JPS6361931B2 - - Google Patents

Info

Publication number
JPS6361931B2
JPS6361931B2 JP54138689A JP13868979A JPS6361931B2 JP S6361931 B2 JPS6361931 B2 JP S6361931B2 JP 54138689 A JP54138689 A JP 54138689A JP 13868979 A JP13868979 A JP 13868979A JP S6361931 B2 JPS6361931 B2 JP S6361931B2
Authority
JP
Japan
Prior art keywords
reaction
oxide
catalyst
phenol compound
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54138689A
Other languages
Japanese (ja)
Other versions
JPS5663932A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13868979A priority Critical patent/JPS5663932A/en
Publication of JPS5663932A publication Critical patent/JPS5663932A/en
Publication of JPS6361931B2 publication Critical patent/JPS6361931B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、反応使用前に還元し、次いで水蒸気
により接触処理した金属酸化物含有触媒を用い
て、フエノール化合物のオルソ位の水素原子を選
択的にアルキル化し、少なくとも1個以上のオル
ソアルキル基を有するオルソアルキル化フエノー
ル化合物の製造に関するものである。 従来より、オルソアルキル化フエノール化合物
の製造法については、とくに2、6−ジメチルフ
エノールが有用なプラスチツクスであるポリフエ
ニレンエーテル(PPE)製造用の原料となるた
め、数多くの研究がなされてきている。 フエノール化合物のオルソアルキル化方法とし
ては、既にアルミナ、マグネシアなどを触媒とし
て使用し、フエノール化合物とアルコール類とを
気相接触反応させる方法が公知であるが、これら
の方法にはそれぞれオルソアルキル化の選択性が
悪い、反応温度が高すぎる、などの問題点があ
る。 これらの問題点を解決するために、マグネシア
に各種の成分を添加した触媒系、また酸化鉄、酸
化マンガンなどを主成分とし、それに他成分を添
加した種々の触媒系などが開示されているが、い
ずれもオルソ位選択性や触媒寿の点で欠点を有
し、十分な触媒とは言えない。 本発明者らは、このアルキル化方法について
種々の検討を加え、効果的な各種の触媒を提示し
てきた。この後、さらにこれらの触媒系を詳細に
検討した結果、反応使用前に還元し、次いで水蒸
気により接触処理した金属酸化物含有触媒は、反
応活性の初期安定性にすぐれ、さらには触媒寿命
の点においてもすぐれていることを見出し、本発
明の方法に到達したものである。 本発明において使用されるフエノール化合物と
は、少なくとも1個の水素原子をオルソ位に有す
るものであり、一般式(1) (式中、R1,R2,R3およびR4は、水素原子数
1〜4の飽和炭化水素基、または非置換もしくは
置換フエニル・ナフチルなどの芳香族炭化水素基
を示す。)で表わされる。例えば、フエノール、
O−・mまたはP−のクレゾール類、2、3−・
2,4−・3,4−または3,5−のキシレノー
ル類、トリメチルフエノール類、テトラメチルフ
エノール、各種のエチルフエノール類、n−・
iso−またはtert−のブチルフエノール類、フエ
ニルフエノール類、ナフチルフエノール類などが
本発明に使用でき、また異種の官能基が芳香族環
に1個以上置換したフエノール化合物を使用でき
る。 本発明に使用されるアルコール類とは、炭素原
子数1〜4の低級アルコールであり、例えばメタ
ノール、エタノール、n−プロパノール、iso−
プロパノール、n−ブタノール、iso−ブタノー
ル、tert−ブタノールなどである。 本発明の方法で用いる金属酸化物含有触媒と
は、酸化アルミニウム含有触媒、酸化マグネシウ
ム含有触媒酸化マンガン含有触媒、酸化クロム含
有触媒、酸化鉄含有触媒おびゼオライト含有触媒
などがあげられる。すなわち、(1)酸化アルミニウ
ム含有触媒とは酸化アルミニウム単独およびそれ
を主成分とし、酸化ケイ素およびアルカリ金属類
を含むものであり、(2)酸化マグネシウム含有触媒
とは、酸化マグネシウムを主成分とし、酸化錫、
酸化マンガン、酸化銅、ランタニド、アクチニ
ド、酸化ビスマスおよび酸化ホウ素から選ばれた
1種または2種以上を含むものであり、(3)酸化マ
ンガン含有触媒とは、酸化マンガンを主成分とし
酸化ケイ素、アルカリ金属類、アルカリ土類金属
類および硫酸根から選ばれた1種もしくは2種以
上を含むものであり、(4)酸化クロム含有触媒とは
酸化クロムを主成分とし、酸化錫、酸化鉄、酸化
マンガン、酸化ケイ素、酸化ホウ素、アルカリ金
属類、アルカリ土類金属類および硫酸根から選ば
れた1種もしくは2種以上を含むものであり、(5)
酸化鉄含有触媒とは、酸化鉄単独およびそれを主
成分とし、酸化ケイ素、酸化クロム、酸化鉛、酸
化マンガン、酸化バナジウム、アルカリ金属類お
よびアルカリ土類金属類から選ばれた1種もしく
は2種以上を含むものであり、(6)ゼオライト含有
触媒とは各種のX型、Y型ゼオライトの中心アニ
オン空隙にプロトン、ランタン、ニツケル、銅、
マンガン、クロム、コバルト、ホウ素、亜鉛、カ
ドミウム、アルカリ金属類およびアルカリ土類金
属類から選ばれた1種以上のカチオンを含むもの
などである。これらの金属酸化物含有触媒のうち
特に酸化マグネシウム含有触媒、酸化マンガン含
有触媒および酸化クロム含有触媒が本発明の方法
において好適である。 本発明に用いる各種酸化物の原料としては、そ
れぞれの金属の酸化物、水酸化物、ハロゲン化
物、各種鉱酸塩、炭酸塩、有機酸塩など通常の化
合物が使用可能である。 触媒の調製方法としては、各種の原料を混合
し、少量の水を添加し、ニーダー、ミクサーなど
で混練させる方法、あるいは各種原料を水溶液と
し、これに塩基性成分を加え、不溶性の沈澱とし
て共沈させる方法、またゼオライト含有触媒の場
合には通常のイオン交換法によつて調製するな
ど、各種の一般的方法が適用可能である。得られ
た触媒組成物は、通常、180℃以下の温度で乾燥
し、結晶セルロース、でんぷん、PVA、MMA
などの適当な造粒添加剤、成形助剤を添加し、押
出し成形、圧縮成形、振動成形、転動成形などの
方法で成形したり、あるいは触媒組成物をそのま
ま破砕して使用してもよい。 本発明の方法に使用される金属酸化物含有触媒
の水蒸気による接触処理は、 触媒組成物の乾燥品を還元性ガス雰囲気下で
焼成した後、水蒸気により接触処理する場合、 空気中あるいは窒素中であらかじめ焼成され
た触媒を、還元性ガス雰囲気下で還元させた
後、水蒸気により接触処理する場合、 の2つの場合があるが、いずれも適用可能であ
る。ここで使用される還元性ガスとは水素、一酸
化炭素、アンモニア、メタノール、エタノール、
メタン、エタン、プロパン、ブタンおよびそれら
の混合ガスがあげられるが、水素、一酸化炭素、
およびこれらの混合ガスがより好ましい。また、
上記還元性ガスを窒素、二酸化炭素、水蒸気など
で希釈して使用しても良い。通常還元処理は100
〜800℃、好ましくは150〜650℃の温度範囲で
の場合0.3〜30時間、の場合0.5〜50時間行なわ
れる。同様にして、反応に使用して活性の低下し
た触媒は、酸素および水蒸気によつて賦活、還元
の後、水蒸気の接触処理を行なうことより、本発
明の方法を達成できる。 本発明の方法における水蒸気の接触処理は、還
元触媒表面の安定化および還元が過剰な触媒の表
面還元度調整に有効である。これにより、いわゆ
る誘導期が大幅に減少し、反応開始時より安定し
た反応が行なえ、触媒寿命も延びる。 本発明の方法を実施する場合、フエノール化合
物とアルコール類の供給モル比率は1:1〜1:
15が適当で1:1〜1:8がより好ましい。原料
の反応系への供給に窒素、二酸化炭素、アルゴン
あるいは、本発明を実施した際に発生するガスを
使用することは、反応を円滑に進行させるのに有
効である。また、反応原料中に水を混入させ、反
応を実施することは触媒寿命およびアルコールの
利用率の点で有利である。 本発明の方法では反応温度は250〜580℃、好ま
しくは300〜530℃の範囲である。 反応系への原料供給は、液空間速度(LHSV)
で0.1〜10が好ましい。 反応は常圧、減圧、加圧いずれの場合でも実施
でき、反応様式も固定床、流動床または移動床い
ずれもが可能であるが、固定床方式が一般的であ
る。 以下、実施例によつて本発明を説明する。 実施例1および比較例1 硝酸クロム9水塩500g、塩化第1錫2水塩50
gおよび硝酸第2鉄9水塩25gを350gの尿素と
共に水5中の溶解させ、ヒーター上で加熱し、
沈澱を生成させた。次に生成した沈澱中に硫酸水
素カリウム1gを加え、一夜放置後、水洗、過
し、170℃で乾燥させた。得られた触媒組成物は
500℃、空気中で5時間焼成し、その後20〜32メ
ツシユの粒径にそろえ2本のガラス製反応管にそ
れぞれ6c.c.ずつ充填し、450℃で10時間、水素と
窒素の比が2:1の混合ガスを導入し、還元処理
を行なつた。一方の反応管(GR−A)にのみ水
蒸気を導入し、触媒の接触処理を行ない、他方の
反応管(GR−B)はそのままで反応に用いた。 フエノールとメタノールのモル比1:5の反応
液を250℃にて加熱気化させた後、390℃に内温を
調節した2本の反応管にそれぞれ1時間当り2.4
g導入し、比較反応を行なつた。 結果は、第1表に示した。 実施例2および比較例2 硝酸マンガン6水塩500g、水ガラス3号12g
を水4中に溶解させ、アンモニア水を加え沈澱
を生成させた。これに硝酸セシウム0.2gを加え、
一夜放置した。それを水洗、過し、170℃で乾
燥させた。得られた触媒を破砕し、20〜32メツシ
ユの粒径にそろえ、2本のガラス製反応管にそれ
ぞれ5c.c.ずつ充填し、450℃で8時間、水素と窒
素の比が2:1の混合ガスを導入し、還元処理を
行なつた。一方の反応器(GR−A)にのみ水蒸
気を導入し、触媒の接触処理を行ない、他方の反
応器(GR−B)はそのままで反応に用いた。 フエノールとメタノールのモル比1:5の反応
液を250℃にて加熱気化させた後、430℃に内温を
調節した2本の反応管にそれぞれ1時間当り2.3
g導入し、比較反応を行なつた。 結果は、第1表に示した。
The present invention selectively alkylates the ortho-position hydrogen atoms of a phenol compound using a metal oxide-containing catalyst that is reduced before use in the reaction and then catalyzed with water vapor to form at least one ortho-alkyl group. The present invention relates to the production of orthoalkylated phenolic compounds having the following properties. Up until now, much research has been carried out on methods for producing orthoalkylated phenolic compounds, especially since 2,6-dimethylphenol is a raw material for producing polyphenylene ether (PPE), a useful plastic. There is. As a method for orthoalkylating phenolic compounds, a method is already known in which a phenol compound and an alcohol are subjected to a gas phase contact reaction using alumina, magnesia, etc. as a catalyst. There are problems such as poor selectivity and too high reaction temperature. In order to solve these problems, various catalyst systems have been disclosed, including those in which various components are added to magnesia, and those in which iron oxide, manganese oxide, etc. are the main components, and other components are added thereto. Both have drawbacks in terms of ortho-position selectivity and catalyst life, and cannot be said to be sufficient catalysts. The present inventors have conducted various studies on this alkylation method and have proposed various effective catalysts. After this, we further investigated these catalyst systems in detail, and found that metal oxide-containing catalysts that were reduced before reaction use and then contact-treated with steam had excellent initial stability of reaction activity, and also showed shortening of catalyst life. The present inventors have discovered that the method of the present invention is also excellent. The phenol compound used in the present invention has at least one hydrogen atom in the ortho position, and has the general formula (1) (In the formula, R 1 , R 2 , R 3 and R 4 represent a saturated hydrocarbon group having 1 to 4 hydrogen atoms, or an aromatic hydrocarbon group such as unsubstituted or substituted phenyl or naphthyl.) It will be done. For example, phenol,
O-・m or P-cresols, 2,3-・
2,4-・3,4- or 3,5-xylenols, trimethylphenols, tetramethylphenols, various ethylphenols, n-・
Iso- or tert-butylphenols, phenylphenols, naphthylphenols, etc. can be used in the present invention, and phenol compounds in which one or more different functional groups are substituted on the aromatic ring can be used. The alcohols used in the present invention are lower alcohols having 1 to 4 carbon atoms, such as methanol, ethanol, n-propanol, iso-
These include propanol, n-butanol, iso-butanol, tert-butanol, and the like. Examples of the metal oxide-containing catalyst used in the method of the present invention include an aluminum oxide-containing catalyst, a magnesium oxide-containing catalyst, a manganese oxide-containing catalyst, a chromium oxide-containing catalyst, an iron oxide-containing catalyst, and a zeolite-containing catalyst. That is, (1) an aluminum oxide-containing catalyst is one that contains aluminum oxide alone or as a main component, and also contains silicon oxide and alkali metals, and (2) a magnesium oxide-containing catalyst is a catalyst that contains magnesium oxide as a main component, tin oxide,
A catalyst containing one or more selected from manganese oxide, copper oxide, lanthanide, actinide, bismuth oxide, and boron oxide. It contains one or more selected from alkali metals, alkaline earth metals, and sulfuric acid radicals, and (4) chromium oxide-containing catalyst is mainly composed of chromium oxide, tin oxide, iron oxide, Contains one or more selected from manganese oxide, silicon oxide, boron oxide, alkali metals, alkaline earth metals, and sulfuric acid radicals, (5)
Iron oxide-containing catalysts include iron oxide alone or iron oxide as a main component, and one or two selected from silicon oxide, chromium oxide, lead oxide, manganese oxide, vanadium oxide, alkali metals, and alkaline earth metals. (6) Zeolite-containing catalysts include protons, lanthanum, nickel, copper,
These include those containing one or more cations selected from manganese, chromium, cobalt, boron, zinc, cadmium, alkali metals, and alkaline earth metals. Among these metal oxide-containing catalysts, magnesium oxide-containing catalysts, manganese oxide-containing catalysts, and chromium oxide-containing catalysts are particularly suitable in the method of the present invention. As raw materials for various oxides used in the present invention, common compounds such as oxides, hydroxides, halides, various mineral acid salts, carbonates, and organic acid salts of the respective metals can be used. The catalyst can be prepared by mixing various raw materials, adding a small amount of water, and kneading with a kneader or mixer, or by making various raw materials into an aqueous solution, adding a basic component to this, and coagulating it as an insoluble precipitate. Various general methods can be applied, such as precipitation and, in the case of zeolite-containing catalysts, preparation by conventional ion exchange methods. The resulting catalyst composition is typically dried at a temperature below 180°C, and the resulting catalyst composition is dried at a temperature of 180°C or lower, and is then dried to form a crystalline cellulose, starch, PVA, MMA
The catalyst composition may be used by adding appropriate granulation additives and forming aids and molding by methods such as extrusion molding, compression molding, vibration molding, and rolling molding, or by crushing the catalyst composition as it is. . The contact treatment with water vapor of the metal oxide-containing catalyst used in the method of the present invention is carried out in the following manner: When the dry product of the catalyst composition is calcined in a reducing gas atmosphere and then the contact treatment is carried out with water vapor, it is carried out in air or in nitrogen. When a pre-calcined catalyst is reduced in a reducing gas atmosphere and then subjected to contact treatment with steam, there are two cases, both of which are applicable. The reducing gases used here are hydrogen, carbon monoxide, ammonia, methanol, ethanol,
Methane, ethane, propane, butane and their mixtures include hydrogen, carbon monoxide,
and mixed gases thereof are more preferred. Also,
The above-mentioned reducing gas may be diluted with nitrogen, carbon dioxide, water vapor, etc. before use. Normal reduction processing is 100
-800°C, preferably 150-650°C for 0.3-30 hours, and for 0.5-50 hours. Similarly, the method of the present invention can be achieved by activating and reducing a catalyst used in the reaction with reduced activity using oxygen and steam, and then subjecting it to contact treatment with steam. The contact treatment with steam in the method of the present invention is effective for stabilizing the surface of the reduced catalyst and adjusting the degree of surface reduction of a catalyst that is excessively reduced. As a result, the so-called induction period is significantly reduced, the reaction becomes more stable from the start of the reaction, and the life of the catalyst is extended. When carrying out the method of the present invention, the molar ratio of the phenol compound and alcohol to be supplied is 1:1 to 1:
15 is suitable, and 1:1 to 1:8 is more preferable. It is effective to use nitrogen, carbon dioxide, argon, or the gas generated when carrying out the present invention to supply the raw materials to the reaction system in order to make the reaction proceed smoothly. Furthermore, carrying out the reaction by mixing water into the reaction raw materials is advantageous in terms of catalyst life and alcohol utilization. In the method of the invention, the reaction temperature is in the range of 250-580°C, preferably 300-530°C. The raw material supply to the reaction system is based on liquid hourly space velocity (LHSV).
and preferably 0.1 to 10. The reaction can be carried out under normal pressure, reduced pressure, or increased pressure, and the reaction mode can be fixed bed, fluidized bed, or moving bed, although the fixed bed method is common. The present invention will be explained below with reference to Examples. Example 1 and Comparative Example 1 Chromium nitrate nonahydrate 500g, stannous chloride dihydrate 50g
g and 25 g of ferric nitrate nonahydrate are dissolved in water 5 with 350 g of urea and heated on a heater,
A precipitate formed. Next, 1 g of potassium hydrogen sulfate was added to the formed precipitate, and after being left overnight, it was washed with water, filtered, and dried at 170°C. The resulting catalyst composition is
Calcinate in air at 500℃ for 5 hours, then adjust the particle size to 20 to 32 mesh, fill two glass reaction tubes with 6 c.c. each, and heat at 450℃ for 10 hours until the ratio of hydrogen and nitrogen is adjusted. A 2:1 mixed gas was introduced to carry out the reduction treatment. Steam was introduced into only one reaction tube (GR-A) to perform catalyst contact treatment, and the other reaction tube (GR-B) was used for the reaction as it was. A reaction solution with a molar ratio of phenol and methanol of 1:5 was heated and vaporized at 250°C, and then placed in two reaction tubes whose internal temperature was adjusted to 390°C at 2.4 molar ratios per hour.
g was introduced and a comparative reaction was performed. The results are shown in Table 1. Example 2 and Comparative Example 2 Manganese nitrate hexahydrate 500g, water glass No. 3 12g
was dissolved in water 4, and aqueous ammonia was added to form a precipitate. Add 0.2g of cesium nitrate to this,
I left it overnight. It was washed with water, filtered and dried at 170°C. The obtained catalyst was crushed to have a particle size of 20 to 32 meshes, and 5 c.c. each was filled into two glass reaction tubes, and the mixture was heated at 450°C for 8 hours at a hydrogen:nitrogen ratio of 2:1. A mixed gas of Steam was introduced into only one reactor (GR-A) to carry out catalyst contact treatment, and the other reactor (GR-B) was used as it was for the reaction. A reaction solution with a molar ratio of phenol and methanol of 1:5 was heated and vaporized at 250°C, and then placed in two reaction tubes whose internal temperature was adjusted to 430°C at 2.3 molar ratios per hour.
g was introduced and a comparative reaction was performed. The results are shown in Table 1.

【表】 実施例3および比較例3 硝酸マグネシウム400g、塩化第1錫2水塩60
gを水3中に溶解させ、アンモニア水を加え沈
澱を生成させた。これに硝酸ルビジウム0.1gを
加え、一夜放置した。それを水洗、過し、170
℃で乾燥させる。得られた触媒を破砕し、20〜32
メツシユの粒径にそろえ、2本のガラス製反応管
にそれぞれ6c.c.ずつ充填し、550℃で8時間、水
素と窒素の比が2:1の混合ガスを導入し、還元
処理を行なつた。一方の反応器(GR−A)にの
み水蒸気を導入し、触媒の接触処理を行ない、他
方の反応器(GR−B)はそのままで反応に用い
た。 フエノールとエタノールのモル比1:10の反応
液を250℃にて加熱気化させた後、440℃に内温を
調節した2本の反応管にそれぞれ1時間当り1.5
g導入し、比較反応を行なつた。 結果は、第2表に示した。
[Table] Example 3 and Comparative Example 3 Magnesium nitrate 400g, stannous chloride dihydrate 60g
g was dissolved in water 3, and aqueous ammonia was added to form a precipitate. 0.1 g of rubidium nitrate was added to this and left overnight. Wash it, strain it, 170
Dry at °C. Crush the resulting catalyst, 20-32
The particle size of the mesh was adjusted, and 6 c.c. each was filled into two glass reaction tubes, and a mixed gas of hydrogen and nitrogen with a ratio of 2:1 was introduced at 550℃ for 8 hours to perform the reduction treatment. Summer. Steam was introduced into only one reactor (GR-A) to carry out catalyst contact treatment, and the other reactor (GR-B) was used as it was for the reaction. A reaction solution with a molar ratio of phenol and ethanol of 1:10 was heated and vaporized at 250°C, and then placed in two reaction tubes whose internal temperature was adjusted to 440°C at a rate of 1.5 per hour.
g was introduced and a comparative reaction was performed. The results are shown in Table 2.

【表】 実施例4および比較例4 硝酸クロム9水塩500g、塩化第1錫2水塩25
g、硝酸アルミニウム10gおよび硫酸水溶液
(3.6N)10c.c.を水3中に溶解させ、アンモニア
水(10%)を加え沈澱を生成させた。この沈澱を
水洗、過後、170℃で乾燥させた。得られた触
媒組成物は500℃、窒素中で5時間焼成し、その
後、20〜32メツシユの粒径にそろえ2本のガラス
製反応管にそれぞれ4c.c.ずつ充填し、420℃で10
時間、水素を導入し、還元処理を行なつた。一方
の反応管(GR−A)にのみ水蒸気を導入し、触
媒の接触処理を行ない、他方の反応管(GR−
B)はそのままで反応に用いた。 m−クレゾールとメタノールのモル比1:8の
反応液を250℃にて加熱気化させた後、390℃に内
温を調節した2本の反応管にそれぞれ1時間当り
2.4g導入し、比較反応を行なつた。結果は、第
3表に示した。
[Table] Example 4 and Comparative Example 4 Chromium nitrate nonahydrate 500g, stannous chloride dihydrate 25g
g, 10 g of aluminum nitrate and 10 c.c. of an aqueous sulfuric acid solution (3.6N) were dissolved in 3 ml of water, and aqueous ammonia (10%) was added to form a precipitate. This precipitate was washed with water, filtered, and dried at 170°C. The obtained catalyst composition was calcined at 500°C in nitrogen for 5 hours, and then the particle size was adjusted to 20 to 32 meshes, and 4 c.c. each was packed into two glass reaction tubes, and heated at 420°C for 10 hours.
Hydrogen was introduced for a period of time to perform reduction treatment. Steam is introduced into only one reaction tube (GR-A) to perform catalyst contact treatment, and the other reaction tube (GR-A) is
B) was used as is in the reaction. A reaction solution of m-cresol and methanol in a molar ratio of 1:8 was heated and vaporized at 250°C, and then poured into two reaction tubes whose internal temperature was adjusted to 390°C for 1 hour.
2.4g was introduced and a comparative reaction was carried out. The results are shown in Table 3.

【表】【table】

Claims (1)

【特許請求の範囲】 1 オルソ位に少なくとも1個以上の水素原子を
有するフエノール化合物と、アルコール類を気相
接触反応させオルソアルキル化フエノール化合物
を製造するに際し、酸化マグネシウム含有触媒を
還元し、次いで水蒸気により前処理して用いるこ
とを特徴とするフエノール化合物の選択的オルソ
アルキル化物製造法。 2 オルソ位に少なくとも1個以上の水素原子を
有するフエノール化合物と、アルコール類を気相
接触反応させオルソアルキル化フエノール化合物
を製造するに際し、酸化マンガン含有触媒を還元
し、次いで水蒸気により前処理して用いることを
特徴とするフエノール化合物の選択的オルソアル
キル化物製造法。 3 オルソ位に少なくとも1個以上の水素原子を
有するフエノール化合物と、アルコール類を気相
接触反応させオルソアルキル化フエノール化合物
を製造するに際し、酸化クロム含有触媒を還元
し、次いで水蒸気により前処理して用いることを
特徴とするフエノール化合物の選択的オルソアル
キル化物製造法。
[Scope of Claims] 1. When producing an ortho-alkylated phenol compound by subjecting a phenol compound having at least one hydrogen atom at the ortho position to a gas-phase catalytic reaction with an alcohol, a magnesium oxide-containing catalyst is reduced, and then a magnesium oxide-containing catalyst is reduced; 1. A method for producing a selective orthoalkylated phenol compound, characterized in that it is used after being pretreated with water vapor. 2. When producing an ortho-alkylated phenol compound by subjecting a phenol compound having at least one or more hydrogen atom at the ortho position to a gas phase contact reaction with an alcohol, the manganese oxide-containing catalyst is reduced, and then pretreated with steam. 1. A method for producing a selective orthoalkylated phenol compound. 3. When producing an ortho-alkylated phenol compound by subjecting a phenol compound having at least one or more hydrogen atom at the ortho position to a vapor phase catalytic reaction with an alcohol, the chromium oxide-containing catalyst is reduced, and then pretreated with steam. 1. A method for producing a selective orthoalkylated phenol compound.
JP13868979A 1979-10-29 1979-10-29 Preparation of selectively ortho-alkylated phenol compound Granted JPS5663932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13868979A JPS5663932A (en) 1979-10-29 1979-10-29 Preparation of selectively ortho-alkylated phenol compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13868979A JPS5663932A (en) 1979-10-29 1979-10-29 Preparation of selectively ortho-alkylated phenol compound

Publications (2)

Publication Number Publication Date
JPS5663932A JPS5663932A (en) 1981-05-30
JPS6361931B2 true JPS6361931B2 (en) 1988-11-30

Family

ID=15227805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13868979A Granted JPS5663932A (en) 1979-10-29 1979-10-29 Preparation of selectively ortho-alkylated phenol compound

Country Status (1)

Country Link
JP (1) JPS5663932A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024677U (en) * 1988-06-23 1990-01-12
JPH0253167U (en) * 1988-10-03 1990-04-17
JPH0379876U (en) * 1989-12-05 1991-08-15

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02108646A (en) * 1988-10-19 1990-04-20 Sanko Kagaku Kk Production of 2,6-dimethyl-4-phenylphenol
US4933509A (en) * 1989-04-28 1990-06-12 General Electric Company Method of ortho-alkylating phenol

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2678951A (en) * 1951-12-26 1954-05-18 Shell Dev Alkylation of phenols
US3855318A (en) * 1970-12-11 1974-12-17 Asahi Chemical Ind Selective methylation of phenols
JPS5183090A (en) * 1974-11-25 1976-07-21 Gen Electric
US4041085A (en) * 1969-08-22 1977-08-09 General Electric Company Ortho-alkylation of phenols

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2678951A (en) * 1951-12-26 1954-05-18 Shell Dev Alkylation of phenols
US4041085A (en) * 1969-08-22 1977-08-09 General Electric Company Ortho-alkylation of phenols
US3855318A (en) * 1970-12-11 1974-12-17 Asahi Chemical Ind Selective methylation of phenols
JPS5183090A (en) * 1974-11-25 1976-07-21 Gen Electric

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024677U (en) * 1988-06-23 1990-01-12
JPH0253167U (en) * 1988-10-03 1990-04-17
JPH0379876U (en) * 1989-12-05 1991-08-15

Also Published As

Publication number Publication date
JPS5663932A (en) 1981-05-30

Similar Documents

Publication Publication Date Title
JPS59120243A (en) Catalyst and method for dehydrogenation of para-ethyltoluene
JPS5918374B2 (en) Selective method for producing ortho-alkylated phenols using anisole as a starting material
JP2008132467A (en) Method of producing catalyst used for synthesizing dimethyl ether from synthesis gas containing carbon dioxide
US4227023A (en) Process for the selective ortho-alkylation of phenolic compounds
JP2805878B2 (en) Orthoalkylation method
JP2003507180A (en) Fluidized bed catalyst for the ammoxidation of propylene to acrylonitrile.
US4208537A (en) Process for the selective ortho-alkylation of phenolic compounds
JP2002511017A (en) Use of Ce / Zr mixed oxide phase for the production of styrene by dehydrogenation of ethylbenzene
JPH089556B2 (en) Dehydrogenation catalysts, their production and non-oxidative dehydrogenation
JPS6352612B2 (en)
JPS6361931B2 (en)
JPS6123175B2 (en)
JPS599530B2 (en) Method for producing ortho-alkylated phenols
JPH0158170B2 (en)
JP7039817B2 (en) Manufacturing method of metal composite catalyst and metal composite catalyst manufactured by this method
JPS6343372B2 (en)
JPS6316367B2 (en)
JPS6331451B2 (en)
JP3752531B2 (en) Catalyst for ethylbenzene dehydrogenation in the presence of carbon dioxide
JPS60257837A (en) Catalyst for decomposing/reforming methanol and its preparation
JPH0456015B2 (en)
JPS6136732B2 (en)
JP3444909B2 (en) Method for producing ortho-alkylated phenol compound
JPS60137437A (en) Manufacture of alkylated catalyst
JPH0419984B2 (en)