JPS5845494A - Method of heat exchange in latent heat type heat accumulating tank - Google Patents

Method of heat exchange in latent heat type heat accumulating tank

Info

Publication number
JPS5845494A
JPS5845494A JP56143683A JP14368381A JPS5845494A JP S5845494 A JPS5845494 A JP S5845494A JP 56143683 A JP56143683 A JP 56143683A JP 14368381 A JP14368381 A JP 14368381A JP S5845494 A JPS5845494 A JP S5845494A
Authority
JP
Japan
Prior art keywords
heat
liquid
heat storage
storage material
antifreeze
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56143683A
Other languages
Japanese (ja)
Inventor
Kazuo Yamashita
山下 和夫
Takahito Ishii
隆仁 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56143683A priority Critical patent/JPS5845494A/en
Publication of JPS5845494A publication Critical patent/JPS5845494A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/025Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being in direct contact with a heat-exchange medium or with another heat storage material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Heating Systems (AREA)

Abstract

PURPOSE:To effect heat exchange with an external material efficiently by a method wherein the heat of a heat accumulating material is transmitted to an antifreezing liquid through an operating liquid and the heat exchange is effected by the antifreezing liquid. CONSTITUTION:The vapor of the operating liquid becomes bubbles 8 and ascends through the heat accumulating material 2 while the molten heat accumulating material 2 is mixed and the temperature distribution thereof is unified. The vapor of the operating liquid arrives at the antifreezing liquid and gives the heat thereof to the antifreezing liquid 4 or the heat transmitting surface of a heat exchanger thereby being condensed and liquidized. The specific gravity of the liquidized operating liquid 3 is larger than the sames of the antifreezing liquid and the heat accumulating material 2, therefore, it sinks through these materials. Thus, the heat of the heat accumulating material is transmitted to the antifreezing liquid 4 effectively by the evaporation-condensation cycle of the operating liquid 3 and, further, the heat exchange is effected in the antifreezing liquid 4 (liquid) by the heat exchanger, therefore, a very efficient heat exchange system may be obtained.

Description

【発明の詳細な説明】 本発明は潜熱形蓄熱槽の一部に蓄熱材と非反応性で非相
溶性の作動液と不凍液を少量加え、この作動液の蒸発−
凝縮サイクルを利用することにより蓄熱材の潜熱を不凍
液に伝熱し、この不凍液中にもうけた熱交換器により効
率よく外部との熱交換をする方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention involves adding a small amount of working fluid and antifreeze that are non-reactive and immiscible with the heat storage material to a part of the latent heat type heat storage tank, and then evaporating the working fluid.
The present invention relates to a method of transferring latent heat of a heat storage material to an antifreeze liquid by utilizing a condensation cycle, and efficiently exchanging heat with the outside using a heat exchanger provided in the antifreeze liquid.

第1図は従来の蓄熱槽の一例である。その構成は主に蓄
熱槽100に蓄熱材110と熱父侠命120とより成っ
ている。第1図において熱交換器120に冷水が流入す
ると蓄熱材より潜熱を奪い温水として流出する。しかし
、このような潜熱形蓄熱槽の問題点の一つとして下記の
ことがある。
FIG. 1 is an example of a conventional heat storage tank. The structure mainly includes a heat storage tank 100, a heat storage material 110, and a heat exchanger 120. In FIG. 1, when cold water flows into the heat exchanger 120, it absorbs latent heat from the heat storage material and flows out as hot water. However, one of the problems with such a latent heat type heat storage tank is as follows.

