JPS6345102A - Production of chlorine - Google Patents

Production of chlorine

Info

Publication number
JPS6345102A
JPS6345102A JP62082862A JP8286287A JPS6345102A JP S6345102 A JPS6345102 A JP S6345102A JP 62082862 A JP62082862 A JP 62082862A JP 8286287 A JP8286287 A JP 8286287A JP S6345102 A JPS6345102 A JP S6345102A
Authority
JP
Japan
Prior art keywords
hydrogen chloride
catalyst
reaction
chlorine
chloride gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62082862A
Other languages
Japanese (ja)
Other versions
JPH0617203B2 (en
Inventor
Masanobu Ajioka
正伸 味岡
Yoshitsugu Jinno
神野 嘉嗣
Masafumi Kataita
片板 真文
Shinji Takenaka
竹中 慎司
Hiroyuki Ito
洋之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP62082862A priority Critical patent/JPH0617203B2/en
Publication of JPS6345102A publication Critical patent/JPS6345102A/en
Publication of JPH0617203B2 publication Critical patent/JPH0617203B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To produce high-purity chlorine in high yield of raw material, by oxidizing hydrogen chloride gas obtained as a by-product of a reaction process of an organic compound after decreasing the content of the organic compound existing in the hydrogen chloride gas below a specific level. CONSTITUTION:The content of benzene-group organic compounds existing as impurities in a hydrogen chloride gas by-produced in the chlorination reaction or phosgenation reaction of an organic compound is decreased to <=1wt% e.g. by liquefaction distillation, washing with high-boiling solvent, low-temperature separation, adsorption with activated carbon, etc. The treated hydrogen chloride gas is oxidized at 350-450 deg.C in the presence of an oxidation catalyst produced by treating a trivalent Cr salt such as Cr(NO3)3 with a basic compound such as ammonia water and supporting 20-80wt% Cr2O3 catalyst prepared by the above treatment on an SiO2 carrier. Chlorine gas having high purity can be produced in high efficiency by this process.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は塩素の製造方法、より詳細には有機化合物の塩
素化反応やホスゲン化反応などの工程で副生する塩化水
素ガスを含酸素ガスで酸化し塩素を製造する工業的方法
に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing chlorine, and more specifically, to converting hydrogen chloride gas, which is a by-product in processes such as chlorination reaction and phosgenation reaction of organic compounds, into oxygen-containing gas. This article relates to an industrial method for producing chlorine by oxidizing it with chlorine.

(発明の技術背景) 塩素は食塩電解により大規模に製造されており、塩素の
需要は年々増大するにもかかわらず、食塩電解の際に同
時に生成する苛性ソーダの需要は塩素のそれより少ない
ために、各々の不均衡をうまく調整するのは困難な状況
が生している。
(Technical background of the invention) Chlorine is produced on a large scale by salt electrolysis, and although the demand for chlorine increases year by year, the demand for caustic soda, which is simultaneously produced during salt electrolysis, is less than that of chlorine. , it is difficult to adjust each imbalance properly.

一方、有機化合物の塩素化反応またはホスゲン化反応の
際に大量の塩化水素が副生じており、副生塩化水素の量
は、塩酸の需要量より大巾に多いため、大量の塩化水素
が未利用のままで排ガスとして無駄に廃棄されている。
On the other hand, a large amount of hydrogen chloride is produced as a by-product during the chlorination reaction or phosgenation reaction of organic compounds, and the amount of by-product hydrogen chloride is far greater than the required amount of hydrochloric acid, so a large amount of hydrogen chloride remains unused. It is wastefully disposed of as exhaust gas while still being used.

またこの廃棄のための処理コストもかなりの額に達する
Moreover, the processing costs for this disposal amount to a considerable amount.

上記のように大量に廃棄されている塩化水素から効率よ
く塩素を回収出来れば、化学工業において苛性ソーダ生
産量とのアンバランスを生しることなく、塩素の需要を
満たすことが出来る。
If chlorine can be efficiently recovered from hydrogen chloride, which is discarded in large quantities as described above, it will be possible to meet the demand for chlorine in the chemical industry without creating an imbalance with the production of caustic soda.

