JPS5987044A - Catalytic thermal cracking catalyst of nitrogen dioxide - Google Patents

Catalytic thermal cracking catalyst of nitrogen dioxide

Info

Publication number
JPS5987044A
JPS5987044A JP57195273A JP19527382A JPS5987044A JP S5987044 A JPS5987044 A JP S5987044A JP 57195273 A JP57195273 A JP 57195273A JP 19527382 A JP19527382 A JP 19527382A JP S5987044 A JPS5987044 A JP S5987044A
Authority
JP
Japan
Prior art keywords
catalyst
denitration
ammonia
carrier
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57195273A
Other languages
Japanese (ja)
Other versions
JPH0356779B2 (en
Inventor
Yasuyoshi Kato
泰良 加藤
Kunihiko Konishi
邦彦 小西
Masao Ota
大田 雅夫
Yoshinori Takimoto
滝本 義範
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP57195273A priority Critical patent/JPS5987044A/en
Publication of JPS5987044A publication Critical patent/JPS5987044A/en
Publication of JPH0356779B2 publication Critical patent/JPH0356779B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a catalyst applicable to a catalytically reductive denitration method of ammonia for suppressing N2O as a byproduct, by constituting the same from one prepared by supporting oxide of one or more of a metal element selected from Mn, Co, Cr and Cu by a carrier. CONSTITUTION:The titled catalyst is constituted of one prepared by supporting oxide of one or more of a metal element selected from a group comprising Mn, Co, Cr and Cu by a carrier. Powders comprising oxides of these metal elements are mixed in a dry or a wet system and the resulting mixture is dried, molded and baked to obtain an objective catalyst. Thus obtained catalyst can preliminarily convert NO2 contained in exhaust gas to NO in good efficiency in a denitration process due to catalytic reduction for ammonia and, as the result, the generation of N2O as a byproduct in denitration reaction is suppressed and a denitration process for NO2-containing gas can be realized in a high denitration ratio.

Description

【発明の詳細な説明】 本発明は二酸化窒素(NO2)の接触熱分解用触媒に関
し、特に排ガス中に含有されるNO2を高酸素濃度下で
一酸化窒素(NO)と酸素に熱分解するための触媒に関
する。
Detailed Description of the Invention The present invention relates to a catalyst for catalytic thermal decomposition of nitrogen dioxide (NO2), particularly for thermally decomposing NO2 contained in exhaust gas into nitrogen monoxide (NO) and oxygen under high oxygen concentration. Concerning catalysts.

排ガス中に含有される窒素酸化物(NO,)に触媒を用
いてアンモニアを反応させて無害なり素と水にする、い
わゆるアンモニア接触還元法(ハ、その装置の構造が簡
単である等多くの長所を有しておシ、ボイラの排煙脱硝
などに広く実用化されている。
The so-called ammonia catalytic reduction method, in which nitrogen oxides (NO,) contained in exhaust gas are reacted with ammonia using a catalyst to turn them into harmless atoms and water (c) The structure of the device is simple, and there are many It has many advantages and is widely used in boiler exhaust gas denitrification.

しかし−シがら、このアユ/モニア接触還元法を例えば
硝酸プラント排ガス、金属の竣洗工場排ガス、核燃料再
処理工程における核燃料の硝酸溶解排ガス等の排ガス処
理に適用した場合:(は、多量の亜酸化窒支ζN20)
が発生するという問題がある。これはボイラ等の排煙中
に含”まれるNO,の大部分がNOであるのに対して前
記排ガスの場合にはNOxの大部分がNO2であること
に起因する。即ちアンモニア接触還元法においては、N
O2とNH3との反応は、次式に示す三つの素反応から
成り立っているため、NO2をNH3で接触還元する[
ま(・′(は、最高で入口NOxτ1変の50%のN2
0が生成し、N20の発生を避けることは極めて困難に
なる。
However, if this sweetfish/monia catalytic reduction method is applied to the treatment of exhaust gases such as nitric acid plant exhaust gas, metal finishing factory exhaust gas, and nitric acid-dissolved exhaust gas from nuclear fuel in the nuclear fuel reprocessing process: Nitrogen oxide support ζN20)
There is a problem that occurs. This is because most of the NO contained in exhaust gas from boilers, etc. is NO, whereas in the case of the exhaust gas, most of the NOx is NO2. In other words, the ammonia catalytic reduction method In, N
The reaction between O2 and NH3 consists of three elementary reactions shown in the following equation, so NO2 is catalytically reduced with NH3 [
Ma(・'( is the maximum N2 of 50% of the inlet NOxτ1 change)
0 is generated, and it becomes extremely difficult to avoid the generation of N20.

(1) 2 N N3−4−N O2−+ 2 N N
2 十N O+ N20(2) NN2+riO−+H
2+ N20(3) NN2+ No2→N20 + 
l−l2ONH2: NH3の活性中間体 このため、本発明者らはアンモニア接触還元法における
反応時のN200発生を抑制する方法について踵々検討
した結果、前記(1)式のNH3の活性化反応÷てNO
2が消費された後、N02が残存しな(へ条件、即ちN
H3と反応するときのNOx組成がNOの多い条件(1
¥ Og“5度)NO2濃度であれば、N20をβ;j
生しないことを見出しだ。
(1) 2 N N3-4-N O2-+ 2 N N
2 10N O+ N20(2) NN2+riO-+H
2+ N20(3) NN2+ No2→N20 +
l-l2ONH2: Active intermediate of NH3 Therefore, as a result of careful consideration by the present inventors on a method for suppressing the generation of N200 during the reaction in the ammonia catalytic reduction method, we found that the activation reaction of NH3 in the above formula (1) ÷ Te NO
2 is consumed, there is no N02 left (to condition, i.e., N
The NOx composition when reacting with H3 is under conditions where there is a lot of NO (1
¥ Og"5 degrees) If the NO2 concentration, N20 is β;
The headline is that it doesn't work.

これに基ずき、本発明者らは、アンモニア接触還元反応
を行なう前に、NO2をNoに転換する工程を設けた脱
硝方法を提案したが、この方法を実用化するには、NO
2をNoに効率よく転換する方法の開発が、不可欠であ
ることが分った。このようガ用途に適用可能なNO2−
NO転換方式どしては、(1)還元剤によるNO2の還
元、(2)熱分解(NO2−N O+17202 ) 
、および(3)触媒を用いた接触熱分解等が考えられる
。これらのうちs (”)の方法は矢!元剤を使用する
ため運転経費が高くなり、また未反応還元剤の流出とい
う問題も生・しる。(2)の熱分解は反応速度が遅く実
用的でない等の問題がある。
Based on this, the present inventors proposed a denitrification method that includes a step of converting NO2 to No before carrying out the ammonia catalytic reduction reaction.
It turns out that it is essential to develop a method to efficiently convert 2 to No. NO2- applicable to such gas applications
NO conversion methods include (1) reduction of NO2 using a reducing agent, (2) thermal decomposition (NO2-NO+17202)
, and (3) catalytic thermal decomposition using a catalyst. Among these methods, method s ('') uses a starting material, which increases operating costs, and also causes the problem of leakage of unreacted reducing agent.The thermal decomposition method (2) has a slow reaction rate. There are problems such as impracticality.

これらのことから(3)の接触熱分解方式が最も有望な
ものと判断されたが、従来、N02の熱分解反応を促進
する触媒は末だ知られておらず、その開発が望まれてい
た。
Based on these facts, the catalytic thermal decomposition method (3) was judged to be the most promising, but until now there was no known catalyst that could promote the thermal decomposition reaction of N02, and its development was desired. .

本発明の目的は、N20の副生を抑制するアンモニア接
触還元脱硝方法に適用可能で高活性を有するN02接触
熱分解反応触媒を提供することにある。
An object of the present invention is to provide a highly active N02 catalytic pyrolysis reaction catalyst that is applicable to an ammonia catalytic reduction denitrification method that suppresses the by-product of N20.

本発明は、マンガン(Mn)、コバルト(Co)、クロ
ム(Cr )および銅(Cu)からなる群より選ばれた
1種以上の金属元素の酸化物、または該酸化物を相体に
担持させたものからなる、NO2の接触熱分解反応用触
媒である。
The present invention provides an oxide of one or more metal elements selected from the group consisting of manganese (Mn), cobalt (Co), chromium (Cr), and copper (Cu), or a phase supporting the oxide. This is a catalyst for the catalytic thermal decomposition reaction of NO2.

本発明の触媒は、例えばMn、Co、CrおよびCuか
らなる群より選ばれた1種以上の金属元素の酸化物の粉
末を、乾式または湿式で混合したのち、乾燥、成形およ
び焼成処理することにより得られる。乾燥以後の処理は
、実用に耐え得る触媒成形体を得るためのものであり、
省略することができる。
The catalyst of the present invention can be prepared by mixing powders of oxides of one or more metal elements selected from the group consisting of Mn, Co, Cr, and Cu in a dry or wet manner, followed by drying, molding, and calcination treatment. It is obtained by The processing after drying is to obtain a catalyst molded body that can withstand practical use.
Can be omitted.

本発明の触媒の調整に用いられるMn、 Co、 Cr
およびCvの出発物質は前記の酸化物の他、どのような
化学形態のものでもよく、例えばとれらの金属元素の硝
酸塩、塩酸塩、炭酸塩、酢酸塩、水酸化物、錯塩等の1
称または2種以上の混合物が用いられる。本発明の触媒
はこれらの原料の化学形態に適合した調整方法により調
整さicる。
Mn, Co, Cr used for preparing the catalyst of the present invention
In addition to the above-mentioned oxides, the starting materials for Cv and Cv may be in any chemical form, such as nitrates, hydrochlorides, carbonates, acetates, hydroxides, complex salts, etc. of these metal elements.
or a mixture of two or more. The catalyst of the present invention is prepared by a method suitable for the chemical form of these raw materials.

触媒は触媒成分だけで構成してもよいが、これを担体5
例えばアルミナ、チタニア、ジルコニア等に担持させて
もよい。この場合、前記酸化物が担体の表面に分散され
るだめ、少たい量で高い性能と優れた耐久性を得ること
ができる。
The catalyst may be composed only of catalyst components, but this is
For example, it may be supported on alumina, titania, zirconia, or the like. In this case, since the oxide is dispersed on the surface of the carrier, high performance and excellent durability can be obtained with a small amount.

触媒の乾燥、焼成その他の条件14特に限定されず、通
常の条件でよい。また担体での担持法も各金属酸化物溶
液を担体に含浸させた後、乾燥、焼成する等の通常の条
件でよい。
Conditions 14 for drying the catalyst, calcination, etc. are not particularly limited, and may be normal conditions. Further, the method of supporting the metal oxide on a carrier may be carried out under normal conditions, such as impregnating the carrier with each metal oxide solution, followed by drying and baking.

上述のようにして得られたNO2接触熱分解用触媒は、
アンモニア接触還元装置の上流側に設けられた気固接触
装置(乾燥器)に充填され、好適に使用される。第1図
は、本発明の触媒を用いたアンモニア接触還元脱硝プロ
セスの一例を示すものであるが、NOx含有ガス1は加
熱器5で予熱された後、本発明の触媒を用いたNo2−
NO転換器6に導入され、ここでガス中のNO2ガスが
熱分解してNoに転換され、さらにライン3を通る間に
アンモニアを注入された後、脱硝反応器8に入り、ここ
で脱硝触媒9と接柚反応して、ガス中のNoがN2に還
元容れ、清浄ガス4となって系外に排出される。
The catalyst for NO2 catalytic pyrolysis obtained as described above is
It is preferably used by filling a gas-solid contact device (dryer) provided upstream of the ammonia catalytic reduction device. FIG. 1 shows an example of an ammonia catalytic reduction denitrification process using the catalyst of the present invention.
The NO gas is introduced into the NO converter 6, where the NO2 gas in the gas is thermally decomposed and converted to NO, and after passing through the line 3, ammonia is injected, and then enters the denitrification reactor 8, where the denitrification catalyst is 9, No in the gas is reduced to N2, which becomes clean gas 4 and is discharged from the system.

以下、大発明の触媒の製造例および実験例を示す。Hereinafter, production examples and experimental examples of the catalyst of the invention will be shown.

実施例1−4 二酸化マンガン(MnO,、)、Qv化コバルト(C0
2へ)、酸化クロム(Cr20:+ )、酸化鋼(Cu
e)の各粉末に、それぞれグラファイトを3wt:%ず
つ添加後、打錠成形機を用いて直径5!M%長さ571
171のタブレットに成形1〜だ。次いでこれらを電気
炉内で空気雰囲気下に500℃で2時開焼成し、本発明
の触媒A%B1CおよびDを得た。
Example 1-4 Manganese dioxide (MnO, ), cobalt Qv (C0
2), chromium oxide (Cr20:+), oxidized steel (Cu
After adding 3wt:% of graphite to each of the powders in e), the tablets were made into tablets with a diameter of 5! M% length 571
It is molded into 171 tablets. These were then fired in an electric furnace in an air atmosphere at 500° C. for 2 hours to obtain catalysts A%B1C and D of the present invention.

実施例5〜8 Mn、Ca、CrおよびCuの名硝酸塩の0.456m
ol/P水溶液3oonll、それぞ、1.17.J化
チタy (T i 02 )からなる球状担体1聴に含
浸1.た。こり、を14.O℃で12時間乾燥した後、
電気炉に入れ、空気雰囲気下に500℃で2時間焼成し
、本発明の触媒E1F、GおよびHを得だ。
Examples 5-8 0.456m of the nitrates of Mn, Ca, Cr and Cu
3oonll of ol/P aqueous solution, each 1.17. Impregnating a spherical carrier made of titanium chloride (T i 02 ) 1. Ta. Stiffness, 14. After drying at O℃ for 12 hours,
The mixture was placed in an electric furnace and fired at 500° C. for 2 hours in an air atmosphere to obtain catalysts E1F, G and H of the present invention.

比較例1〜3 硝a鉄(FA (NO3)3) オヨヒ硝酸二ツ’y 
ル(N i (NO3)z)の各0.456m0λ/2
水溶液、並びにメタバナジン酸7 :’ モ= ラム(
NH4VO3) 蓚酸n 体(D 0.455mO℃/
L水溶液をそれぞれ用い、その他は実施例5と同様に処
理して比較例の触媒■、JおtびKを得た。
Comparative Examples 1 to 3 Iron nitrate (FA (NO3)3)
(N i (NO3)z) each 0.456m0λ/2
Aqueous solution as well as metavanadate 7: 'mo-lam (
NH4VO3) Oxalic acid n form (D 0.455mO℃/
Comparative examples of catalysts ①, J, and K were obtained in the same manner as in Example 5, except that L aqueous solution was used, respectively.

実施例 実施例および比較例で得られた各触媒24−コを内径3
0171111のガラス製反応管に充填し、下記条件下
で次式で示されるNO2のNoへの転換反応に対する触
媒性能を測定した。
Examples 24 catalysts obtained in Examples and Comparative Examples each had an inner diameter of 3
0171111 was filled in a glass reaction tube, and the catalyst performance for the conversion reaction of NO2 to No expressed by the following formula was measured under the following conditions.

NO□→NO+1/202(4) 測定条件 」 空間速度:10,0OOh 反応温度:300〜550℃ ガス組成: NO22,5007p Q230$ N20 2% N2  残部 その結畏を第2図および第3図に示す。図中のプロソト
ニL0,11,12.13.14.15.16.1ブは
、それぞれ本発明の触媒A、B、C。
NO□→NO+1/202 (4) Measurement conditions Space velocity: 10,0OOh Reaction temperature: 300-550℃ Gas composition: NO22,5007p Q230$ N20 2% N2 The balance is shown in Figures 2 and 3. show. Prosotons L0, 11, 12.13.14.15.16.1 in the figure are catalysts A, B, and C of the present invention, respectively.

D%B +、  ’、、M、G、Hを用いた場合、18
.19.20はそ;・tぞれ比較例の触媒I、J、にの
場合を示す。また破線で示しだものは、(4)式で示さ
れる平衡反応に対する各温度の理論平衡転換率をプロッ
トしたものであり、触媒を用いても、この数値以上に!
’i NO2の転換率を増加させることはできない。即
ち、この破線に近いものほど高活性の触媒といえる。
When using D%B +, ',, M, G, H, 18
.. 19.20 shows the case of Comparative Example Catalysts I, J, respectively. What is shown by the broken line is a plot of the theoretical equilibrium conversion rate at each temperature for the equilibrium reaction shown by equation (4), and even with the use of a catalyst, it exceeds this value!
'i It is not possible to increase the conversion rate of NO2. In other words, the closer the catalyst is to this broken line, the more active the catalyst is.

