JPH0356779B2 - - Google Patents
Info
- Publication number
- JPH0356779B2 JPH0356779B2 JP57195273A JP19527382A JPH0356779B2 JP H0356779 B2 JPH0356779 B2 JP H0356779B2 JP 57195273 A JP57195273 A JP 57195273A JP 19527382 A JP19527382 A JP 19527382A JP H0356779 B2 JPH0356779 B2 JP H0356779B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- present
- reaction
- oxide
- denitrification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003054 catalyst Substances 0.000 claims description 39
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 claims description 10
- 238000005979 thermal decomposition reaction Methods 0.000 claims description 8
- 230000003197 catalytic effect Effects 0.000 claims description 6
- 239000011651 chromium Substances 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical group CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 238000007233 catalytic pyrolysis Methods 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims 1
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 32
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 24
- 238000000034 method Methods 0.000 description 19
- 239000007789 gas Substances 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 13
- 229910021529 ammonia Inorganic materials 0.000 description 12
- 238000010531 catalytic reduction reaction Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 6
- 238000001035 drying Methods 0.000 description 5
- 239000011572 manganese Substances 0.000 description 5
- 229910052748 manganese Inorganic materials 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- 229910002089 NOx Inorganic materials 0.000 description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 239000003546 flue gas Substances 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000003758 nuclear fuel Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- UNTBPXHCXVWYOI-UHFFFAOYSA-O azanium;oxido(dioxo)vanadium Chemical compound [NH4+].[O-][V](=O)=O UNTBPXHCXVWYOI-UHFFFAOYSA-O 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000004523 catalytic cracking Methods 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000007809 chemical reaction catalyst Substances 0.000 description 1
- KAGOZRSGIYZEKW-UHFFFAOYSA-N cobalt(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Co+3].[Co+3] KAGOZRSGIYZEKW-UHFFFAOYSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 150000003840 hydrochlorides Chemical class 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000012958 reprocessing Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Description
【発明の詳細な説明】
本発明は二酸化窒素(NO2)の接触熱分解用
触媒に関し、特に排ガス中に含有されるNO2を
高酸素濃度下で一酸化窒素(NO)と酸素に熱分
解するための触媒に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a catalyst for catalytic thermal decomposition of nitrogen dioxide (NO 2 ), and in particular to a catalyst for catalytic thermal decomposition of nitrogen dioxide (NO 2 ), which thermally decomposes NO 2 contained in exhaust gas into nitrogen monoxide (NO) and oxygen under a high oxygen concentration. Regarding catalysts for
排ガス中に含有される窒素化合物(NOx)に
触媒を用いてアンモニアを反応させて無害な窒素
と水にする、いわゆるアンモニア接触還元法は、
その装置の構造が簡単である等多くの長所を有し
ており、ボイラの排煙脱硝などに広く実用化され
ている。 The so-called ammonia catalytic reduction method uses a catalyst to react nitrogen compounds (NO x ) contained in exhaust gas with ammonia, converting them into harmless nitrogen and water.
The device has many advantages such as a simple structure, and is widely used in boiler flue gas denitrification.
しかしながら、このアンモニア接触還元法を例
えば硝酸プラント排ガス、金属の酸洗工場排ガ
ス、核燃料再処理工程における核燃料の硝酸溶解
排ガス等の排ガス処理に適用した場合には、多量
の亜酸化窒素(N2O)が発生するという問題が
ある。これはボイラ等の排煙中に含まれるNOx
の大部分がNOであるのに対して前記排ガスの場
合にはNOxの大部分がNO2であることに起因す
る。即ちアンモニア接触還元法においては、
NO2とNH3との反応は次式に示す三つの素反応
から成り立つているため、NO2をNH3で接触還
元する際には、最高で入口NOx濃度の50%の
N2Oが生成し、N2Oの発生を避けることは極め
て困難になる。 However, when this ammonia catalytic reduction method is applied to the treatment of exhaust gases such as nitric acid plant exhaust gas, metal pickling factory exhaust gas, and nuclear fuel nitric acid-dissolved exhaust gas in nuclear fuel reprocessing processes, a large amount of nitrous oxide (N 2 O ) occurs. This is NO x contained in flue gas from boilers, etc.
This is because most of the NOx in the exhaust gas is NO2, whereas most of the NOx in the exhaust gas is NO2 . That is, in the ammonia catalytic reduction method,
The reaction between NO 2 and NH 3 consists of the three elementary reactions shown in the following equation, so when NO 2 is catalytically reduced with NH 3 , a maximum of 50% of the inlet NO x concentration is required.
N 2 O is generated and it becomes extremely difficult to avoid the generation of N 2 O.
(1) 2NH3+NO2→2NH2※+NO+H2O
(2) NH2※+NO→N2+H2O
(3) NH2※+NO2→N2O+H2O
NH2※:NH3の活性中間体
このため、本発明者らはアンモニア接触還元法
における反応時のN2Oの発生を抑制する方法に
ついて種々検討した結果、前記(1)式のNH3活性
化反応にNO2が消費された後、NO2が残存しな
い条件、即ちNH3と反応するときのNOx組成が
NOの多い条件(NO濃度)NO2濃度であれば、
N2Oを副生しないことを見出した。(1) 2NH 3 +NO 2 →2NH 2 * +NO+H 2 O (2) NH 2 * +NO→N 2 +H 2 O (3) NH 2 *+NO 2 →N 2 O+H 2 O NH 2 *: Active intermediate of NH 3 For this reason, the present inventors investigated various methods for suppressing the generation of N 2 O during the reaction in the ammonia catalytic reduction method, and found that NO 2 was consumed in the NH 3 activation reaction of formula (1) above. After that, the conditions where no NO 2 remains, that is, the NO x composition when reacting with NH 3 are
Conditions with a lot of NO (NO concentration) If the NO 2 concentration is
It was discovered that N 2 O was not produced as a by-product.
これに基ずき、本発明者らは、アンモニア接触
還元反応を行なう前に、NO2をNOに転換する工
程を設けた脱硝方法を提案したが、この方法を実
用化するには、NO2をNOい効率よく転換する方
法の開発が、不可欠であることが分つた。このよ
うな用途に適用可能なNO2−NO転換方式として
は、(1)還元剤によるNO2の還元、(2)熱分解
(NO2−→NO+1/2O2)、および(3)触媒を用い
た接触熱分解等が考えられる。これらのうち、(1)
の方法は還元剤を使用するため運転経費が高くな
り、また末反応還元剤の流出という問題も生じ
る。(2)の熱分解は反応速度が遅く実用的でない問
題がある。これらのことから(3)の接触熱分解方式
が最も有望なものと判断されたが、従来、NO2
の熱分解反応を促進する触媒は末だ知られておら
ず、その開発が望まれていた。 Based on this, the present inventors proposed a denitrification method that includes a step of converting NO 2 to NO before carrying out the ammonia catalytic reduction reaction. It turns out that it is essential to develop a method to efficiently convert NO 2 -NO conversion methods applicable to such applications include (1) reduction of NO 2 using a reducing agent, (2) thermal decomposition (NO 2 -→NO+1/2O 2 ), and (3) using a catalyst. A possible method is catalytic pyrolysis. Among these, (1)
Since the method uses a reducing agent, the operating cost is high, and there is also the problem of outflow of the end-reacted reducing agent. Thermal decomposition of (2) has the problem of a slow reaction rate making it impractical. Based on these facts, the catalytic pyrolysis method (3) was judged to be the most promising, but conventionally, NO 2
No catalyst was known to promote the thermal decomposition reaction of , and its development had been desired.
本発明の目的は、N2Oの副生を抑制するアン
モニア接触還元脱硝方法に適用可能で高活性を有
するNO2接触分解反応触媒を提供することにあ
る。 An object of the present invention is to provide a highly active NO 2 catalytic cracking reaction catalyst that is applicable to an ammonia catalytic reduction denitrification method that suppresses the by-product of N 2 O.
本発明は、マンガン(Mn)、コバルト(Co)、
クロム(Cr)および銅(Cu)からなる群より選
ばれた1種以上の金属元素の酸化物、または該酸
化物を担体に担持させたものからなる、NO2の
接触熱分解反応用触媒である。 The present invention utilizes manganese (Mn), cobalt (Co),
A catalyst for the catalytic thermal decomposition reaction of NO2 , consisting of an oxide of one or more metal elements selected from the group consisting of chromium (Cr) and copper (Cu), or a catalyst supported on a carrier. be.
本発明の触媒は、例えばMn、Co、Crおよび
Cuからなる群より選ばれた1種以上の金属元素
の酸化物の粉末を、乾式または湿式で混合したの
ち、乾燥、成形および焼成処理することにより得
られる。乾燥以後の処理は、実用に耐え得る触媒
成形体を得るためのものであり、省略することが
できる。 The catalyst of the present invention includes, for example, Mn, Co, Cr and
It is obtained by dry or wet mixing powders of oxides of one or more metal elements selected from the group consisting of Cu, followed by drying, molding, and firing. The treatments after drying are for obtaining a catalyst molded body that can withstand practical use, and can be omitted.
本発明の触媒の調整に用いられるMn、Co、Cr
およびCu出発物質は前記の酸化物の他、どのよ
うな化学形態のものでもよく、例えばこれらの金
属元素の硝酸塩、塩酸塩、炭酸塩、酢酸塩、水酸
化塩、錯塩等の1種または2種以上の混合物が用
いられる。本発明の触媒はこれらの原料の化学形
態に適合した調整方法により調整される。 Mn, Co, Cr used for preparing the catalyst of the present invention
In addition to the above-mentioned oxides, the Cu starting materials may be in any chemical form, such as one or two of nitrates, hydrochlorides, carbonates, acetates, hydroxides, complex salts, etc. of these metal elements. Mixtures of more than one species are used. The catalyst of the present invention is prepared by a method suitable for the chemical form of these raw materials.
触媒は触媒成分だけで構成してもよいが、これ
を担体、例えば、アルミナ、チタニア、ジルコニ
ア等に担持させてもよい。この場合、前記酸化物
が担体の表面に分散されるため、少ない量で高い
性能と優れた耐久性を得ることができる。 The catalyst may be composed of only catalyst components, but it may also be supported on a carrier such as alumina, titania, zirconia, or the like. In this case, since the oxide is dispersed on the surface of the carrier, high performance and excellent durability can be obtained with a small amount.
触媒の乾燥、焼成その他の条件は特に限定され
ず、通常の条件でよい。また担体での担持法も各
金属酸化物溶液を担体に含浸させた後、乾燥、焼
成する等の通常の条件でよい。 Conditions for drying, calcination, and other conditions for the catalyst are not particularly limited, and may be any conventional conditions. Further, the method of supporting the metal oxide on a carrier may be carried out under normal conditions, such as impregnating the carrier with each metal oxide solution, followed by drying and baking.
上述のようにして得られたNO2接触熱分解用
触媒は、アンモニア触媒還元装置の上流側に設け
られた気固接触装置(乾燥器)に充填され、好適
に使用される。第1図は、本発明の触媒を用いた
アンモニア接触還元脱硝プロセスの一例を示すも
のであるが、NOx含有ガス1は加熱器5で予熱
された後、本発明の触媒を用いたNO2−NO転換
器6に導入され、ここでガス中のNO2ガスが熱
分解してNOに転換され、さらにライン3を通る
間にアンモニアを注入された後、脱硝反応器8に
入り、ここで脱硝触媒9と接触反応して、ガス中
のNOがN2に還元され、清浄ガス4となつて系外
に排出される。 The catalyst for NO 2 catalytic thermal decomposition obtained as described above is filled into a gas-solid contact device (dryer) provided upstream of the ammonia catalytic reduction device, and is suitably used. FIG. 1 shows an example of an ammonia catalytic reduction denitrification process using the catalyst of the present invention. After the NO x -containing gas 1 is preheated in a heater 5, it is converted into NO 2 - The NO 2 gas in the gas is thermally decomposed and converted to NO. After passing through line 3, ammonia is injected into the NO converter 6, where it enters the denitrification reactor 8, where it is NO in the gas is reduced to N 2 through a catalytic reaction with the denitrification catalyst 9, and is discharged outside the system as clean gas 4.
以下、本発明の触媒の製造例および実施例を示
す。 Hereinafter, production examples and examples of the catalyst of the present invention will be shown.
実施例 1〜4
二酸化マンガン(MnO2)、酸化コバルト
(Co2O3)、酸化クロム(Cr2O3)、酸化銅(CuO)
の各粉末に、それぞれグラフアイトを3wt%ずつ
添加後、打錠成形機を用いて直径5mm、長さ5mm
のタブレツトに成形した。次いでこれらを電気炉
内で空気雰囲気下に500℃で2時間焼成し、本発
明の触媒A、B、CおよびDを得た。Examples 1 to 4 Manganese dioxide (MnO 2 ), cobalt oxide (Co 2 O 3 ), chromium oxide (Cr 2 O 3 ), copper oxide (CuO)
After adding 3wt% of graphite to each powder, use a tablet molding machine to make tablets with a diameter of 5mm and a length of 5mm.
It was molded into a tablet. These were then calcined in an electric furnace at 500° C. for 2 hours in an air atmosphere to obtain catalysts A, B, C and D of the present invention.
実施例 5〜8
Mn、Co、CrおよびCuの各硝酸塩の
0.456mol/水溶液300mlを、それぞれ酸化チタ
ン(TiO2)からなる球状担体1Kgに含浸した。
これを140℃で12時間乾燥した後、電気炉に入れ、
空気雰囲気下に500℃で2時間焼成し、本発明の
触媒E、F、GおよびHを得た。Examples 5-8 Mn, Co, Cr and Cu nitrates
0.456 mol/300 ml of the aqueous solution was impregnated into 1 kg of a spherical carrier made of titanium oxide (TiO 2 ).
After drying this at 140℃ for 12 hours, it was placed in an electric furnace.
Catalysts E, F, G and H of the present invention were obtained by calcining at 500° C. for 2 hours in an air atmosphere.
比較例 1〜3
硝酸鉄(Fl(NO3)3)および硝酸ニツケル(Ni
(NO3)2)の各0.456mol/水溶液、並びにメタ
バナジン酸アンモニウム(NH4VO3)蓚酸錯体
の0.456mol/水溶液をそれぞれ用い、その他
は実施例5と同様に処理して比較例の触媒I、J
およびKを得た。Comparative Examples 1 to 3 Iron nitrate (Fl( NO3 ) 3 ) and nickel nitrate (Ni
(NO 3 ) 2 ) and 0.456 mol/aqueous solution of ammonium metavanadate (NH 4 VO 3 ) oxalate complex were used, and otherwise the same procedure as in Example 5 was used to prepare the catalyst I of Comparative Example. , J.
and K were obtained.
実験例
実施例および比較例で得られた各触媒24mlを内
径30mmのガラス製反応管に充填し、下記条件下で
次式で示されるNO2のNOへの転換反応に対する
触媒性能を測定した。Experimental Example 24 ml of each catalyst obtained in the Examples and Comparative Examples was filled into a glass reaction tube with an inner diameter of 30 mm, and the catalytic performance for the conversion reaction of NO 2 to NO represented by the following formula was measured under the following conditions.
NO2→NO+1/2O2 (4)
測定条件
空間速度:10000h-1
反応温度:300〜550℃
ガス組成: NO22500ppm
O2 30%
H2O 2%
N2 残部
その結果を第2図および第3図に示す。図中の
プロツト10,11,12,13,14,15,
16,17は、それぞれ本発明の触媒A、B、
C、D、E、F、G、Hを用いた場合、18,1
9,20はそれぞれ比較例の触媒I、J、Kの場
合を示す。また破線で示したものは、(4)式で示さ
れる平衡反応に対する各温度の理論平衡転換率を
プロツトしたものであり、触媒を用いても、この
数値以上にはNO2の転換率を増加させることは
できない。即ち、この破線に近いものほど高活性
の触媒といえる。 NO 2 →NO+1/2O 2 (4) Measurement conditions Space velocity: 10000h -1 Reaction temperature: 300 to 550℃ Gas composition: NO 2 2500ppm O 2 30% H 2 O 2% N 2 balance The results are shown in Figure 2 and It is shown in Figure 3. Plots 10, 11, 12, 13, 14, 15,
16 and 17 are catalysts A and B of the present invention, respectively.
When using C, D, E, F, G, H, 18,1
9 and 20 indicate the cases of catalysts I, J, and K as comparative examples, respectively. The dashed line is a plot of the theoretical equilibrium conversion rate at each temperature for the equilibrium reaction shown by equation (4); even if a catalyst is used, the NO 2 conversion rate cannot be increased beyond this value. I can't let you. In other words, the closer the catalyst is to this broken line, the more active the catalyst is.
第2図および第3図から明らかなように、本発
明の触媒A〜Hは、いずれも比較例の触媒I〜K
に比べて高いNO2転換率を示しており、本発明
の触媒が優れたものであることが判る。また、そ
の性能は10000h-1という高い空間速度で得られて
おり、実用的にも十分優れたものといえる。 As is clear from FIGS. 2 and 3, the catalysts A to H of the present invention are the catalysts I to K of the comparative example.
It is clear that the catalyst of the present invention is superior, as it shows a higher NO 2 conversion rate than that of the catalyst of the present invention. In addition, its performance was achieved at a high spatial velocity of 10,000 h -1 , and it can be said to be sufficiently excellent for practical use.
以上、本発明によれば、アンモニア接触還元に
よる脱硝プロセスにおいて、排ガス中に含有され
るNO2を予めNOに効率よく転換することがで
き、その結果、脱硝反応におけるN2Oの副生を
抑制し、高脱硝率のNO2含有ガス用脱硝プロセ
スを実現することができ、工業的に極めて有利で
ある。 As described above, according to the present invention, in the denitrification process using ammonia catalytic reduction, NO 2 contained in exhaust gas can be efficiently converted into NO in advance, and as a result, the by-product of N 2 O in the denitrification reaction can be suppressed. However, it is possible to realize a denitrification process for NO 2 -containing gas with a high denitrification rate, which is extremely advantageous industrially.
第1図は、本発明の触媒を用いたアンモニア接
触還元脱硝法の装置系統図、第2図は、本発明の
実施例1〜4における触媒性能を示すグラフ、第
3図は、実施例5〜8および比較例1〜3におけ
る触媒性能を示すグラフである。
1……NOX含有ガス、5……加熱器、6……
NO2−NO転換器、7……NH3注入ライン、8…
…脱硝反応器、9……脱硝触媒。
Fig. 1 is a system diagram of an apparatus for ammonia catalytic reduction denitrification using the catalyst of the present invention, Fig. 2 is a graph showing catalyst performance in Examples 1 to 4 of the present invention, and Fig. 3 is a graph showing the performance of the catalyst in Examples 1 to 4 of the present invention. It is a graph showing catalyst performance in ~8 and Comparative Examples 1-3. 1... NOx- containing gas, 5...heater, 6...
NO 2 -NO converter, 7... NH 3 injection line, 8...
...Denitration reactor, 9...Denitrification catalyst.
Claims (1)
る群より選ばれた1種以上の金属元素の酸化物を
含むことを特徴とする二酸化窒素の接触熱分解用
触媒。 2 特許請求の範囲第1項において、前記金属元
素の酸化物を担体に担持したことを特徴とする、
二酸化窒素の接触熱分解用触媒。[Scope of Claims] 1. A catalyst for catalytic thermal decomposition of nitrogen dioxide, comprising an oxide of one or more metal elements selected from the group consisting of manganese, cobalt, chromium, and copper. 2. Claim 1, characterized in that the oxide of the metal element is supported on a carrier,
Catalyst for catalytic pyrolysis of nitrogen dioxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57195273A JPS5987044A (en) | 1982-11-09 | 1982-11-09 | Catalytic thermal cracking catalyst of nitrogen dioxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57195273A JPS5987044A (en) | 1982-11-09 | 1982-11-09 | Catalytic thermal cracking catalyst of nitrogen dioxide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5987044A JPS5987044A (en) | 1984-05-19 |
JPH0356779B2 true JPH0356779B2 (en) | 1991-08-29 |
Family
ID=16338411
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57195273A Granted JPS5987044A (en) | 1982-11-09 | 1982-11-09 | Catalytic thermal cracking catalyst of nitrogen dioxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5987044A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013223851A (en) * | 2012-04-19 | 2013-10-31 | Nagamine Seisakusho:Kk | Material for cleaning nitrogen oxide |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6165840A (en) * | 1984-09-07 | 1986-04-04 | Nippon Shokubai Kagaku Kogyo Co Ltd | Production of diglycolic acid salt |
US4735930A (en) * | 1986-02-18 | 1988-04-05 | Norton Company | Catalyst for the reduction of oxides of nitrogen |
TW412438B (en) * | 1995-01-20 | 2000-11-21 | Hitachi Shipbuilding Eng Co | Nox adsorbent |
JP2002160910A (en) * | 2000-11-22 | 2002-06-04 | Daicel Chem Ind Ltd | Method for manufacturing nitrogen monoxide and organic compound utilizing nitrogen monoxide |
DE102016113382A1 (en) * | 2016-07-20 | 2018-01-25 | Man Diesel & Turbo Se | Internal combustion engine and method for operating the same |
CN109224635A (en) * | 2018-10-12 | 2019-01-18 | 东南大学 | A kind of compound cryosar denitration and the PPS filtrate of demercuration function and preparation method thereof |
KR102159082B1 (en) * | 2020-01-08 | 2020-09-23 | 주식회사 이엠코 | Method for treating exhaust gas of thermal plant |
-
1982
- 1982-11-09 JP JP57195273A patent/JPS5987044A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013223851A (en) * | 2012-04-19 | 2013-10-31 | Nagamine Seisakusho:Kk | Material for cleaning nitrogen oxide |
Also Published As
Publication number | Publication date |
---|---|
JPS5987044A (en) | 1984-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4912776A (en) | Process for removal of NOx from fluid streams | |
EP0208434B1 (en) | Process for removing nitrogen oxides and carbon monoxide simultaneously | |
US5582809A (en) | Catalyst and method for denitrization of nitrogen oxides | |
CA2115723A1 (en) | Catalytic converter for converting reactants of a gas mixture | |
US4138469A (en) | Process for catalytically treating exhaust gas containing NOx in the presence of ammonia gas | |
CZ343796A3 (en) | Catalyst for reducing amount of nitrogen oxides in flowing media and process for preparing thereof | |
IE63828B1 (en) | New catalyst capable of being used in a process for the selective reduction of oxides of nitrogen | |
JPH0356779B2 (en) | ||
JP2005081189A (en) | Catalyst for denitrifying high temperature waste gas | |
WO1989003366A1 (en) | Vanadium/tungsten catalyst and process | |
US3976745A (en) | Process for reducing nitrogen oxides to nitrogen | |
JPS5812057B2 (en) | Shiyokubaisosabutsu | |
KR101251499B1 (en) | Zeolite catalyst for removing nitrogen oxides, method for preparing the same, and removing method of nitrogen oxides using the same | |
US4222899A (en) | Ammoxidation catalyst | |
JPH11342337A (en) | Catalyst b and method for removal of nitrogen oxides by decomposition | |
JPH09155190A (en) | Catalyst for removing nitrogen oxides in exhaust gas, production thereof and method for removing nitrogen oxides in exhaust gas using the catalyst | |
CA1064225A (en) | Process for removing nox from a flue gas by selective reduction with nh3 | |
JPS5823136B2 (en) | How to remove nitrogen oxides from exhaust gas | |
JPS6335298B2 (en) | ||
JPS62250947A (en) | Catalyst for simultaneous treatment of nitrogen oxide and carbon monoxide | |
JPS59213442A (en) | Preparation of denitration catalyst | |
JPS6152729B2 (en) | ||
JPS581615B2 (en) | Ammonia | |
KR102244347B1 (en) | A catalyst capable of directly decomposing urea amd method for urea decomposition using the same | |
JP3500400B2 (en) | Exhaust gas purification catalyst |