(従来の技術及び発明が解決しようとする問題点)塩化
水素を酸化して塩素を製造する反応は古くからDeac
on反応として知られている。1868年DeacOn
の発明による銅系の触媒が、従来量°も優れた活性を示
す触媒とされ、塩化銅と塩化カリに第三成分として種々
な化合物を添加した触媒が多数提案されている。しかし
ながら、これらの触媒で工業的に充分な反応速度で塩化
水素を酸化するためには、反応温度を少な(とも400
℃以上にする必要があり、触媒成分の飛散に伴う触媒寿
命の低下等が問題となる。
(Prior art and problems to be solved by the invention) The reaction of oxidizing hydrogen chloride to produce chlorine has been known since ancient times.
This is known as the ON reaction. 1868 DeacOn
The copper-based catalyst according to the invention is said to exhibit excellent activity even in conventional amounts, and many catalysts have been proposed in which various compounds are added as third components to copper chloride and potassium chloride. However, in order to oxidize hydrogen chloride at an industrially sufficient reaction rate with these catalysts, the reaction temperature must be kept low (both 400
℃ or higher, which poses problems such as a reduction in catalyst life due to scattering of catalyst components.

以上の観点から1、酸化クロムを塩化水素の酸化触媒と
して用いる方法も例えば英国特許584790号、67
6667号、846832号などに提案されている。
From the above points, 1, methods using chromium oxide as an oxidation catalyst for hydrogen chloride are also available, for example in British Patent Nos. 584790 and 67.
It has been proposed in No. 6667, No. 846832, etc.

しかし、これらの従来公知の方法でも比較的反応温度を
高くする必要があり、したがって触媒ロスよる活性低下
も著しく空間速度も低いために工業的に満足できる状態
にはなかった。
However, even in these conventionally known methods, the reaction temperature must be relatively high, and therefore the activity is not decreased due to catalyst loss, and the space velocity is also extremely low, so that the conditions are not industrially satisfactory.

また、本発明者らは、低温でも活性の大きい酸化クロム
を主成分とする触媒を種々検討し、例えば酸化クロム触
媒(CrgOi)の中、三価クロム塩に硝酸クロムまた
は塩化クロムなどを用い、その沈澱触媒を得るための中
和剤として塩基性化合物にアンモニアなどを用いて得ら
れた水酸化クロムを、800℃に満たない温度で焼成し
て得た酸化クロムを主成分とし、その際好ましく酸化珪
素をバインダーにして成型した触媒や、酸化珪素担体上
にクロミア(crxos)として20〜611%の酸化
クロムを食潰させた触媒を見出し、先に出願した。
In addition, the present inventors have investigated various catalysts mainly composed of chromium oxide, which is highly active even at low temperatures. The main component is chromium oxide obtained by calcining chromium hydroxide obtained by using ammonia or the like as a basic compound as a neutralizing agent to obtain the precipitated catalyst at a temperature below 800°C. They discovered a catalyst molded using silicon oxide as a binder and a catalyst made by crushing 20 to 611% chromium oxide as chromia (crxos) on a silicon oxide carrier, and filed an application earlier.

しかし、このような酸化クロム触媒を長期間反応に使用
した場合、特に本発明者らの提案の上記の該触媒は活性
が非常に高いため原料の塩化水素ガス中に有機化合物、
特にベンゼン系の炭化水素類を含む場合、これらがごく
微量でも含まれていれば反応系内においてこれらの不純
物が塩素化されたり、部分酸化されて多塩素化合物を生
じ、これが触媒表面へ沈着し、そのため触媒の活性低下
、あるいは反応後の生成ガス処理工程系の配管の閉塞等
の不都合な問題を生じることがわかった。
However, when such a chromium oxide catalyst is used for a long-term reaction, organic compounds and
Particularly when benzene-based hydrocarbons are included, if even a trace amount of these impurities is present, these impurities may be chlorinated or partially oxidized in the reaction system to produce polychlorine compounds, which may deposit on the catalyst surface. It has been found that this causes inconvenient problems such as a decrease in the activity of the catalyst or blockage of piping in the process system for treating the product gas after the reaction.

有機化合物の塩素化、たとえば、ベンゼンの塩素化反応
によるクロルベンゼンの製造工程より排出される排ガス
中には副生塩化水素の外に未反応ベンゼンが通常5〜1
11%含有されている。また、たとえばトリレンジアミ
ンのホスゲン化反応によるイソシアナートgA造プラン
トからは多量の塩化水素の外に、ホスゲン化反応溶媒に
用いたトルエンや、ジクロルベンゼンなどが蒸気として
かなりの量が含有されている。
In the exhaust gas discharged from the chlorination of organic compounds, for example, the production process of chlorobenzene through the chlorination reaction of benzene, in addition to by-product hydrogen chloride, unreacted benzene is usually 5 to 1.
Contains 11%. In addition, for example, a plant for producing isocyanate gA through the phosgenation reaction of tolylene diamine contains not only a large amount of hydrogen chloride but also a considerable amount of toluene used as a phosgenation reaction solvent, dichlorobenzene, etc. in the form of vapor. There is.

このような有機化学反応工程から排出される反応基質ま
たは溶媒に由来する有機化合物を含む排ガスをそのまま
本発明に用いられる酸化クロム触媒の存在下に反応させ
た場合は、同時に酸化反応も起こり、多塩素化合物から
のタール付着物が生成される。
When exhaust gas containing organic compounds derived from reaction substrates or solvents discharged from such an organic chemical reaction process is directly reacted in the presence of the chromium oxide catalyst used in the present invention, an oxidation reaction also occurs at the same time, resulting in multiple reactions. Tar deposits from chlorine compounds are produced.

特に、本発明の特徴である比較的低い温度で実施できる
利点を生かすため、反応温度を低くじて実施した場合に
はその傾向が著しい。
In particular, this tendency is remarkable when the reaction temperature is lowered to take advantage of the advantage of being able to carry out the reaction at a relatively low temperature, which is a feature of the present invention.

更に、上記のようなベンゼン、トルエンなどの芳香族炭
化水素等は比較的莫気圧も高いので反応ガス中に同伴さ
れ酸化反応後の後処理系を汚染する0例えば、酸化反応
により製造された塩素を含む反応ガスは、通常、冷却、
洗浄、圧縮等の後処理工程を経て、反応ガスから塩素が
分離されるが、その際これら温度の低下する工程におい
て上記有機化合物が含まれていればこれが析出し、配管
の閉塞等のトラブルをひきおこす。
Furthermore, aromatic hydrocarbons such as benzene and toluene as mentioned above have relatively high pressure, so they are entrained in the reaction gas and contaminate the post-treatment system after the oxidation reaction.For example, chlorine produced by the oxidation reaction The reactant gas containing is usually cooled,
Chlorine is separated from the reaction gas through post-processing steps such as cleaning and compression, but if the above organic compounds are present in these steps where the temperature drops, they will precipitate and cause problems such as pipe blockage. stir up

(問題点を解決するための手段) 本発明者らは、これらの観点に立って、種々検討し、酸
化反応に供する塩化水素を含む排気ガス中の有機化合物
は、極力低減させる必要があることを見出した。
(Means for Solving the Problems) From these viewpoints, the present inventors have conducted various studies and determined that it is necessary to reduce as much as possible the organic compounds in the exhaust gas containing hydrogen chloride that is subjected to the oxidation reaction. I found out.

即ち、本発明は、排ガス中に含まれる有椴化合物の含有
量を、1重量%未満に予め処理した後、酸化クロム(e
rxos)を主成分とした触媒の存在下、酸化反応させ
ることを特徴とする塩素の!A遣方法である。
That is, in the present invention, after the content of the arissubane compound contained in the exhaust gas is treated in advance to be less than 1% by weight, chromium oxide (e
Of chlorine, which is characterized by an oxidation reaction in the presence of a catalyst whose main component is rxos)! This is method A.

このように本発明の方法では酸化反応による塩素の製造
に先立ち、原料中の有機化合物含量を少なくとも1重量
%以下とすることが必要である。
As described above, in the method of the present invention, it is necessary to reduce the content of organic compounds in the raw materials to at least 1% by weight or less before producing chlorine by oxidation reaction.

排ガス中の有機化合物は、酸化反応の塩素の製造時に大
部分は燃焼または分解莫発されて多塩素化合物となり触
媒表面に付着したその一部は反応ガス中に同伴されて除
去されるものの、一部はさらに触媒上で塩素化や部分酸
化され、触媒表面にタール状に沈着する。
During the production of chlorine in the oxidation reaction, most of the organic compounds in the exhaust gas are burned or decomposed into polychlorine compounds, and some of them that adhere to the catalyst surface are entrained in the reaction gas and removed. The part is further chlorinated and partially oxidized on the catalyst, and deposits in the form of tar on the catalyst surface.

したがって、触媒活性は、多塩素化合物として触媒表面
に沈着される量と、触媒表面に付着した一部が酸化、燃
焼されて生成ガスへ二酸化炭素などとして除去される量
とのバランスによってきまるが、本発明においては通常
350〜400℃程度の比較的低い温度で実施されるの
で、この温度範囲では有機化合物含量が1重量%より多
いと沈着量が大きくなり、本発明の触媒活性の低下をも
たらす、また原料ガス中の有機化合物は寞質的に含まれ
ていないことが望ましいが、10ppm+以下程度に押
さえるためには原料ガスの精製コストが大きくなるため
工業的に不利となり、本発明では1重量%以下、好まし
くは100ρρ−程度に低減すれば充分である。
Therefore, the catalytic activity is determined by the balance between the amount of polychlorine compounds deposited on the catalyst surface and the amount of the part that adheres to the catalyst surface that is oxidized and burned and removed as carbon dioxide and other gases. Since the present invention is usually carried out at a relatively low temperature of about 350 to 400°C, in this temperature range, if the organic compound content is more than 1% by weight, the amount of deposition increases, resulting in a decrease in the catalyst activity of the present invention. In addition, it is desirable that organic compounds are not contained in the raw material gas, but in order to suppress the content to 10 ppm or less, the cost of refining the raw material gas increases, which is industrially disadvantageous. % or less, preferably to about 100 ρρ-.

含有有機化合物を低減させるための塩化水素ガスの処理
法としては、液化舊留、高沸点溶媒による洗浄、深冷分
離または吸着剤の使用等いづれの方法でも良いが、活性
炭による吸着が簡便で効果的である。
Hydrogen chloride gas can be treated by any method such as liquefaction distillation, washing with a high boiling point solvent, cryogenic separation, or use of an adsorbent to reduce the organic compounds contained, but adsorption with activated carbon is simple and effective. It is true.

活性炭による吸着処理の場合は使用する活性炭は、有機
化合物を吸着できるものであれば果実殻系、木材系、石
油系などいずれでもよく、また使用条件も通常の活性炭
使用条件でよい、活性炭の使用量は、塩化水素中に含ま
れる有機化合物量と活性炭の再生回数によって決まる。
In the case of adsorption treatment using activated carbon, the activated carbon used may be fruit shell-based, wood-based, petroleum-based, etc., as long as it can adsorb organic compounds, and the usage conditions may be the same as normal activated carbon usage conditions. The amount depends on the amount of organic compounds contained in the hydrogen chloride and the number of times the activated carbon is regenerated.

また活性炭の再生には熱再生や減圧再生の方式が適用で
きるが、水蒸気による脱着、不活性ガスによる熱風再生
などが有効である。もちろん活性炭の使用量が少なけれ
ば再生を行わず廃棄することもできる。その型式は固定
層型式の吸着方式で行うが、通常よく行われる移動層吸
収方式や流動層吸収方式を採用しても何ら問題はない。
Furthermore, thermal regeneration and reduced pressure regeneration methods can be applied to regenerate activated carbon, but desorption using steam, hot air regeneration using inert gas, etc. are effective. Of course, if the amount of activated carbon used is small, it can be disposed of without being recycled. The method is a fixed bed type adsorption system, but there is no problem in adopting the commonly used moving bed absorption system or fluidized bed absorption system.

本発明において、このように酸化反応に先立ち、あらか
じめ処理して有機化合物の含量を特定以下の看に減少さ
せた後酸化反応に付されるが、酸化反応温度は、300
〜500℃に維持して行い、通常は350〜450℃さ
らに好ましくは350〜400℃である。
In the present invention, prior to the oxidation reaction, the material is treated in advance to reduce the content of organic compounds to a certain level or below, and then subjected to the oxidation reaction.
The temperature is maintained at ~500°C, usually 350-450°C, more preferably 350-400°C.

温度が高いほど、塩化水素の転化速度は速くなるが、触
媒からのクロム成分の連敗速度が大きくなり、触媒を長
期間使用する上で問題となる。また、300’C以下で
は塩化水素の転化速度が小さ・く、工業上十分な空間速
度で塩化水素を供給することができなく、また多塩素化
合物の触媒表面に沈着する量が増加する傾向となる。
The higher the temperature, the faster the conversion rate of hydrogen chloride, but the faster the rate of continuous loss of chromium components from the catalyst, which becomes a problem when using the catalyst for a long time. Furthermore, below 300'C, the conversion rate of hydrogen chloride is low, making it impossible to supply hydrogen chloride at an industrially sufficient space velocity, and the amount of polychlorine compounds deposited on the catalyst surface tends to increase. Become.

また本発明において、反応に供する塩化水素と、含酸素
ガス中のa素のモル比は0,25〜10がよ(理論量の
0.25より酸素が少ないと、塩化水素の転化率が低く
なるだけでなく、多塩素化合物は増加する傾向となるの
で好ましくない、一方、必要量以上酸素を用いた場合は
、操作上高いコストを要する。
In addition, in the present invention, the molar ratio of hydrogen chloride used in the reaction to atom in the oxygen-containing gas is preferably 0.25 to 10 (if the amount of oxygen is less than the theoretical amount of 0.25, the conversion rate of hydrogen chloride will be low). In addition, polychlorine compounds tend to increase, which is undesirable. On the other hand, if more than the required amount of oxygen is used, high operational costs are required.

また触媒床に供給する塩化水素の量は、200〜180
ONj!/時間・Kg・触媒の範囲が適している。
In addition, the amount of hydrogen chloride supplied to the catalyst bed is 200 to 180
ONj! /hour/Kg/catalyst range is suitable.

触媒の調整は、本発明者らが数多くf!2している、た
とえば特願昭60−292880 、特願昭61−14
8055記載の方法で調整できる。
The present inventors have made many adjustments to the catalyst. 2, for example, Japanese Patent Application No. 60-292880, Japanese Patent Application No. 61-14
It can be adjusted by the method described in 8055.

(実施例) 以下、実施例にて本発明の詳細な説明する。(Example) Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例1 ベンゼン1重量%を含むベンゼンの塩素・ヒ反応工程よ
り排出された塩化水素を含む原料排気ガスを活性炭2k
gを充填したカラムにi11通させて、処理後の塩化水
素ガス中のベンゼンを約1100ppに減少させた。
Example 1 Raw material exhaust gas containing hydrogen chloride discharged from the chlorine/arsenic reaction process of benzene containing 1% by weight was treated with activated carbon 2k.
The benzene in the treated hydrogen chloride gas was reduced to about 1100 pp by passing it through a column packed with g.

一方触媒は特願昭60−292880記載・方法の以下
のようにして調整した。
On the other hand, the catalyst was prepared according to the method described in Japanese Patent Application No. 60-292880.

硝酸クロム9水塩3.OKgを脱イオン水30j2に溶
解させ、よく撹拌しながら28%のアンモニア水2.9
Kgを30分間を要して滴下注入した。
Chromium nitrate nonahydrate 3. Dissolve OKg in 30j2 of deionized water and add 2.9g of 28% ammonia water while stirring well.
Kg was injected dropwise over a period of 30 minutes.

生じた沈澱スラリーに脱イオン水を加え200iに希釈
し、−晩放置後デカンチージョンを繰り返し沈澱を洗浄
した。焼成後の全重量の10%にあたるコロイダルシリ
カを加えた。この混合スラリーをスプレードライヤーで
乾燥して得られた粒状粉末を、空気雰囲気中600’C
で3時間焼成した。
Deionized water was added to the resulting precipitate slurry to dilute it to 200 μl, and after standing overnight, decantation was repeated to wash the precipitate. Colloidal silica was added in an amount of 10% of the total weight after firing. The granular powder obtained by drying this mixed slurry with a spray dryer was heated at 60'C in an air atmosphere.
It was baked for 3 hours.

その後、JIS標準篩を用いて微粒子触媒を篩い、平均
粒径(中位径)50〜60μのクロミア触媒を得た。
Thereafter, the particulate catalyst was sieved using a JIS standard sieve to obtain a chromia catalyst having an average particle diameter (median diameter) of 50 to 60 μm.

この触媒375gを内径2インチのNi製流動床反応器
に充填し、外部を砂動浴により340℃に加熱し上記の
活性炭処理のガス1.25 Ml/winS酸素ガス0
.63 Nl/u1nを触媒床に導入し触媒を流動させ
ながら酸化反応させた。
375 g of this catalyst was packed into a Ni fluidized bed reactor with an inner diameter of 2 inches, and the outside was heated to 340°C with a sand bath, and the activated carbon treatment gas described above was 1.25 Ml/winS, and the oxygen gas was 0.
.. 63 Nl/u1n was introduced into the catalyst bed, and the oxidation reaction was carried out while the catalyst was fluidized.

触媒層の温度は発熱により350℃となった0反応器流
出ガスをヨウ化カリ水溶液の吸収瓶と、苛性ソーダ水溶
液の吸収瓶を直列に繋いだトラップで補集し、チオ硫酸
ソーダおよび塩酸で滴定し、未反応塩化水素と生成した
塩素を定量した。
The temperature of the catalyst bed reached 350℃ due to heat generation.The reactor effluent gas was collected in a trap consisting of an absorption bottle of an aqueous potassium iodide solution and an absorption bottle of an aqueous caustic soda solution connected in series, and titrated with sodium thiosulfate and hydrochloric acid. Then, unreacted hydrogen chloride and generated chlorine were quantified.

反応開始直後の塩化水素の転化率は70%であり、20
0時間後でも69%の転化率を示した。触媒への有機物
含有量は、その指標として使用後の触媒のカーボン含量
を分析した。その結果は表−1に示すようsoppmで
あった。
The conversion rate of hydrogen chloride immediately after the start of the reaction was 70%, and 20%
Even after 0 hours, the conversion rate was 69%. The carbon content of the catalyst after use was analyzed as an indicator of the organic matter content in the catalyst. The results were soppm as shown in Table-1.

実施例2 実施例1と同様の原料組成の塩化水素を含む原料ガスを
実施例1と同様にして活性炭による処理をして、ベンゼ
ンが約100pp−に減少させた。塩化水素ガスを用い
、下記触媒調整法による触媒の存在下、反応を行った。
Example 2 A raw material gas containing hydrogen chloride having the same raw material composition as in Example 1 was treated with activated carbon in the same manner as in Example 1 to reduce benzene to about 100 pp-. The reaction was carried out using hydrogen chloride gas in the presence of a catalyst according to the catalyst preparation method described below.

触媒は、平均細孔容積1.0cc/g 、平均粒径58
μの酸化ケイ素粉末を、無水クロム酸水溶液に浸漬させ
た後、600℃で焼成することにより調整したものであ
り、触媒全重量に対し、Crt(hとして60%担持さ
れたものである。
The catalyst has an average pore volume of 1.0 cc/g and an average particle size of 58
It was prepared by immersing μ silicon oxide powder in an aqueous chromic acid anhydride solution and then calcining it at 600° C., and 60% of Crt (h) was supported based on the total weight of the catalyst.

この触媒を用い、実施例1と同様の反応器と、条件のも
とに反応を行った。
Using this catalyst, a reaction was carried out in the same reactor as in Example 1 under the same conditions.

反応開始直後の塩化水素の転化率は69%であり、20
0時間後でも68%の転化率を示した。使用後触媒のカ
ーボン含量は表−1に示すようにsoppmであった。
The conversion rate of hydrogen chloride immediately after the start of the reaction was 69%, and 20%
Even after 0 hours, the conversion rate was 68%. The carbon content of the used catalyst was soppm as shown in Table-1.

比較例1および2 原料ガスの活性炭処理をしない1重量%のベンゼンを含
む塩化水素ガスを用いた以外は、実施例1と同様の触媒
と反応器を用い反応を行った。
Comparative Examples 1 and 2 Reactions were carried out using the same catalyst and reactor as in Example 1, except that hydrogen chloride gas containing 1% by weight of benzene was used without subjecting the raw material gas to activated carbon treatment.

酸素過剰率を変えた条件で反応を行い転化率の低下と、
使用後触媒のカーボン含量を調べた結果を実施例1.2
とともに表1に示す。
The reaction was carried out under conditions where the oxygen excess rate was changed, resulting in a decrease in the conversion rate,
The results of examining the carbon content of the used catalyst are shown in Example 1.2.
They are shown in Table 1.

表−1Table-1

Claims (6)

【特許請求の範囲】[Claims] (1)有機化合物の反応おける反応工程で副生する塩化
水素を含む排ガスから、塩化水素を、含酸素ガスを用い
て酸化反応させて塩素を製造する方法において、排ガス
中に含まれる有機化合物の含有量を1重量%未満にあら
かじめ処理した後、酸化クロム(cr_2o_3)を主
成分とした触媒の存在下、酸化反応させることを特徴と
する塩素の製造方法。
(1) In a method for producing chlorine by oxidizing hydrogen chloride using an oxygen-containing gas from exhaust gas containing hydrogen chloride, which is a by-product in the reaction process of organic compound reaction, the amount of organic compounds contained in the exhaust gas is A method for producing chlorine, which comprises pre-treating the content to less than 1% by weight, and then carrying out an oxidation reaction in the presence of a catalyst containing chromium oxide (cr_2o_3) as a main component.
(2)排ガス中に含まれる有機化合物の除去処理が活性
炭吸着による処理である特許請求の範囲第(1)項記載
の方法。
(2) The method according to claim (1), wherein the treatment for removing organic compounds contained in the exhaust gas is treatment by activated carbon adsorption.
(3)排ガス中に含まれる有機化合物がベンゼン系化合
物である特許請求の範囲第(1)項記載の方法。
(3) The method according to claim (1), wherein the organic compound contained in the exhaust gas is a benzene compound.
(4)酸化反応温度が350〜450℃である特許請求
の範囲第(1)項記載の方法。
(4) The method according to claim (1), wherein the oxidation reaction temperature is 350 to 450°C.
(5)酸化クロムを主成分とした触媒が三価クロム塩を
塩基性化合物により沈澱させて得られた水酸化クロムを
焼成して調整した触媒である特許請求の範囲第(1)項
記載の方法。
(5) Claim 1, wherein the catalyst containing chromium oxide as a main component is a catalyst prepared by calcining chromium hydroxide obtained by precipitating a trivalent chromium salt with a basic compound. Method.
(6)酸化クロムを主成分とした触媒が、酸化珪素担体
上にクロミア(cr_2o_3)として20〜80重量
%の酸化クロムを浸漬により担持させた触媒である特許
請求の範囲第(1)項記載の方法。
(6) Claim 1, wherein the catalyst containing chromium oxide as a main component is a catalyst in which 20 to 80% by weight of chromium oxide is supported as chromia (cr_2o_3) on a silicon oxide carrier by dipping. the method of.
JP62082862A 1986-04-08 1987-04-06 Chlorine production method Expired - Lifetime JPH0617203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62082862A JPH0617203B2 (en) 1986-04-08 1987-04-06 Chlorine production method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7927586 1986-04-08
JP61-79275 1986-04-08
JP62082862A JPH0617203B2 (en) 1986-04-08 1987-04-06 Chlorine production method

Publications (2)

Publication Number Publication Date
JPS6345102A true JPS6345102A (en) 1988-02-26
JPH0617203B2 JPH0617203B2 (en) 1994-03-09

Family

ID=26420308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62082862A Expired - Lifetime JPH0617203B2 (en) 1986-04-08 1987-04-06 Chlorine production method

Country Status (1)

Country Link
JP (1) JPH0617203B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6473107B2 (en) 2000-10-02 2002-10-29 Seiko Epson Corporation Image forming apparatus
JP2009196826A (en) * 2008-02-19 2009-09-03 Sumitomo Chemical Co Ltd Method for manufacturing chlorine
JP2010524829A (en) * 2007-04-26 2010-07-22 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Condensation-adsorption process for removing organic components from a hydrogen chloride-containing gas stream
CN114029072A (en) * 2021-12-01 2022-02-11 万华化学集团股份有限公司 Solid super acidic catalyst and method for preparing isooctyl p-methoxycinnamate by using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5365540B2 (en) 2010-02-12 2013-12-11 住友化学株式会社 Method for oxidizing organic compounds

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6473107B2 (en) 2000-10-02 2002-10-29 Seiko Epson Corporation Image forming apparatus
JP2010524829A (en) * 2007-04-26 2010-07-22 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Condensation-adsorption process for removing organic components from a hydrogen chloride-containing gas stream
JP2009196826A (en) * 2008-02-19 2009-09-03 Sumitomo Chemical Co Ltd Method for manufacturing chlorine
CN114029072A (en) * 2021-12-01 2022-02-11 万华化学集团股份有限公司 Solid super acidic catalyst and method for preparing isooctyl p-methoxycinnamate by using same

Also Published As

Publication number Publication date
JPH0617203B2 (en) 1994-03-09

Similar Documents

Publication Publication Date Title
CA1260228A (en) Production process of chlorine
JP2598508B2 (en) Purification method of gas containing hydrogen sulfide
JP5577319B2 (en) Process for regenerating a ruthenium-containing or ruthenium compound-containing catalyst poisoned with sulfur in the form of a sulfur compound
JPH01168347A (en) Production of 3, 3, 3-trifluoropropene-1
US20090200207A1 (en) Absorption Composition and Process for Removing Mercury
CN115722255A (en) Supported catalyst for producing 1,2, 3-pentachloropropane and preparation method and application thereof
WO2007066810A1 (en) Method for production of chlorine
US5942201A (en) Process utilizing titanium dioxide as a catalyst for the hydrolysis of carbonyl sulfide
JPS6345102A (en) Production of chlorine
JPS62275001A (en) Industrial production of chlorine
JPH0247967B2 (en)
JPS61136902A (en) Manufacture of chlorine
JPH053404B2 (en)
JPH0288424A (en) Method for purifying arsine
JP3512205B2 (en) Method for producing chlorine
JP3292251B2 (en) Steam purification method
US6166273A (en) Processes for fluorinating aromatic ring compounds
JPS61233639A (en) 1,2-dichloroethane continuous cracking process
US4350609A (en) Process for producing a catalyst by depositing molybdenum removed from a waste catalyst
US2502125A (en) Debromination of polybromopyridine
JP3279608B2 (en) Steam purification method
JPS62241805A (en) Production of chlorine
JPH064138B2 (en) Ammonia oxidation decomposition catalyst
JP2023530673A (en) Method for producing vinyl acetate production catalyst
EP1294662B1 (en) Processes for fluorinating aromatic ring compounds

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080309

Year of fee payment: 14