JPS59200192A - Latent heat type heat accumulating device - Google Patents

Latent heat type heat accumulating device

Info

Publication number
JPS59200192A
JPS59200192A JP58074410A JP7441083A JPS59200192A JP S59200192 A JPS59200192 A JP S59200192A JP 58074410 A JP58074410 A JP 58074410A JP 7441083 A JP7441083 A JP 7441083A JP S59200192 A JPS59200192 A JP S59200192A
Authority
JP
Japan
Prior art keywords
heat
heat storage
storage material
transfer medium
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58074410A
Other languages
Japanese (ja)
Inventor
Kazuo Yamashita
山下 和夫
Hiroshi Uno
浩 宇野
Takahito Ishii
隆仁 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58074410A priority Critical patent/JPS59200192A/en
Publication of JPS59200192A publication Critical patent/JPS59200192A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/025Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being in direct contact with a heat-exchange medium or with another heat storage material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Heating Systems (AREA)

Abstract

PURPOSE:To obtain stable, high temperature heat exchange output by a structure wherein latent heat type heat storage material, heat transfer medium, which is practically non-compatible with said heat storage material and changes itself from liquid to gas by absorbing heat and from gas to liquid by releasing the heat again, and foam, the apparent specific gravity of which is smaller than that of the heat storage material, are sealed in a heat storage tank under the condition that a space is left at the upper portion in the interior of the heat storage tank. CONSTITUTION:A heat accumulating device consists of heat exchangers 5 and 6 and a heat storage tank 2, which is provided with heat insulating layer and in which heat storage material 3 such as trihydrosodium acetate salt, heat transfer medium 4, which is non-compatible with the heat storage material 3 and has larger density, such as Freon 113, and foam 9, the apparent specific gravity of which is smaller than that of the heat storage material 3, such as ceramic foam, are sealed. When low temperature heat transfer medium is flowed in the heat exchanger 6 under the condition that the heat accumulating device 1 is at the state that enough heat is stored, the heat storage material filled in the tank 2 is stirred by the evaporation- condensation cycle of the heat transfer medium 4 and at the same time the heat transfer medium 4 release its heat at the heat exchanger 6 by heat-exchanging. At this time, the temperature in the space above the heat storage material filled in the tank 2 drops. However the temperature drop at the upper part of the heat storage material is prevented by the existence of the layer of the foam 9, which is onto the upper part of the heat storage material filled in the tank because of its density being smaller than that of the heat storage material.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は深夜電力や太陽エネルギー等を貯え給湯・冷暖
房などに用いる潜熱蓄熱装置自由た潜熱蓄熱装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a latent heat storage device that stores late-night electricity, solar energy, etc. and is used for hot water supply, air conditioning, and the like.

従来例の構成とその問題点 第1図は従来の蓄熱装置1を示しだものである。Conventional configuration and its problems FIG. 1 shows a conventional heat storage device 1. As shown in FIG.

蓄熱装置1は蓄熱槽2内に、蓄熱材3と、熱吸収時、に
液体から気体に、熱放出時に気体から液体に変化しかつ
、その凝縮液の密度が少なくとも前記蓄熱材の相転位点
近傍における密度よりも大きい伝熱媒体4とを」ニガに
空間部を残して封入すると共に、蓄熱するだめの熱交換
器5と熱を取り出すだめの熱交換器6を収納して構成し
ている。蓄熱状態において、蓄熱材充填部は蓄熱材3の
融点以上の温度の蓄熱材溶液から成り、空間部はその温
度における伝熱媒体の飽和蒸気圧より成っている。
A heat storage device 1 includes a heat storage material 3 in a heat storage tank 2, which changes from a liquid to a gas when absorbing heat, and from gas to a liquid when releasing heat, and the density of the condensed liquid is at least the phase transition point of the heat storage material. A heat transfer medium 4 having a density higher than that in the vicinity is sealed in the container leaving a space, and a heat exchanger 5 for storing heat and a heat exchanger 6 for extracting heat are housed. . In the heat storage state, the heat storage material filling part is made of a heat storage material solution having a temperature equal to or higher than the melting point of the heat storage material 3, and the space part is made of the saturated vapor pressure of the heat transfer medium at that temperature.

熱交換器6に低温熱媒体が導入されると、空間部の伝熱
媒体は熱交換器6で熱交換し、凝縮液化するので空間部
の蒸気圧は低下する。これを補なうために蓄熱材充填部
より伝熱媒体が蒸発し気泡γとなって上昇し、空間部に
達する。一方凝縮環8は滴下し蓄熱材充填部に環流する
。蓄熱材充填部に滴下した凝縮液8は蓄熱材3より密度
が大きいため、蓄熱材溶液中を降下する。降下しながら
大部分は蓄熱材3より熱を奪い蒸発し気泡となって上昇
する。他の一部は蓄熱槽2底部に沈降しそこで熱を得て
再び蒸発する。しかしながら、凝縮液の蒸発は前記説明
でわかるように蓄熱材充填部上部が主になるため、上部
ははげしく攪拌されるが、下部にいくにしたがい、攪拌
はおだやかになる。
When the low-temperature heat medium is introduced into the heat exchanger 6, the heat transfer medium in the space exchanges heat with the heat exchanger 6 and is condensed and liquefied, so that the vapor pressure in the space decreases. In order to compensate for this, the heat transfer medium evaporates from the heat storage material filled part, becomes bubbles γ, rises, and reaches the space. On the other hand, the condensation ring 8 drips and flows back into the heat storage material filling section. Since the condensate 8 dropped into the heat storage material filling part has a higher density than the heat storage material 3, it descends in the heat storage material solution. While descending, most of the heat absorbs heat from the heat storage material 3, evaporates, and rises in the form of bubbles. The other part settles to the bottom of the heat storage tank 2, where it gains heat and evaporates again. However, as can be seen from the above explanation, the condensed liquid evaporates mainly in the upper part of the heat storage material filling part, and therefore, although the upper part is vigorously stirred, the stirring becomes gentler as it goes to the lower part.

まだ、凝縮液8に熱を奪われた蓄熱材は、その溶液が気
泡により攪拌されているため、微結晶となって浮遊攪拌
しているが液体状態より密度が大きいため徐々に沈降し
ていく。このように伝熱媒体4の蒸発−凝縮サイクル如
よシ蓄熱材充填部を攪拌し効率よく熱交換器6で熱交換
を行なうのである。然るに蓄熱材充填部上部の温度が低
下する。
The heat storage material that has lost its heat to the condensate 8 is still agitated by air bubbles, so it becomes microcrystals and is floating, but it gradually settles because it has a higher density than the liquid state. . In this manner, the heat storage material filled portion is agitated through the evaporation-condensation cycle of the heat transfer medium 4, and heat is efficiently exchanged in the heat exchanger 6. However, the temperature of the upper part of the heat storage material filling part decreases.

これは、上部が滴下する比較的低温の凝縮液と凝縮液に
その潜熱を奪われ微結晶となった比較的低温の蓄熱材お
よび蓄熱材溶液とより構成されているので相対的に温度
が低くなるためである。上部温度が低下すると空間部の
蒸気の平衡温度が低下する。したがって熱交換器らでの
熱交換温度が低下するため低温熱媒体の温度上昇値が低
くなる。
This is composed of a relatively low-temperature condensate that drips from the top, a relatively low-temperature heat storage material that has lost its latent heat to the condensate, and has become microcrystalline, and a heat storage material solution that has a relatively low temperature. To become. When the upper temperature decreases, the equilibrium temperature of the vapor in the space decreases. Therefore, the heat exchange temperature in the heat exchangers and the like decreases, so that the temperature rise value of the low-temperature heat medium decreases.

上記説明でわかるように、従来の熱交換においては時間
の経過と共に空間部の温度が低下し、熱交換効率が低下
するため導入した低温熱媒体を一定温度の高温熱媒体と
して取り出すことができなかった。
As can be seen from the above explanation, in conventional heat exchange, the temperature of the space decreases over time, and the heat exchange efficiency decreases, so the introduced low-temperature heat medium cannot be extracted as a high-temperature heat medium at a constant temperature. Ta.

発明の目的 本発明は前記問題点を解決し、蓄熱材上部温度低下によ
る放熱器の熱交換性能の低下を防止し、高温で安定した
熱交換出力を得ることを目的とする。
OBJECTS OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems, prevent a decrease in heat exchange performance of a radiator due to a decrease in the upper temperature of a heat storage material, and obtain a stable heat exchange output at high temperatures.

発明の構成 前記目的を達成するだめに、本発明は潜熱蓄熱材と、前
記潜熱蓄熱材に対してほとんど非相溶性であり、熱吸収
時に液体から気体に、熱放出時に気体から液体になる伝
熱媒体と前記蓄熱材より見かけ上比重の小さい発泡体と
を蓄熱槽に内部上方に空間部を残して封入したものであ
る。
Structure of the Invention In order to achieve the above-mentioned object, the present invention provides a latent heat storage material, which is almost incompatible with the latent heat storage material, and which is capable of transferring heat from a liquid to a gas when absorbing heat, and from a gas to a liquid when releasing heat. A heat medium and a foam whose specific gravity is apparently lower than that of the heat storage material are sealed in a heat storage tank, leaving a space above the inside.

この構成により、熱取り出し時に生ずる蓄熱材充填部上
部の温度低下および全間部蒸気の温度低下を防ぎ、高温
で安定した熱交換出力を得ることができる。
With this configuration, it is possible to prevent a temperature drop in the upper part of the heat storage material filling part and a temperature drop in the entire steam that occurs during heat extraction, and to obtain a stable heat exchange output at a high temperature.

実施例の説明 以下本発明の一実施例を第2図の図面を用いて説明する
。なお、第2図中、第1図と同一のものについては同一
番号を付している。
DESCRIPTION OF THE EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. 2. Note that in FIG. 2, the same parts as in FIG. 1 are given the same numbers.

第2図において、蓄熱装置1は断熱層が設けられている
蓄熱槽2と熱交換器5,6とを有する構造となっている
。蓄熱槽2内には酢酸す) IJウム3水塩(融点58
℃、融点近傍での溶融液の密度1.28.!9/i)の
ごとき蓄熱材3とフロン113(58℃での密度1.4
87/i)のごとき蓄熱材3と非相溶性で密度の大きい
伝熱媒体4および連続気孔を有するセラミック発泡体の
ごとき蓄熱材3より見掛は上の密度の小さい発泡体9と
が封入されている。捷だ、熱交換効率をよくするだめ蓄
熱槽2内の非凝縮性ガスは排除されている。
In FIG. 2, a heat storage device 1 has a structure including a heat storage tank 2 provided with a heat insulating layer and heat exchangers 5 and 6. In the heat storage tank 2, there is acetic acid, IJium trihydrate (melting point 58
°C, the density of the melt near the melting point is 1.28. ! Heat storage material 3 such as 9/i) and Freon 113 (density 1.4 at 58°C)
A heat storage material 3 such as 87/i), an incompatible heat transfer medium 4 having a high density, and a foam 9 having a density that is apparently higher than that of the heat storage material 3 such as a ceramic foam having open pores are enclosed. ing. Unfortunately, in order to improve heat exchange efficiency, non-condensable gas within the heat storage tank 2 is excluded.

い寸、蓄熱装置1が蓄熱状態にある時熱交換器6に低温
の熱媒体を流入すると、第1図で説明したように伝熱媒
体4の蒸発−凝縮サイクルにより蓄熱材充填部が攪拌さ
れると共に熱交換器6にて伝熱媒体は熱交換を行ない放
熱する。この時、前記説明のごとく蓄熱材充填部の上部
の温度低下をきたす。本実施例においては蓄熱材充填部
上部に発泡体9層がその密度が小さいために存在し、こ
れが蓄熱材上部の温度低下を防いでいる。この理由は定
かでないが次のように考えられる。
When a low-temperature heat medium flows into the heat exchanger 6 when the heat storage device 1 is in a heat storage state, the heat storage material filled part is agitated by the evaporation-condensation cycle of the heat transfer medium 4, as explained in FIG. At the same time, the heat transfer medium exchanges heat in the heat exchanger 6 and radiates heat. At this time, as explained above, the temperature of the upper part of the heat storage material filling section is lowered. In this embodiment, nine layers of foam are present above the heat storage material filling part because of their low density, and this prevents the temperature above the heat storage material from decreasing. The reason for this is not clear, but it is thought to be as follows.

蓄熱槽2内に封入された発泡体9は密度が小さいだめ、
蓄熱材溶解時に蓄熱材上部に浮遊層を形成する。発泡体
9として連続気孔を有する体積数dに分割した発泡体を
用いると、伝熱媒体が蓄熱材3より熱を奪い気化し、空
間部へ移動する。この場合、その蒸気の流れに対してほ
とんど抵抗を示さない。したがって、伝熱媒体の蒸発量
は発泡体9の封入にあまシ影響を受けない。一方、伝熱
媒体凝縮液8は蓄熱材3へ還流する場合、連続気孔を有
する発泡体9の浮遊層を通過するが、液体で粘性抵抗が
大きいため、通過するのに相当の抵抗を受ける。したが
って凝縮液8は発泡体浮遊層Sの上部に溜る8′。溜ま
った凝縮液8′はその量が多くなると自重で前記発泡体
9の浮遊層を破り、蓄熱材3へ移行するだめの通路10
を形成し、この通路より多量の凝縮液8′が還流する。
The foam 9 sealed in the heat storage tank 2 has a low density;
A floating layer is formed on top of the heat storage material when the heat storage material is melted. When a foam having open pores and divided into volumes d is used as the foam 9, the heat transfer medium absorbs heat from the heat storage material 3, vaporizes, and moves to the space. In this case, there is little resistance to the flow of the vapor. Therefore, the amount of evaporation of the heat transfer medium is not affected by the inclusion of the foam 9. On the other hand, when the heat transfer medium condensate 8 flows back to the heat storage material 3, it passes through the floating layer of the foam 9 having continuous pores, but since it is a liquid and has a large viscous resistance, it encounters considerable resistance in passing. The condensate 8 therefore collects on top of the foam floating layer S 8'. When the amount of accumulated condensate 8' increases, it breaks the floating layer of the foam 9 due to its own weight and moves to the heat storage material 3 through a channel 10.
A large amount of condensate 8' flows back through this passage.

前記の場合、凝縮液の還流は大部分表面に生じた数ケ所
の上記通路1oを通じて行なわれるため、蓄熱材3上部
と凝縮液8との接触は従来の表面全体で行なわれるので
はなく、表面のごく一部で行なわれるため、蓄熱材表面
の温度低下を防ぐことができる。
In the above case, since the reflux of the condensate is mostly carried out through the several passages 1o formed on the surface, the contact between the upper part of the heat storage material 3 and the condensate 8 is not made over the entire surface as in the conventional case, but through the surface. Since this is carried out on only a small portion of the heat storage material, it is possible to prevent the temperature from decreasing on the surface of the heat storage material.

捷だ、凝縮液は蓄熱材表面の一部分より多量に蓄熱材中
に還流するだめ、蓄熱材より熱を奪い全体が再蒸発する
までに時間を要する。したがって凝縮液8は蓄熱槽2の
下部まで沈降することが可能となり、下部の熱も充分に
活用できるようになると共に下部より攪拌を生ぜしめる
ので槽の熱を有効に取りだすことができる。前記のごと
き凝縮液の溜り8′は発泡体9が蓄熱材3より伝熱媒体
に対して良好な濡れ性を有している場合大きくなる。
Unfortunately, the condensate must flow back into the heat storage material in a larger amount than on a portion of the surface of the heat storage material, so it takes time for the entire material to re-evaporate as it absorbs heat from the heat storage material. Therefore, the condensate 8 can settle to the lower part of the heat storage tank 2, and the heat in the lower part can be fully utilized, and since stirring is generated from the lower part, the heat in the tank can be effectively taken out. Such a condensate pool 8' becomes larger if the foam 9 has better wettability with respect to the heat transfer medium than the heat storage material 3.

したがって、発泡体9が伝熱媒体9より蓄熱材3に対し
て濡れ性が良い場合は、発泡体9を表面処理し蓄熱材3
よりも伝熱媒体に対して濡れ性を良くすることにより前
記効果を高め、出湯特性を良くすることができる。
Therefore, if the foam 9 has better wettability to the heat storage material 3 than the heat transfer medium 9, the foam 9 may be surface-treated and the heat storage material 3
By improving the wettability with respect to the heat transfer medium, the above effect can be enhanced and the hot water tapping characteristics can be improved.

また、発泡体9は一般に断熱性があるだめ、凝縮液化し
た低温の液が発泡体上部に一次的に滞留してもその温度
が蓄熱材3上部に直接伝達されない。しだがって、蓄熱
材3上部液面は低温の凝縮液によって全面が冷却されて
いく。
Further, since the foam 9 generally has heat insulating properties, even if the condensed and liquefied low-temperature liquid temporarily stays in the upper part of the foam, its temperature is not directly transmitted to the upper part of the heat storage material 3. Therefore, the entire surface of the upper liquid surface of the heat storage material 3 is cooled by the low-temperature condensed liquid.

前記説明におりて連続気孔を有する発泡体9ば、その体
積が数dに分割した場合を説明した。この分割した理由
は、前記説明したように分割した発泡体同志の接触点(
界面)より凝縮液が蓄熱材3中に還流しやすくしたため
である。したがって、大面積の発泡体9を用い凝縮液が
還流するような手段、例えば数ケ所に孔を設ければ前記
説明と同様な効果が得られる。また、逆に発泡体9の体
積、捷たは表面積を小さくし粉体状にすると、発泡体9
中の連続気孔の効果はなくなるが、伝熱媒体蒸気は粉体
状発泡体の界面を通って容易に空間部に達する。また、
凝縮液も気体に比し粘性が高いだめ、粉体状発泡体層の
上部に滞留し、前記とほぼ同様の効果を得ることができ
る。
In the above description, the case where the foam 9 having continuous pores was divided into several d parts in volume was explained. The reason for this division is that the contact points (
This is because the condensed liquid is made easier to flow back into the heat storage material 3 than the interface). Therefore, the same effect as described above can be obtained by using a large-area foam 9 and providing a means for refluxing the condensate, for example, by providing holes at several locations. On the other hand, if the volume, crushing, or surface area of the foam 9 is reduced and made into a powder, the foam 9
Although the effect of the open pores inside is eliminated, the heat transfer medium vapor easily reaches the space through the interface of the powder foam. Also,
Since the condensed liquid has a higher viscosity than gas, it stays on the upper part of the powder foam layer, and almost the same effect as described above can be obtained.

発明の効果 本発明の装置によれば、 (イ)凝縮液化した伝熱媒体は発泡体部を通過し、蓄熱
槽下部まで還流されるため、蓄熱槽上部において大部分
の凝縮液が蓄熱材と熱交換するととかない。
Effects of the Invention According to the device of the present invention, (a) The condensed and liquefied heat transfer medium passes through the foam section and is refluxed to the lower part of the heat storage tank, so that most of the condensed liquid in the upper part of the heat storage tank becomes the heat storage material. It can't be solved by heat exchange.

(ロ)蓄熱槽下部からも気泡が発生するため、蓄熱槽全
体がよく攪拌される。
(b) Since bubbles are also generated from the lower part of the heat storage tank, the entire heat storage tank is well stirred.

(ハ)発泡体は一種の断熱材であるため、その上部に滞
留した低温の凝縮液の温度を蓄熱材上部に伝達しない。
(c) Since the foam is a type of heat insulating material, the temperature of the low-temperature condensate that has accumulated above it is not transmitted to the upper part of the heat storage material.

前記理由により蓄熱材上部の温度低下がないため、伝熱
媒体蒸気の温度は低下することなく高温が保たれる。し
たがって、放熱器の熱交換性能の低下を防止し高温で安
定した熱交換出力を得ることができる。
For the above-mentioned reason, there is no temperature drop in the upper part of the heat storage material, so the temperature of the heat transfer medium vapor does not drop and is maintained at a high temperature. Therefore, it is possible to prevent the heat exchange performance of the radiator from deteriorating and to obtain stable heat exchange output at high temperatures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の潜熱蓄熱装置の断面図、第2図は本発明
の潜熱蓄熱装置の一実施例を示す断面図である。 1・・・・・・潜熱蓄熱装置、2・・・・・蓄熱槽、3
・・・蓄熱材、4−・・・・・伝熱媒体、9・・・・発
泡体。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
FIG. 1 is a sectional view of a conventional latent heat storage device, and FIG. 2 is a sectional view showing an embodiment of the latent heat storage device of the present invention. 1... Latent heat storage device, 2... Heat storage tank, 3
... heat storage material, 4- ... heat transfer medium, 9 ... foam. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
figure

Claims (1)

【特許請求の範囲】[Claims] 潜熱蓄熱材と、前記潜熱蓄熱材に対してほとんど非相溶
性であり、熱吸収時に液体から気体に、熱放出時に気体
から液体になる伝熱媒体と、前記潜熱蓄熱材より見かけ
上比重の小さい発泡体とを内部上方に空間部を残して蓄
熱槽内に封入した潜熱蓄熱装置。
A latent heat storage material, a heat transfer medium that is almost incompatible with the latent heat storage material and changes from liquid to gas when absorbing heat and from gas to liquid when releasing heat, and has an apparent specific gravity smaller than that of the latent heat storage material. A latent heat storage device in which a foam is enclosed in a heat storage tank with a space left above.
JP58074410A 1983-04-26 1983-04-26 Latent heat type heat accumulating device Pending JPS59200192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58074410A JPS59200192A (en) 1983-04-26 1983-04-26 Latent heat type heat accumulating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58074410A JPS59200192A (en) 1983-04-26 1983-04-26 Latent heat type heat accumulating device

Publications (1)

Publication Number Publication Date
JPS59200192A true JPS59200192A (en) 1984-11-13

Family

ID=13546388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58074410A Pending JPS59200192A (en) 1983-04-26 1983-04-26 Latent heat type heat accumulating device

Country Status (1)

Country Link
JP (1) JPS59200192A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004150773A (en) * 2002-11-01 2004-05-27 Hideo Inaba Thermal energy storing system and exhaust heat use method
CN111765793A (en) * 2020-07-10 2020-10-13 康健 Heat storage box with heat pump providing heat source

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004150773A (en) * 2002-11-01 2004-05-27 Hideo Inaba Thermal energy storing system and exhaust heat use method
CN111765793A (en) * 2020-07-10 2020-10-13 康健 Heat storage box with heat pump providing heat source

Similar Documents

Publication Publication Date Title
US4355522A (en) Passive ice freezing-releasing heat pipe
US4111260A (en) Method of heat accumulation and a thermal accumulator for the application of said method
US10605541B1 (en) Heat pipe—thermal storage medium based cool storage system
US4099558A (en) Method of heat accumulation and a thermal accumulator for the application of said method
CN204705249U (en) A kind of hermetically-sealed construction of phase-change energy-storage units
US4099557A (en) Method of heat accumulation and a thermal accumulator for the application of said method
CN206862181U (en) Packaged type based on pulsating heat pipe stores heat-releasing device
CN104880111A (en) Sealing method of phase-change energy storage unit
JPS59200192A (en) Latent heat type heat accumulating device
JPH0245114B2 (en)
JPS59180287A (en) Latent heat accumulator
JPS5929989A (en) Latent heat accumulating device
JPS61173085A (en) Latent heat storage device
JPS5941793A (en) Heat accumulator
JPS58178149A (en) Latent heat type heat storage-cold heat storage system
JPS5971989A (en) Heat accumulating apparatus
JPS58221386A (en) Latent heat accumulating device
JPS6020091A (en) Latent heat storaging device
JPS5956092A (en) Latent heat utilizing heat accumulating tank
JPS58117993A (en) Heat accumulating device
JPS58219394A (en) Latent heat accumulating apparatus
JP2001041585A (en) Heat storage tank
JPS58142193A (en) Heat accumulating device
JPH0117079B2 (en)
JPS58102097A (en) Heat accumulator