すなわち、潜熱を利用した蓄熱材としては無機塩類、有
機物あるいはパラフィンが用いられているが、いずれの
場合にも問題点の一つとして固相における熱伝達が悪い
ため一定温度の熱を短時間に取り出せないということで
ある。すなわち溶融状態では対流により蓄熱材中の温度
ははソ均一になっているが、いったん凝固し始めると固
体の熱伝達が悪いため熱交換器近辺の蓄熱材温度は急激
に低下する。これは伝熱面から離れた部分の蓄熱材から
熱の伝わってくる速度よりも、熱交換器伝熱面から熱を
取る速度の方が速いためである。熱が伝わってこなけれ
ば伝熱面付近の蓄熱材の温度降下により熱を補給するし
かないためである。すなわち伝熱面のごく近傍では蓄熱
材はその潜熱を放 −出し固化する。固化すると熱伝導
度が悪いため、固化した蓄熱材近傍にある溶融蓄熱材の
熱を伝熱面に伝えにくい。したがって蓄熱材は伝熱面近
傍では固相であり、すこし離れだ所では液相のま\であ
る。したがってこの液相の潜熱も有効に利用するために
は長時間を必要とする。
In other words, inorganic salts, organic substances, or paraffin are used as heat storage materials that utilize latent heat, but in any case, one of the problems is that heat transfer in the solid phase is poor, so it is difficult to store heat at a constant temperature in a short period of time. This means that it cannot be taken out. In other words, in the molten state, the temperature in the heat storage material is kept uniform due to convection, but once it begins to solidify, the temperature of the heat storage material near the heat exchanger drops rapidly due to poor heat transfer in the solid. This is because the rate at which heat is taken from the heat transfer surface of the heat exchanger is faster than the rate at which heat is transferred from the heat storage material in the portion away from the heat transfer surface. This is because if heat is not transferred, the only way to replenish the heat is by reducing the temperature of the heat storage material near the heat transfer surface. In other words, in the close vicinity of the heat transfer surface, the heat storage material releases its latent heat and solidifies. When solidified, thermal conductivity is poor, making it difficult to transfer heat from the molten heat storage material near the solidified heat storage material to the heat transfer surface. Therefore, the heat storage material is in a solid phase near the heat transfer surface, and remains in a liquid phase at a distance. Therefore, it takes a long time to effectively utilize the latent heat of the liquid phase.

実際の使用にあたっては上記現象が生じないようにする
ため種々の工夫がなされている。例えば伝熱管にフィン
をつけ伝熱面の距離を短かくしたり、熱交換面積を増加
させ0たりする二また、蓄熱材を細長い筒に封入し実質
的に単位体積当りの表面積を増やし、これ等の筒を一つ
のブロックとして蓄熱槽を構成したりする方法等が行な
われているが上記問題を実質的に解決するまでに至って
いない。
In actual use, various measures have been taken to prevent the above phenomenon from occurring. For example, by adding fins to heat transfer tubes to shorten the distance between the heat transfer surfaces, or by increasing the heat exchange area. Although methods such as constructing a heat storage tank using the cylinder as one block have been carried out, the above problem has not been substantially solved.

本発明は上記問題点を解決し熱交換を効率よく行う方法
を提供したものである。
The present invention solves the above problems and provides a method for efficiently exchanging heat.

第2図は本発明の方法により熱交換をおこなう潜熱形蓄
熱槽の一例を示したものである。第2図において蓄熱槽
IK蓄熱材2と溶融状態における蓄熱材の比重より比重
が大きい作動液3および浴融状態における蓄熱材の比重
より小さい不凍液4(少なくとも蓄熱材より熱を取り出
すとき固化しない)が封入されており、さらに外部に熱
を取り出すための熱交換器6から構成されている。6゜
7は熱を取り出すだめの配管である。ここにおいて蓄熱
材2作動液および不凍液はそれぞれに対し非反応性で非
相溶性である。
FIG. 2 shows an example of a latent heat type heat storage tank that performs heat exchange by the method of the present invention. In Fig. 2, a heat storage tank IK heat storage material 2, a working fluid 3 whose specific gravity is larger than the specific gravity of the heat storage material in the molten state, and an antifreeze liquid 4 whose specific gravity is smaller than the specific gravity of the heat storage material in the bath molten state (at least it does not solidify when heat is extracted from the heat storage material) It is further comprised of a heat exchanger 6 for extracting heat to the outside. 6°7 is a pipe for extracting heat. Here, the heat storage material 2 working fluid and antifreeze are non-reactive and immiscible with each other.

蓄熱材が溶融状態にある時、槽内は液相として作動液、
蓄熱材および不凍液、気相として不凍液の温度に等しい
作動液の蒸気圧で平衡状態にある。 □なお、気相は作
動液の蒸発−凝縮が行なわれやすいようにするため、非
凝縮性の気体は排除した方が好ましい。また、不凍液の
蒸気圧は低い方が好ましい。今、配管6より低温の熱媒
体が流入し不凍液との間で熱交換がおこなわれると、不
凍液の温度が低下する。すると作動液蒸気が蓄熱槽下部
、より上昇し、温度低下を補う、これは連続して行なわ
れるので不凍液の実効的な温度降下はみられない。すな
わち作動液蒸気は気泡8となって蓄熱材中を上昇し、溶
融蓄熱材を攪拌しその温度分布をはソ均一にする。作動
液蒸気は不凍液に至り、不凍液あるいは熱交換器伝熱面
に熱を与え凝縮液化する。液化した作動液は不凍液およ
び蓄熱材より比重が大きいためこれらの中を沈降してい
く。
When the heat storage material is in a molten state, the working fluid in the tank is in the liquid phase.
The heat storage material and the antifreeze are in equilibrium as a gas phase with the vapor pressure of the working fluid equal to the temperature of the antifreeze. □In order to facilitate evaporation and condensation of the working fluid in the gas phase, it is preferable to exclude non-condensable gases. Further, it is preferable that the vapor pressure of the antifreeze liquid is low. Now, when a low-temperature heat medium flows into the pipe 6 and exchanges heat with the antifreeze, the temperature of the antifreeze drops. Then, the working fluid vapor rises further in the lower part of the heat storage tank to compensate for the temperature drop. Since this is done continuously, there is no effective temperature drop of the antifreeze fluid. That is, the working fluid vapor becomes bubbles 8 and rises in the heat storage material, stirring the molten heat storage material and making its temperature distribution uniform. The working liquid vapor reaches the antifreeze liquid, gives heat to the antifreeze liquid or the heat transfer surface of the heat exchanger, and condenses into liquid. The liquefied working fluid has a higher specific gravity than the antifreeze fluid and the heat storage material, so it settles in them.

この時一部は蓄熱材より熱を奪い再び気化し、その蒸気
は気泡となって上昇する。他の一部は蓄熱槽底面に沈降
し作動液3溜りを形成子る、この作動液は周囲より熱を
奪い再び気化し気泡となって上昇し熱交換器に至る。一
方配管より流入した低温熱媒体は熱交換器で熱を受は高
温熱媒体となって配管6より流出する。このように作動
液の蒸発−凝縮サイクルにより蓄熱材の熱を有効に不凍
液に伝熱しさらに不凍液(液体)中で熱交換器により熱
交換を行うので非常に効率よい熱交換システムとなる。
At this time, some of it absorbs heat from the heat storage material and vaporizes again, and the vapor rises in the form of bubbles. The other part settles to the bottom of the heat storage tank and forms three pools of working fluid. This working fluid absorbs heat from the surroundings, vaporizes again, and rises in the form of bubbles to reach the heat exchanger. On the other hand, the low-temperature heat medium flowing in from the pipe receives heat in the heat exchanger, becomes a high-temperature heat medium, and flows out from the pipe 6. In this way, the heat of the heat storage material is effectively transferred to the antifreeze liquid through the evaporation-condensation cycle of the working fluid, and the heat exchanger performs heat exchange within the antifreeze liquid (liquid), resulting in a very efficient heat exchange system.

上記説明でわかるように作動液の量は蒸発−凝縮サイク
ルで熱伝達を行うに足る量であればよいので少量でよく
、また、不凍液量も熱交換器を覆うだけの量があれば充
分なので、蓄熱槽全体に占める比率は小さくてすむ。
As you can see from the above explanation, the amount of working fluid only needs to be small enough to transfer heat in the evaporation-condensation cycle, and the amount of antifreeze is sufficient as long as it covers the heat exchanger. , the proportion of the entire heat storage tank can be small.

捷だ、蓄熱する場合は蓄熱槽全体を加熱したり、適当な
熱交換器を介して加熱したり、通常の加熱方法と同様で
よいっ 本発明の方法によると下記のごとき利点がある。
However, when storing heat, it is sufficient to heat the entire heat storage tank or heat it through a suitable heat exchanger, or the same as a normal heating method.The method of the present invention has the following advantages.

(1)熱交換が液相で行なわれているため、熱交換器の
伝熱面周囲−に熱伝達の悪い固相部分を生じないため、
熱交換が容易にかつ迅速に行なわれる。、 ゛(2)蓄熱材中を作動液の蒸気が気泡となって通過す
るため、蓄熱材がこの気泡により攪拌され、蓄熱材の温
度分布がはシ一様となりある特定の箇所、しザ凝固が行
らない。また、凝固した蓄熱り攪拌されているので細か
い結晶となり蓄熱槽の下部に堆積していく。すなわち、
潜熱を放出した蓄熱材は順次下部に沈降する。したがっ
て蓄熱材全体の潜熱を有効に利用することができる。
(1) Since heat exchange is performed in the liquid phase, there is no solid phase area with poor heat transfer around the heat transfer surface of the heat exchanger.
Heat exchange takes place easily and quickly. , ゛(2) As the vapor of the working fluid passes through the heat storage material in the form of bubbles, the heat storage material is stirred by the bubbles, and the temperature distribution of the heat storage material becomes uniform, causing solidification at certain specific points. doesn't go. Also, since the solidified heat is stirred, it becomes fine crystals and accumulates at the bottom of the heat storage tank. That is,
The heat storage material that has released latent heat gradually settles to the bottom. Therefore, the latent heat of the entire heat storage material can be effectively utilized.

(3)  蓄熱材が凝固しても作動液および不凍液は凝
固しない。特に、作動液の気化による径路力;凝固した
蓄熱材中に連続気泡の形で存在するためこの径路を通過
する作動液の蒸気により不凍液の顕熱のみならず、蓄熱
材の顕熱をも利用できる。
(3) Even if the heat storage material solidifies, the hydraulic fluid and antifreeze do not solidify. In particular, path force due to vaporization of the working fluid; since it exists in the form of open cells in the solidified heat storage material, the vapor of the working fluid passing through this path utilizes not only the sensible heat of the antifreeze fluid but also the sensible heat of the heat storage material. can.

以上のように本発明の方法によれ゛ば、蓄熱材の熱量を
効率よく取り出すことができる。以下、一実施例につき
説明する。
As described above, according to the method of the present invention, the amount of heat from the heat storage material can be extracted efficiently. An example will be described below.

酢酸ナトリウム3水塩(N a CH−C00・3 H
20)に作動液としてフロンR−113.不凍液として
7リコーンオイルとを封入し、空気等の非凝縮性ガスを
排出する。これらは夫々おたがいに非相溶性で非反応性
である。酢酸ナトリウム3水塩の融点68℃における密
度は、酢酸ナトリウム3水塩1.34.フロンR−11
31,48およびシリコーンオイル1.1である。従っ
て全くの静止状態では下部よりフロンR−113.酢酸
ナトリウム3水塩′溶液、不凍液の順に液相は構成され
ることになる。
Sodium acetate trihydrate (N a CH-C00・3H
20) with Freon R-113 as the hydraulic fluid. 7 silicone oil is filled as antifreeze, and non-condensable gases such as air are discharged. These are mutually incompatible and non-reactive. The density of sodium acetate trihydrate at the melting point of 68°C is 1.34. Freon R-11
31,48 and silicone oil 1.1. Therefore, in a completely stationary state, Freon R-113. The liquid phase is composed of the sodium acetate trihydrate solution and the antifreeze solution in this order.

そして不凍液のなかに熱交換器を設置する。したがって
熱交換は液体中で行なわれるので非常に効率のよいもの
となる。
A heat exchanger is then installed inside the antifreeze. Therefore, heat exchange takes place in the liquid, making it very efficient.

蓄熱材に蓄熱された状態で熱交換器に冷水を流すと伝熱
面で不凍液との間に熱交換が行なわれ不凍液の温度が低
下する。フロンR−113の蒸気は不凍液と接し1凝縮
し、その熱を不凍液に与え凝縮液となり滴下する。フロ
ンR−113の液体密度は他の液体に比べ大きいため、
蓄熱材中を沈降していく。沈降しながら酢酸ナトリウム
より熱を奪い一部は蒸発し、一部は沈降し底面に達し、
こ\で熱を奪い再蒸発していく。この蒸発の過程で作動
液は気泡となって蓄熱材中を上昇していくため、蓄熱材
全体を混合攪拌する。一方酢酸ナトリウム3水塩溶液は
フロンR−113に潜熱を放出し凝固する。この過程で
上記で説明したごとく蓄熱材は作動流体の気泡ではげし
く攪拌されているため特定の一部より凝固するのでなく
、酢酸す・トリウムの細かい結晶が溶液中に分散する形
となる。
When cold water is flowed through the heat exchanger with heat stored in the heat storage material, heat is exchanged with the antifreeze liquid on the heat transfer surface, and the temperature of the antifreeze liquid decreases. The vapor of Freon R-113 condenses when it comes into contact with the antifreeze, gives its heat to the antifreeze, and becomes a condensed liquid that drips. Since the liquid density of Freon R-113 is higher than other liquids,
It settles in the heat storage material. As it sinks, it absorbs heat from the sodium acetate and some of it evaporates, while some of it settles and reaches the bottom.
This absorbs heat and evaporates again. During this evaporation process, the working fluid becomes bubbles and rises in the heat storage material, so that the entire heat storage material is mixed and stirred. On the other hand, the sodium acetate trihydrate solution emits latent heat to Freon R-113 and solidifies. During this process, as explained above, the heat storage material is vigorously agitated by the bubbles of the working fluid, so it does not solidify from a specific part, but instead becomes a form in which fine crystals of thorium acetate are dispersed in the solution.

この酢酸ナトリウム3水塩の細かい結晶の密度はその溶
液の密度より大きいため沈降し順次゛蓄熱槽の底面に堆
積されてくる。したがって蓄熱材溶液と不凍液とは液相
同志で接していることになり、作動液を媒介として容易
に熱交換を行なうことができる。このようにして酢酸ナ
トリウム3水塩の潜熱を完全に利用することができる。
Since the density of the fine crystals of sodium acetate trihydrate is greater than the density of the solution, they settle and are successively deposited on the bottom of the heat storage tank. Therefore, the heat storage material solution and the antifreeze are in contact with each other in liquid phase, and heat exchange can be easily performed using the working fluid as a medium. In this way, the latent heat of sodium acetate trihydrate can be fully utilized.

酢酸ナトリウムが完全に固化した後も、その固化の過程
で作動液蒸気が通過する径路が形成されるため、この径
路を通して同化後の顕熱をも有効に利用することができ
る。
Even after the sodium acetate is completely solidified, a path is formed through which the working fluid vapor passes during the solidification process, so that the sensible heat after assimilation can also be effectively utilized through this path.

以上、本発明の熱交換方法によれば非常に容易に潜熱形
蓄熱材の潜熱および顕熱を取り出すこと−ができるため
、本発明あ方法を潜熱形蓄熱槽に応用すると小形で簡単
な蓄熱槽を得ることができる。
As described above, according to the heat exchange method of the present invention, it is possible to extract latent heat and sensible heat from the latent heat type heat storage material very easily. Therefore, when the method of the present invention is applied to a latent heat type heat storage tank, a small and simple heat storage tank can be obtained. can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の蓄熱槽を示す断面図、第2図は本発明の
詳細な説明するだめの蓄熱槽の断面図である。 1・・・・・蓄熱槽、2・・・・・・蓄熱材、3・・・
・・・作動液、4・・・・・・不一液1.5・・・・・
・熱交換器。 代理人の昏名゛、弁理士 中 尾 敏 男 ほか・1名
第1図
FIG. 1 is a cross-sectional view showing a conventional heat storage tank, and FIG. 2 is a cross-sectional view of a heat storage tank that does not explain the present invention in detail. 1... Heat storage tank, 2... Heat storage material, 3...
...Hydraulic fluid, 4...Fuichi fluid 1.5...
·Heat exchanger. Agent Tomina, patent attorney Toshio Nakao, and one other person Figure 1

Claims (1)

【特許請求の範囲】[Claims] 潜熱形蓄熱材を用いた蓄熱槽に少なくとも蓄熱材と、こ
の蓄熱材の溶融状態における比重よりも大きい比重を有
する作動液と、上記蓄熱材の溶融状態における比重より
も小さい比重を有する不凍液とより構成され、この作動
液により蓄熱材の熱を不凍液に伝熱し、この不凍液にて
熱交換を行なう潜熱形蓄熱譚の熱交換方法。
A heat storage tank using a latent heat type heat storage material includes at least a heat storage material, a working fluid having a specific gravity larger than the specific gravity of the heat storage material in a molten state, and an antifreeze liquid having a specific gravity smaller than the specific gravity of the heat storage material in a molten state. A latent heat type heat storage heat exchange method in which heat from a heat storage material is transferred to an antifreeze liquid using the working fluid, and heat exchange is performed using the antifreeze liquid.
JP56143683A 1981-09-10 1981-09-10 Method of heat exchange in latent heat type heat accumulating tank Pending JPS5845494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56143683A JPS5845494A (en) 1981-09-10 1981-09-10 Method of heat exchange in latent heat type heat accumulating tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56143683A JPS5845494A (en) 1981-09-10 1981-09-10 Method of heat exchange in latent heat type heat accumulating tank

Publications (1)

Publication Number Publication Date
JPS5845494A true JPS5845494A (en) 1983-03-16

Family

ID=15344513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56143683A Pending JPS5845494A (en) 1981-09-10 1981-09-10 Method of heat exchange in latent heat type heat accumulating tank

Country Status (1)

Country Link
JP (1) JPS5845494A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5514426A (en) * 1978-07-17 1980-01-31 Hitachi Ltd Heat accumulator
JPS5592889A (en) * 1979-01-08 1980-07-14 Hitachi Ltd Heat accumulator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5514426A (en) * 1978-07-17 1980-01-31 Hitachi Ltd Heat accumulator
JPS5592889A (en) * 1979-01-08 1980-07-14 Hitachi Ltd Heat accumulator

Similar Documents

Publication Publication Date Title
SE408955B (en) PROCEDURE AND DEVICE FOR STORING HEAT ENERGY
JPS5818598B2 (en) Method of receiving or dissipating heat from a heat storage device
JPS5845494A (en) Method of heat exchange in latent heat type heat accumulating tank
JPH0210358B2 (en)
Tayeb Organic-inorganic mixtures for solar energy storage systems
JPH0245114B2 (en)
JPS58127047A (en) Heat regenerative type hot water supply system
JPS5843394A (en) Heat exchange method of latent heat type heat accumulator
US4993486A (en) Heat transfer loop with cold trap
JPS5849850A (en) Water heater utilizing latent heat type heat accumulating material
JPS61173085A (en) Latent heat storage device
JPS58106393A (en) Heat accumulator
HU188494B (en) High-capacity heat accumulator
Saitoh et al. Experimental investigation on combined close-contact and natural convection melting in horizontal cylindrical and spherical capsules
JPS59232165A (en) Thermal energy storage element
JPS58104495A (en) Latent heat type heat accumulating device
JPS628716B2 (en)
JPS58221386A (en) Latent heat accumulating device
JPS58168893A (en) Heat accumulator
JPS60259889A (en) Latent heat type heat accumulator of direct heat exchange system
JPS58195786A (en) Heat accumulating apparatus of latent heat type
JPS6029592A (en) Heat accumulator
JPS59200192A (en) Latent heat type heat accumulating device
JPS6251398B2 (en)
JPS58117994A (en) Heat accumulator device