第2図および第3図から明らかなように、本発明の触媒
A−Hは、いずれも比較例の触媒■〜Kに比べて高いN
O2転換率を示して与り、本発明の触媒が優れたもので
あるととが判る。また、その性能は10. OO○h−
iという高い空間速度で得られており、実用的にも十分
優れたものといえる。
As is clear from FIGS. 2 and 3, catalysts A to H of the present invention all have higher N than catalysts II to K of comparative examples.
It can be seen that the catalyst of the present invention is excellent as shown in the O2 conversion rate. Also, its performance is 10. OO○h-
It was obtained at a high spatial velocity of i, and can be said to be sufficiently excellent for practical use.

以上、本発明によれば、アンモニア接触還元による脱硝
プロセスにおいて、排ガス中に含有されるNO2を予め
NOに効率よく転換することができ、その結果、脱硝反
応におけるN20の副生を抑制し、高脱硝率のNO2含
有ガス用脱硝プロセスを実現することができ、工業的に
()めて有利である。
As described above, according to the present invention, NO2 contained in exhaust gas can be efficiently converted into NO in advance in the denitrification process by ammonia catalytic reduction, and as a result, the by-product of N20 in the denitrification reaction is suppressed and the It is possible to realize a denitrification process for NO2-containing gas with a high denitrification rate, which is industrially advantageous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の触媒を用いたアンモニア接触還元脱
硝法の装置系統図、第2図は、本発明の実施例1〜4−
における触媒性能を示すグラフ、第3図は、実施例5〜
8および比較例1〜3における触媒・1能を示すグラフ
である。 1・・・・・・NOx含有ガス、5・−・・・・加熱器
、6・・・・・・・・・No2−NO転換器、7・・・
・・・NH3注入ライン、8・−・・・・脱硝反応器、
9・・・・・脱硝触媒。 代理人 弁理士 川 北 武 長 第1図 第 2vA 足民1呂皮(’C’)
Fig. 1 is a system diagram of an apparatus for ammonia catalytic reduction denitrification method using the catalyst of the present invention, and Fig. 2 is a diagram showing Examples 1 to 4 of the present invention.
FIG. 3 is a graph showing the catalyst performance in Examples 5 to 3.
8 and Comparative Examples 1 to 3. FIG. 1... NOx-containing gas, 5... Heater, 6... No2-NO converter, 7...
...NH3 injection line, 8...Denitrification reactor,
9...Denitrification catalyst. Agent Patent Attorney Takenaga Kawakita Figure 1 Figure 2vA Ashitami 1 Ryobi ('C')

Claims (1)

【特許請求の範囲】[Claims] (1)マンガン、コバルト、クロムおよび銅;からなる
群より選ばれた1′Jgi以上の金属元岩の酸化物を含
むことを特徴とする二酸化窒素の′f、2触熱/触熱/
融解用 触媒、特許請求の範囲第1項において、前記金属元素の
酸化物を担体に担持したことを特徴とする、二酸化窒素
の接触熱分解用触媒。
(1) Manganese, cobalt, chromium, and copper;
Catalyst for melting: A catalyst for catalytic thermal decomposition of nitrogen dioxide according to claim 1, characterized in that an oxide of the metal element is supported on a carrier.
JP57195273A 1982-11-09 1982-11-09 Catalytic thermal cracking catalyst of nitrogen dioxide Granted JPS5987044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57195273A JPS5987044A (en) 1982-11-09 1982-11-09 Catalytic thermal cracking catalyst of nitrogen dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57195273A JPS5987044A (en) 1982-11-09 1982-11-09 Catalytic thermal cracking catalyst of nitrogen dioxide

Publications (2)

Publication Number Publication Date
JPS5987044A true JPS5987044A (en) 1984-05-19
JPH0356779B2 JPH0356779B2 (en) 1991-08-29

Family

ID=16338411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57195273A Granted JPS5987044A (en) 1982-11-09 1982-11-09 Catalytic thermal cracking catalyst of nitrogen dioxide

Country Status (1)

Country Link
JP (1) JPS5987044A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4709090A (en) * 1984-09-07 1987-11-24 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method of production of oxydicarboxylic acid salts
US4735930A (en) * 1986-02-18 1988-04-05 Norton Company Catalyst for the reduction of oxides of nitrogen
CN1063353C (en) * 1995-01-20 2001-03-21 日立造船株式会社 NOX adsorbent
JP2002160910A (en) * 2000-11-22 2002-06-04 Daicel Chem Ind Ltd Method for manufacturing nitrogen monoxide and organic compound utilizing nitrogen monoxide
JP2018013123A (en) * 2016-07-20 2018-01-25 マン・ディーゼル・アンド・ターボ・エスイー Internal combustion engine and method for operating internal combustion engine
CN109224635A (en) * 2018-10-12 2019-01-18 东南大学 A kind of compound cryosar denitration and the PPS filtrate of demercuration function and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5961881B2 (en) * 2012-04-19 2016-08-03 株式会社長峰製作所 Nitrogen oxide purification material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4709090A (en) * 1984-09-07 1987-11-24 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method of production of oxydicarboxylic acid salts
US4735930A (en) * 1986-02-18 1988-04-05 Norton Company Catalyst for the reduction of oxides of nitrogen
CN1063353C (en) * 1995-01-20 2001-03-21 日立造船株式会社 NOX adsorbent
JP2002160910A (en) * 2000-11-22 2002-06-04 Daicel Chem Ind Ltd Method for manufacturing nitrogen monoxide and organic compound utilizing nitrogen monoxide
JP2018013123A (en) * 2016-07-20 2018-01-25 マン・ディーゼル・アンド・ターボ・エスイー Internal combustion engine and method for operating internal combustion engine
KR20180010152A (en) * 2016-07-20 2018-01-30 만 디젤 앤 터보 에스이 Internal combustion engine and method for operating the same
CN109224635A (en) * 2018-10-12 2019-01-18 东南大学 A kind of compound cryosar denitration and the PPS filtrate of demercuration function and preparation method thereof

Also Published As

Publication number Publication date
JPH0356779B2 (en) 1991-08-29

Similar Documents

Publication Publication Date Title
US4912776A (en) Process for removal of NOx from fluid streams
US4351811A (en) Process for reducing an eliminating nitrogen oxides in an exhaust gas
CA2115723A1 (en) Catalytic converter for converting reactants of a gas mixture
US5582809A (en) Catalyst and method for denitrization of nitrogen oxides
CZ343796A3 (en) Catalyst for reducing amount of nitrogen oxides in flowing media and process for preparing thereof
EP0208434A1 (en) Process for removing nitrogen oxides and carbon monoxide simultaneously
CN102513095B (en) Medium temperature denitration catalyst with carbon-based material loaded with cerium tungsten and preparation method of medium temperature denitration catalyst
CN109289911A (en) A kind of catalyst handling nitrogenous volatile organic contaminant and method
JPS5987044A (en) Catalytic thermal cracking catalyst of nitrogen dioxide
US20100228061A1 (en) Catalyst for removing detrimental hydrocarbons present in effluent or process gases
JP2005081189A (en) Catalyst for denitrifying high temperature waste gas
JP4204692B2 (en) Nitrogen oxide removal catalyst, method for producing the same, and method for removing nitrogen oxides using the catalyst
JP4798909B2 (en) Nitrogen oxide removing catalyst and method for producing the same
JPH10225641A (en) Low temperature denitration catalyst and its production and low temperature denitration method
JPH09155190A (en) Catalyst for removing nitrogen oxides in exhaust gas, production thereof and method for removing nitrogen oxides in exhaust gas using the catalyst
CN110465283A (en) A kind of low-temperature denitration catalyst and preparation method thereof
KR102434011B1 (en) Exhaust gas treatment apparatus
JPS59213442A (en) Preparation of denitration catalyst
JPS62250947A (en) Catalyst for simultaneous treatment of nitrogen oxide and carbon monoxide
JPS62114657A (en) Catalyst for removing carbon monoxide or carbon monoxide and nitrogen oxide in exhaust gas
KR20100001315A (en) Catalytic composition for removing nitrogen oxide, and method for producing that, and method for removing nitrogen oxide using the same
CN107998855B (en) Two-stage flue gas denitration process and denitration equipment
JPH11342336A (en) Catalyst a for removal of nitrogen oxides by decomposition and method
JPH04197442A (en) Production of catalyst for removal of nitrogen oxide
JPS62183842A (en) Method for removing co and nox in exhaust gas of combined system