen chloride to be subjected to the reaction and oxygen in the oxygen-containing gas is preferably 0.25 to 10. If the amount of oxygen is less than the theoretical amount of 0.25, the conversion rate of hydrogen chloride to chlorine will decrease. It gets lower.

又、必要量以上酸素を用いた場合は、操業上高いコスト
を要する。また触媒床に供給する塩化水素の量は、20
0〜180ONA7に9. cat、 hrの範囲が適
している。
Furthermore, if more oxygen is used than necessary, high operating costs are required. Also, the amount of hydrogen chloride supplied to the catalyst bed is 20
0-180ONA7 to 9. Cat, hr ranges are suitable.

本発明で使用する触媒は、酸化クロム触媒(Cr20a
)の中、三価クロム塩に硝酸クロムまたは塩化クロムを
用い、その沈澱触媒を得るための中和剤として塩基性化
合物にアンモニアを用いて得られた水酸化クロムを、S
OO℃に満たない温度で焼成して得た酸化クロムを主成
分とし、その際好ましくは酸化珪素をバインダーにした
触媒である。
The catalyst used in the present invention is a chromium oxide catalyst (Cr20a
), chromium hydroxide obtained by using chromium nitrate or chromium chloride as a trivalent chromium salt and using ammonia as a basic compound as a neutralizing agent to obtain a precipitated catalyst,
It is a catalyst whose main component is chromium oxide obtained by firing at a temperature below OO°C, and in which case silicon oxide is preferably used as a binder.

以下、実施例にて本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例1 1−リレンジアミンのホスゲン化反応工程より排出され
た塩化水素ガスで、その中に一酸化炭素ガス10容量係
を含む排ガスに、一酸化炭素分が3容量係になるように
酸素を加えた。
Example 1 Oxygen was added to the hydrogen chloride gas discharged from the phosgenation reaction process of 1-lylenediamine, which contained 10 parts by volume of carbon monoxide gas, so that the carbon monoxide content became 3 parts by volume. Ta.

アルミナ担体にlqbパラジウムを担持させたペレット
状の触媒を1 kyを充填したNi製酸化器の温度を3
00℃に保ち、酸素を含む排気ガスを送入し排ガス中の
一酸化炭素ガス含有量を3容量係とした。
The temperature of the Ni oxidizer filled with 1 ky of pellet-shaped catalyst with lqb palladium supported on an alumina carrier was set to 3
The temperature was maintained at 00°C, and exhaust gas containing oxygen was introduced to adjust the carbon monoxide gas content in the exhaust gas to 3 volumes.

一方、触媒は特願昭60−292880記載方法の以下
のようにして調整した。
On the other hand, the catalyst was prepared in the following manner as described in Japanese Patent Application No. 60-292880.

硝酸クロム9水塩3゜Okyを脱イオン水301に溶解
させ、よく撹拌しながら28係のアンモニア水2.9に
9を30分間を要して滴下注入した。
Chromium nitrate nonahydrate 3°Oky was dissolved in deionized water 301, and 9 was added dropwise to 28 parts ammonia water 2.9 parts over 30 minutes while stirring well.

生じた沈澱スラリーに脱イオン水をくわえ2001に希
釈し、−晩放置後デカンチージョンを繰り返し沈澱を洗
浄した。焼成後の全重量の10係にあたるコロイダルシ
リカを加えた。この混合スラリーをスプレードライヤー
で乾燥して得られた粒状粉末を、空気雰囲気中600℃
で3時間焼成した。
Deionized water was added to the resulting precipitate slurry to dilute it to 2001, and after standing overnight, decantation was repeated to wash the precipitate. Colloidal silica corresponding to 10 parts of the total weight after firing was added. The granular powder obtained by drying this mixed slurry with a spray dryer was heated to 600°C in an air atmosphere.
It was baked for 3 hours.

た。この触媒1507&を内径4インチのN1製流動床
反応器に充填し、外部を砂動浴により370℃に加熱し
、上記のパラジウム触媒で酸化処理し、一酸化炭素ガス
3容量係を含む排ガス1.3 Nl1分(HC112,
6Nl、Co O,4Nl%C02B98Nl)、酸素
ガス6.3Nj?/分(i(Clベース SV  50
0tJl/に9. cat、 hr酸素過剰率+ool
)を流動床に導入し、触媒を流動させながら反応させた
Ta. This catalyst 1507& was packed into a N1 fluidized bed reactor with an inner diameter of 4 inches, the outside was heated to 370°C by a sand bath, and oxidized with the above palladium catalyst, and the exhaust gas containing 3 parts by volume of carbon monoxide gas was .3 Nl 1 min (HC112,
6Nl, Co O, 4Nl%C02B98Nl), oxygen gas 6.3Nj? /min(i(Cl base SV 50
0tJl/9. cat, hr oxygen excess rate + ool
) was introduced into a fluidized bed and reacted while the catalyst was fluidized.

触媒層の温度は発熱によII) 400℃となった。The temperature of the catalyst layer rose to 400°C due to heat generation.

反応器流出ガスをヨウ化カリ水溶液の吸収瓶と、苛性ソ
ーダ水溶液の吸収瓶を直列につないだl・ラップで補集
し、千オ硫酸ソーダおよび塩酸で滴定し、未反応塩化水
素と生成した塩素を定量した。
The reactor effluent gas was collected with a L-lap made by connecting an absorption bottle of an aqueous potassium iodide solution and an absorption bottle of an aqueous caustic soda solution in series, and titrated with sodium sulfate and hydrochloric acid to remove unreacted hydrogen chloride and the generated chlorine. was quantified.

反応開始直後の塩化水素の転化率は68係であり、20
0時間後でも66係の転化率を示した。
The conversion rate of hydrogen chloride immediately after the start of the reaction was 68%, and 20%.
Even after 0 hours, the conversion rate was 66%.

200時間反応後の触媒の減量は309で最初に充填し
た触媒量の2係であった。
The weight loss of the catalyst after 200 hours of reaction was 309, which was 2 times the amount of catalyst initially charged.

比較VA−1 実施例−1と全く同様に調整した触媒15079を内径
4インチのNi製流動床反応器に充填し、外部を砂動浴
により360℃に加熱した。
Comparison VA-1 Catalyst 15079 prepared in exactly the same manner as in Example-1 was packed into a Ni fluidized bed reactor with an inner diameter of 4 inches, and the outside was heated to 360° C. using a sand agitation bath.

トリレンジアミンのホスゲン化反応工程より排出された
塩化水素ガスでその中に一酸化炭素ガス10容量係を含
む排ガス14Nl/分(H1tz6N1. Co 1.
4−Nl) 、酸素ガス6.3 Nl1分(HClベー
ス、S V 500 Nil/kF1. cat 、 
hr酸素過剰率roo91を上記流動床に導入し、触媒
を流動さ次に実施例−1と同様に未反応塩化水素と生成
し200時間後では55係に低下した。200時間反応
後の触媒の減量は90.9で、最初に充填した触媒量の
6係であった。
Exhaust gas 14Nl/min (H1tz6N1.Co1.
4-Nl), oxygen gas 6.3 Nl 1 minute (HCl base, SV 500 Nil/kF1. cat,
An hr oxygen excess ratio of 91 was introduced into the fluidized bed, the catalyst was fluidized, and unreacted hydrogen chloride was produced in the same manner as in Example-1, and after 200 hours, the ratio decreased to 55%. The weight loss of the catalyst after 200 hours of reaction was 90.9, which was 6 times the amount of catalyst initially charged.

Claims (2)

【特許請求の範囲】[Claims] (1)有機化合物の反応における反応工程で副生する塩
化水素を含む排ガスから、塩化水素を含酸素ガスを用い
て酸化反応させて塩素を製造する方法において、排ガス
中に含まれる一酸化炭素の含有量を10容量%未満にあ
らかじめ処理した後、三価クロムの塩を塩基性化合物に
より沈澱させて得られた水酸化クロムを焼成して調整し
た酸化クロムを主成分とする触媒の存在下、酸化反応さ
せることを特徴とする塩素の製造方法。
(1) In a method of producing chlorine by oxidizing hydrogen chloride using oxygen-containing gas from exhaust gas containing hydrogen chloride, which is a by-product in the reaction process of organic compound reaction, carbon monoxide contained in the exhaust gas is In the presence of a catalyst mainly composed of chromium oxide prepared by pre-treating the content to less than 10% by volume and then precipitating trivalent chromium salt with a basic compound and calcining the obtained chromium hydroxide, A method for producing chlorine, characterized by carrying out an oxidation reaction.
(2)排ガス中に含まれる一酸化炭素をアルミナを担体
とした1%パラジウム触媒を用い酸素にて炭酸ガスとし
て、一酸化炭素を10容量%未満にあらかじめ処理する
特許請求の範囲第(1)項記載の方法。
(2) Claim No. 1, in which carbon monoxide contained in exhaust gas is previously treated to less than 10% by volume by converting carbon monoxide into carbon dioxide gas with oxygen using a 1% palladium catalyst with alumina as a carrier. The method described in section.
JP61110839A 1986-02-19 1986-05-16 Production of chlorine Granted JPS62270404A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP61110839A JPS62270404A (en) 1986-05-16 1986-05-16 Production of chlorine
IL81532A IL81532A (en) 1986-02-19 1987-02-11 Process for production of chlorine
US07/013,426 US4774070A (en) 1986-02-19 1987-02-11 Production process of chlorine
AU68731/87A AU571383B2 (en) 1986-02-19 1987-02-12 Production of chlorine
CA000529942A CA1260228A (en) 1986-02-19 1987-02-17 Production process of chlorine
DE8787301334T DE3763399D1 (en) 1986-02-19 1987-02-17 CHLORINE PRODUCTION.
EP87301334A EP0233773B1 (en) 1986-02-19 1987-02-17 Production of chlorine
BR8700757A BR8700757A (en) 1986-02-19 1987-02-18 PROCESS FOR THE PRODUCTION OF CHLORINE
KR1019870001313A KR900000079B1 (en) 1986-02-19 1987-02-18 Process for production of chlorine
CN87101999.XA CN1003852B (en) 1986-02-19 1987-02-19 Production process of chlorine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61110839A JPS62270404A (en) 1986-05-16 1986-05-16 Production of chlorine

Publications (2)

Publication Number Publication Date
JPS62270404A true JPS62270404A (en) 1987-11-24
JPH053404B2 JPH053404B2 (en) 1993-01-14

Family

ID=14545969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61110839A Granted JPS62270404A (en) 1986-02-19 1986-05-16 Production of chlorine

Country Status (1)

Country Link
JP (1) JPS62270404A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007134775A1 (en) * 2006-05-23 2007-11-29 Bayer Materialscience Ag Process for the oxidation of a gas containing hydrogen chloride
DE102007020096A1 (en) 2007-04-26 2008-10-30 Bayer Materialscience Ag Process for the oxidation of carbon monoxide in a gas stream containing HCl
US7612234B2 (en) 2006-05-23 2009-11-03 Bayer Materialscience Ag Processes for separating carbon monoxide from a hydrogen chloride-containing gas
EP2177476A1 (en) 2008-10-15 2010-04-21 Bayer MaterialScience AG Method for separating carbon monoxide from a HCl raw gas
JP2010524829A (en) * 2007-04-26 2010-07-22 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Condensation-adsorption process for removing organic components from a hydrogen chloride-containing gas stream
JP2012062235A (en) * 2010-09-17 2012-03-29 Mitsui Chemicals Inc Method for producing chlorine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007134775A1 (en) * 2006-05-23 2007-11-29 Bayer Materialscience Ag Process for the oxidation of a gas containing hydrogen chloride
US7612234B2 (en) 2006-05-23 2009-11-03 Bayer Materialscience Ag Processes for separating carbon monoxide from a hydrogen chloride-containing gas
DE102007020096A1 (en) 2007-04-26 2008-10-30 Bayer Materialscience Ag Process for the oxidation of carbon monoxide in a gas stream containing HCl
JP2010524829A (en) * 2007-04-26 2010-07-22 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Condensation-adsorption process for removing organic components from a hydrogen chloride-containing gas stream
EP2177476A1 (en) 2008-10-15 2010-04-21 Bayer MaterialScience AG Method for separating carbon monoxide from a HCl raw gas
DE102008051694A1 (en) 2008-10-15 2010-04-22 Bayer Materialscience Ag Process for the separation of carbon monoxide from a crude HCI gas
JP2012062235A (en) * 2010-09-17 2012-03-29 Mitsui Chemicals Inc Method for producing chlorine

Also Published As

Publication number Publication date
JPH053404B2 (en) 1993-01-14

Similar Documents

Publication Publication Date Title
KR890005057B1 (en) Production process of chlorine
JPS63107801A (en) Production of chlorine
US4081510A (en) Process for catalytically treating an exhaust gas containing ammonia gas and oxygen gas to reduce said ammonia gas to nitrogen
CN1084643C (en) Catalysts for preparing chlorine from mydrogen chloride
JP2513756B2 (en) Chlorine production method
JP3465350B2 (en) Method for producing catalyst for methacrylic acid production
JPS62270404A (en) Production of chlorine
JPH06107573A (en) Method for purification of 1,1,1-trifluoro- 2-fluoroethane
JPS61136902A (en) Manufacture of chlorine
JP2012529415A (en) Method for oxidizing hydrogen chloride over a catalyst with low surface roughness
JPS61275104A (en) Production of chlorine
JPH0413283B2 (en)
JPH053403B2 (en)
JP3270670B2 (en) Catalyst for the production of chlorine from hydrogen chloride
JPH0615402B2 (en) Chlorine production method
JP3031688B2 (en) Catalyst activity stabilization method
JP2017124366A (en) Catalyst for ammonia decomposition and manufacturing method of hydrogen using catalyst
JPS62191403A (en) Production of chlorine
KR930002246B1 (en) Method of refreshing catalyst
JPS6345102A (en) Production of chlorine
JPH0367961B2 (en)
JP3788530B2 (en) Catalyst regeneration method
JPS62153103A (en) Production of chlorine
JPH0568402B2 (en)
JPH03221145A (en) Regeneration of catalyst

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees