JPH053403B2 - - Google Patents

Info

Publication number
JPH053403B2
JPH053403B2 JP8016186A JP8016186A JPH053403B2 JP H053403 B2 JPH053403 B2 JP H053403B2 JP 8016186 A JP8016186 A JP 8016186A JP 8016186 A JP8016186 A JP 8016186A JP H053403 B2 JPH053403 B2 JP H053403B2
Authority
JP
Japan
Prior art keywords
chromium
catalyst
water
chlorine
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8016186A
Other languages
Japanese (ja)
Other versions
JPS62241805A (en
Inventor
Hiroyuki Ito
Yoshitsugu Jinno
Masafumi Kataita
Shinji Takenaka
Masanobu Ajioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP8016186A priority Critical patent/JPS62241805A/en
Publication of JPS62241805A publication Critical patent/JPS62241805A/en
Publication of JPH053403B2 publication Critical patent/JPH053403B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は塩素の製造方法、より詳細には塩化水
素ガスを含酸素ガスで酸化し塩素を製造する方法
の改良に関するものである。 〔発明の技術背景〕 塩素は食塩電解により大規模に製造されてお
り、塩素の需要は年々増大するにもかかわらず、
食塩電解の際に同時に生成する苛性ソーダの需要
は塩素のそれよりも少ないために、各々の不均衡
をうまく調整するのは困難な状況が生じている。 一方、有機化合物の塩素化反応またはホスゲン
化反応の際に大量の塩化水素が副性しており、副
生塩化水素の量は、塩酸の需要量より大巾に多い
ために、大量の塩化水素が未利用のままで無駄に
廃棄されている。また廃棄のための処理コストも
かなりの額に達する。 上記のように大量に廃棄されている塩化水素か
ら効率よく塩素を回収出来れば、苛性ソーダ生産
量とのアンバランスを生じることなく、塩素の需
要を満たすことが出来る。 〔従来の技術および発明が解決しようとする問題
点〕 塩化水素を酸化して塩素を製造する反応は古く
からDeacon反応として知られている。1868年
Deaconの発明による銅系の触媒が、従来最も優
れた活性を示す触媒とされ、塩化銅と塩化カリに
第三成分として種々な化合物を添加した触媒が多
数提案されている。しかしながら、これらの触媒
で工業的に充分な反応速度で塩化水素を酸化する
ためには、反応温度を400℃以上にする必要があ
り、触媒成分の飛散に伴なう触媒寿命の低下等が
問題となる。 以上の観点から、銅系以外の触媒として、酸化
クロムは銅等に比較すると高温に対する安定性、
耐久性があるので、酸化クロムを塩化水素の酸化
に触媒として用いる提案もあるが、未だ充分な活
性を示す結果は報告されていない。例えば、英国
特許第584790号、英国特許第676667号等が提案さ
れているが、断続運転を余儀なくされたり、又低
転化率等で充分な活性を示すものはない。 又、英国特許846832号では反応系中のガス相に
反応終了後の分離精製等が煩雑となるクロミルク
ロライドを加えて高い転化率を得ている。 このように、酸化クロムを触媒に用いても、上
記のように新たな反応試薬を加えない限り、従来
公知の方法は反応温度も高く、空間速度も低いた
めに工業的な操業に耐え得る状態にはなかつた。 本発明者らは、種々検討の結果、水酸化クロム
を焼成して得られた酸化クロム触媒が高活性を有
し、この触媒を用いて塩化水素1モルに対して
0.25〜10モルの酸素を用いて、300〜500℃の温度
で反応させると高い空間速度で、高い転化率で塩
素を製造できることを先に出願した。 しかし、この条件でこの触媒を使用して塩素の
製造を行なうと触媒に由来する、微量のクロム塩
化酸化物が生じ、それが揮散し、気体クロムとな
り触媒の微粉と共に飛散クロム分として、反応生
成ガスと共に反応器より流出する。この飛散クロ
ムを除去せずに塩素の分離を行なうと製品塩素の
純度が低下し、又配管等の閉塞が生ずる。又、こ
のクロム含有塩素を原料として使用する場合には
多くの悪影響が予想され、さらにこのような揮散
しやすいクロム化合物を製品に含む場合には、そ
の取り扱いについて労働衛生上や公害防止上、充
分な配慮がなされなければならない。このような
点から反応生成ガスより安全で確実な飛散クロム
の除去方法が必要である。 本発明の目的は反応生成ガスよりこのような飛
散するクロム化合物を除去する方法を提供するこ
とである。 〔問題点を解決するための手段〕 本発明者らは鋭意検討の結果、水を用いて飛散
クロム分を除去する方法を見い出し本発明を完成
した。 即ち、本発明は三価のクロムの塩を塩基性化合
物により、沈澱させて得られた水酸化クロムを焼
成して調整した酸化クロムを主成分とした触媒の
存在下、塩化水素ガスを含酸素ガスで酸化し塩素
を製造する方法において、反応生成ガスを水と接
触させて、クロム成分を除去することを特徴とす
る塩素の製造方法である。 以下、本発明を詳しく説明する。 本発明に用いられる酸化クロム触媒は、酸化ク
ロム触媒(Cr2O3)の中、三価クロム塩に硝酸ク
ロムまたは塩化クロムを用い、その沈澱触媒を得
るための中和剤として塩基性化合物にアンモニア
を用いて得られた水酸化クロムを、800℃に満た
ない温度で焼成して得た酸化クロムを主成分と
し、その際好ましくは酸化珪素をバインダーにし
て成型した触媒である。 酸化クロム触媒の存在下、塩化水素1モルに対
し酸素のモル比を0.25〜10とし、300〜500℃の温
度で塩化水素量200〜1800N/hr.Kg.catの流
量にて酸化反応を行なう。 反応温度が高い程、塩化水素の転化速度は速く
なるが、それに伴ない触媒から揮散クロム成分、
及びクロム触媒の微粉が一緒になつた飛散クロム
量が大きくなる。 この反応生成ガスを水と接触させると揮散クロ
ム成分は水に吸収され、塩化クロム()の形で
水に溶解する。又、クロム触媒の微粉も同時に水
に補集される。水と接触した後の反応生成ガスに
はクロム成分は検出されず、水との接触によるク
ロム成分の除去の効果は非常に大きい。反応生成
ガスと接触させる水は、塩化水素・塩素もしくは
塩化クロム()がすでに溶解したものを使用し
てもその効果は変らない。 また反応生成ガスと接触させる水の温度は10〜
130℃の範囲、望ましくは10〜100℃でその効果は
変らない。 揮散クロム分は容易に水に溶解するため、反応
生成ガスと接触させる水量は通常の場合、できる
だけ少量の水を用いるのが好ましい。 反応生成ガスと水とを接触させる方法として
は、反応生成ガスを水にバブリングする方法や充
填塔などの吸収塔を使用する方法など、反応生成
ガスと水とが充分に接触できるならば、特に方法
を選ばない。 〔作用および発明の効果〕 本発明の方法によれば、酸化クロム触媒を用い
て塩化水素を含酸素ガスで酸化し塩素を製造する
において、その反応生成ガスよりクロム成分を水
にて容易に除去することができ、その取り扱い上
の煩雑さも消滅し、更に高純度の塩素を得ること
ができる工業的に極めて優れた塩素の製造法であ
る。 実施例 以下、実施例によつて本発明を詳しく説明す
る。 実施例 1 硝酸クロム水塩3.0Kgを脱イオン水30に溶解
させよく撹拌しながら、28%のアンモニア水2.9
Kgを30分間を要して滴下注入した。生じた沈澱ス
ラリーに脱イオン水を加え200に希釈し、一晩
放置後デカンテーシヨンを繰返し沈澱を洗浄した
後、焼成後の全重量の10%にあたるコロイダルシ
リカを加えた。この混合スラリーをスプレードラ
イヤーで乾燥して得られた粒状粉末を、空気雰囲
気中600℃で3時間焼成し、平均粒径(中位径)
50〜60μの触媒を得た。本触媒375gを内径2イ
ンチのNi製流動床反応器に充填し、外部を砂動
浴により370℃に加熱した。塩化水素ガス3.13N
/min、酸素ガス1.56N/minを触媒床に導
入し触媒を流動させながら反応させた。触媒層の
温度は発熱により400℃となつた。 この反応生成ガスを、50℃の水を約3づつ入
れたトラツプに24時間通し、その各トラツプ中の
水中のクロム分を定量した。その結果を表−1に
示す。
[Industrial Application Field] The present invention relates to a method for producing chlorine, and more particularly to an improvement in a method for producing chlorine by oxidizing hydrogen chloride gas with an oxygen-containing gas. [Technical background of the invention] Chlorine is produced on a large scale by salt electrolysis, and although the demand for chlorine increases year by year,
Since the demand for caustic soda, which is simultaneously produced during salt electrolysis, is less than that for chlorine, it is difficult to properly adjust the imbalance between them. On the other hand, a large amount of hydrogen chloride is generated as a by-product during the chlorination reaction or phosgenation reaction of organic compounds, and the amount of by-product hydrogen chloride is far greater than the required amount of hydrochloric acid. remains unused and wasted. Additionally, the processing costs for disposal can be considerable. If chlorine can be efficiently recovered from hydrogen chloride, which is discarded in large quantities as described above, the demand for chlorine can be met without creating an imbalance with the production of caustic soda. [Prior art and problems to be solved by the invention] The reaction of producing chlorine by oxidizing hydrogen chloride has long been known as the Deacon reaction. 1868
The copper-based catalyst invented by Deacon is considered to be the catalyst with the most excellent activity to date, and many catalysts have been proposed in which various compounds are added as third components to copper chloride and potassium chloride. However, in order to oxidize hydrogen chloride at an industrially sufficient reaction rate with these catalysts, it is necessary to raise the reaction temperature to 400°C or higher, which poses problems such as shortened catalyst life due to scattering of catalyst components. becomes. From the above points of view, as a non-copper-based catalyst, chromium oxide has better stability at high temperatures than copper etc.
Because of its durability, there have been proposals to use chromium oxide as a catalyst for the oxidation of hydrogen chloride, but no results have yet been reported showing sufficient activity. For example, British Patent No. 584790 and British Patent No. 676667 have been proposed, but none of them require intermittent operation or exhibit sufficient activity at low conversion rates. Further, in British Patent No. 846832, a high conversion rate is obtained by adding chromyl chloride to the gas phase in the reaction system, which makes separation and purification after the reaction is complicated. As described above, even if chromium oxide is used as a catalyst, unless a new reaction reagent is added as described above, the conventionally known method has a high reaction temperature and a low space velocity, so it is not suitable for industrial operation. It wasn't there. As a result of various studies, the present inventors found that a chromium oxide catalyst obtained by calcining chromium hydroxide has high activity.
An earlier application showed that chlorine can be produced at a high space velocity and high conversion rate by reacting with 0.25 to 10 moles of oxygen at a temperature of 300 to 500°C. However, when chlorine is produced using this catalyst under these conditions, a small amount of chromium chloride oxide derived from the catalyst is produced, which volatilizes and becomes gaseous chromium, which is produced by the reaction as a scattered chromium component along with catalyst fine powder. It flows out of the reactor along with the gas. If chlorine is separated without removing this scattered chromium, the purity of the product chlorine will decrease and piping etc. will become clogged. In addition, many adverse effects are expected when using this chromium-containing chlorine as a raw material, and furthermore, when products contain chromium compounds that easily volatilize, they should be handled with sufficient care in terms of occupational health and pollution prevention. consideration must be given. From this point of view, there is a need for a method for removing scattered chromium that is safer and more reliable than reaction product gas. An object of the present invention is to provide a method for removing such scattered chromium compounds from reaction product gas. [Means for Solving the Problems] As a result of intensive studies, the present inventors discovered a method of removing scattered chromium using water and completed the present invention. That is, in the present invention, hydrogen chloride gas is mixed with oxygen in the presence of a catalyst mainly composed of chromium oxide prepared by precipitating trivalent chromium salt with a basic compound and calcining chromium hydroxide. This is a method for producing chlorine by oxidation with gas, which is characterized in that the reaction product gas is brought into contact with water to remove chromium components. The present invention will be explained in detail below. The chromium oxide catalyst used in the present invention uses chromium nitrate or chromium chloride as the trivalent chromium salt in the chromium oxide catalyst (Cr 2 O 3 ), and a basic compound as a neutralizing agent to obtain the precipitated catalyst. It is a molded catalyst whose main component is chromium oxide obtained by calcining chromium hydroxide obtained using ammonia at a temperature below 800°C, preferably with silicon oxide as a binder. In the presence of a chromium oxide catalyst, the molar ratio of oxygen to 1 mole of hydrogen chloride is set to 0.25 to 10, and the amount of hydrogen chloride is 200 to 1800 N/hr.Kg at a temperature of 300 to 500°C. The oxidation reaction is carried out at a flow rate of cat. The higher the reaction temperature, the faster the conversion rate of hydrogen chloride, but as a result, volatile chromium components,
The amount of scattered chromium combined with fine powder of chromium catalyst increases. When this reaction product gas is brought into contact with water, the volatile chromium component is absorbed by the water and dissolved in the water in the form of chromium chloride (). Further, the fine powder of the chromium catalyst is also collected in the water at the same time. No chromium component was detected in the reaction product gas after contact with water, and the effect of removing chromium component by contact with water is very large. The effect will not change even if the water that is brought into contact with the reaction product gas has already dissolved hydrogen chloride, chlorine, or chromium chloride. In addition, the temperature of the water that is brought into contact with the reaction product gas is 10~
The effect remains unchanged in the range of 130°C, preferably between 10 and 100°C. Since the volatile chromium content is easily dissolved in water, it is usually preferable to use as little water as possible in contact with the reaction product gas. Methods for bringing the reaction product gas into contact with water include bubbling the reaction product gas into water, using an absorption tower such as a packed tower, etc., especially if the reaction product gas and water can be brought into sufficient contact with each other. No matter the method. [Operation and Effects of the Invention] According to the method of the present invention, when hydrogen chloride is oxidized with an oxygen-containing gas using a chromium oxide catalyst to produce chlorine, the chromium component can be easily removed from the reaction product gas with water. It is an industrially excellent method for producing chlorine that can be used to produce chlorine, eliminates the complexity of its handling, and allows the production of highly purified chlorine. Examples Hereinafter, the present invention will be explained in detail with reference to Examples. Example 1 Dissolve 3.0 kg of chromium nitrate hydrate in 30 kg of deionized water and add 2.9 kg of 28% aqueous ammonia while stirring well.
Kg was injected dropwise over a period of 30 minutes. Deionized water was added to the resulting precipitate slurry to dilute it to 200%, and after standing overnight, decantation was repeated to wash the precipitate, and then colloidal silica corresponding to 10% of the total weight after calcination was added. The granular powder obtained by drying this mixed slurry with a spray dryer was calcined at 600°C for 3 hours in an air atmosphere, and the average particle size (median diameter) was
A catalyst of 50-60μ was obtained. 375 g of this catalyst was packed into a Ni fluidized bed reactor with an inner diameter of 2 inches, and the outside was heated to 370° C. using a sand moving bath. Hydrogen chloride gas 3.13N
/min, and oxygen gas of 1.56N/min was introduced into the catalyst bed to allow the catalyst to react while flowing. The temperature of the catalyst layer reached 400°C due to heat generation. This reaction product gas was passed for 24 hours through traps containing about 3 volumes of water at 50°C for 24 hours, and the chromium content in the water in each trap was determined. The results are shown in Table-1.

【表】 トラツプを出た生成ガス中のクロム分はトレース
であつた。
[Table] The chromium content in the generated gas leaving the trap was trace.

Claims (1)

【特許請求の範囲】[Claims] 1 三価クロムの塩を、塩基性化合物により、沈
澱させて得られた水酸化クロムを焼成して調整し
た酸化クロムを主成分とした触媒の存在下、塩化
水素ガスを含酸素ガスで酸化し塩素を製造する方
法において、反応生成ガスを水と接触させ、クロ
ム成分を除去することを特徴とする塩素の製造方
法。
1 Oxidize hydrogen chloride gas with oxygen-containing gas in the presence of a catalyst whose main component is chromium oxide prepared by precipitating trivalent chromium salt with a basic compound and calcining chromium hydroxide. A method for producing chlorine, the method comprising: contacting reaction product gas with water to remove chromium components.
JP8016186A 1986-04-09 1986-04-09 Production of chlorine Granted JPS62241805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8016186A JPS62241805A (en) 1986-04-09 1986-04-09 Production of chlorine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8016186A JPS62241805A (en) 1986-04-09 1986-04-09 Production of chlorine

Publications (2)

Publication Number Publication Date
JPS62241805A JPS62241805A (en) 1987-10-22
JPH053403B2 true JPH053403B2 (en) 1993-01-14

Family

ID=13710584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8016186A Granted JPS62241805A (en) 1986-04-09 1986-04-09 Production of chlorine

Country Status (1)

Country Link
JP (1) JPS62241805A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011018603A2 (en) 2009-08-14 2011-02-17 Ronald Robert Codling Gas treatment cell and appartus incorporating same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230504A (en) * 1987-03-18 1988-09-27 Mitsui Toatsu Chem Inc Production of chlorine
KR960010775B1 (en) * 1993-12-01 1996-08-08 한국과학기술연구원 Cerium chloride-chromium oxide catalyst for producing chlorine by oxidation of hydrochloric acid and method for manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011018603A2 (en) 2009-08-14 2011-02-17 Ronald Robert Codling Gas treatment cell and appartus incorporating same

Also Published As

Publication number Publication date
JPS62241805A (en) 1987-10-22

Similar Documents

Publication Publication Date Title
KR890005057B1 (en) Production process of chlorine
JPS63107801A (en) Production of chlorine
JPH053406B2 (en)
IE52463B1 (en) Oxychlorination process and catalyst therefor
JPS61136902A (en) Manufacture of chlorine
JP2009022945A (en) Raw material for catalyst production, its production method, method for producing catalyst, and method for producing methacrylic acid
JPH053403B2 (en)
JPS62270404A (en) Production of chlorine
JP2012529415A (en) Method for oxidizing hydrogen chloride over a catalyst with low surface roughness
JPH0413283B2 (en)
CA1069487A (en) Hydrogenation catalyst
JPS62113701A (en) Production of chlorine
JPS61275104A (en) Production of chlorine
CN103467243B (en) Method for catalyzing toluene selective chlorination by using H-L type molecular sieve
JPH053401B2 (en)
JPS62197302A (en) Production of chlorine
JPS6345102A (en) Production of chlorine
JP2988999B2 (en) Catalyst regeneration method
JP3031688B2 (en) Catalyst activity stabilization method
JPH053402B2 (en)
JP3788530B2 (en) Catalyst regeneration method
JPH0367961B2 (en)
JPS6311502A (en) Production of chlorine
JP3668585B2 (en) Method for producing nitrous oxide
US3463740A (en) Formaldehyde in the removal of nitrate ions from regenerated alkylation catalysts

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees