JPH0117079B2 - - Google Patents

Info

Publication number
JPH0117079B2
JPH0117079B2 JP60097614A JP9761485A JPH0117079B2 JP H0117079 B2 JPH0117079 B2 JP H0117079B2 JP 60097614 A JP60097614 A JP 60097614A JP 9761485 A JP9761485 A JP 9761485A JP H0117079 B2 JPH0117079 B2 JP H0117079B2
Authority
JP
Japan
Prior art keywords
heat
heat storage
storage material
medium
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60097614A
Other languages
Japanese (ja)
Other versions
JPS60259889A (en
Inventor
Mineo Kosaka
Tadashi Asahina
Hiroshi Taota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60097614A priority Critical patent/JPS60259889A/en
Publication of JPS60259889A publication Critical patent/JPS60259889A/en
Publication of JPH0117079B2 publication Critical patent/JPH0117079B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/025Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being in direct contact with a heat-exchange medium or with another heat storage material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、直接熱交換方式の潜熱型蓄熱器に関
するものである。 [従来の技術] 現在、熱エネルギーの経済的な管理を目的とし
て、優秀な蓄熱器の出現が待望されている。これ
までに、物質の温度変化そのものを利用する顕熱
型、物質の溶融潜熱を利用する潜熱型、物質の化
学変化熱を利用する反応形など、多くの蓄熱形式
が研究されているが、いずれも一長一短がある。
蓄熱研究の主要な課題が蓄熱器の性能の向上であ
ることは言うまでもないが、さらに重要な問題と
してそのコストがあげられる。蓄熱器は省資源、
省エネルギーを目的とする機器であるため、あま
りに高コストとなつては、いかに性能が優秀であ
つても開発の意義がうすれる。 即ち、一般に、冷暖房や給湯を目的とする蓄熱
では、無機水和塩(結晶水を持つ無機塩類、たと
えば硫酸ナトリウム10水塩、Na2SO4・10H2Oや
チオ硫酸ナトリウム5水塩、Na2SO4・5H2Oな
ど)が蓄熱材の有力な候補物質とされてきた。第
1図a,bはそれらの蓄熱材を用いる従来の潜熱
型蓄熱器の構造例を示すもので、同図aはカプセ
ル、bはシエル・チユーブ型と呼ばれている。第
1図aのカプセル型において、1は蓄熱容器、2
は熱媒体の入口、3は同出口、4は無機水和塩よ
りなる潜熱型蓄熱材、5はその蓄熱材を充填・密
封した多数のカプセルを示す。また、第1図のb
のシエル・チユーブ型蓄熱器において、11は蓄
熱容器、12は熱媒体の入口、13は同出口、1
4は無機水和塩よりなる潜熱型蓄熱材、15は熱
媒体を通過させるための熱交換チユーブを示す。 これらの潜熱型蓄熱器において、蓄熱材4,1
4は溶融と凝固をくり返すことにより、蓄熱・放
熱を行うが、図示したカプセルや熱交換チユーブ
は、蓄熱材と熱媒体の間に適当な熱交換面を確保
する目的と、溶融した蓄熱材が熱媒体と共に流出
しないように防護する目的をもつて設備されてい
る。ところがこのカプセルや熱交換チユーブの製
作と加工には、非常に多大な経費が必要であり、
場合によれば蓄熱材そのものの価格を上回ること
もめずらしくない。 [発明が解決しようとする問題点] 本発明の目的は、このような経費の軽減をはか
るため、直接熱交換方式を用いて、カプセルや熱
交換チユーブを省略し、蓄熱器を構造が簡単で低
コストに構成したものとして提供することにあ
る。 [問題点を解決するための手段] 上記目的を達成するため、本発明の蓄熱器は、
蓄熱材と混合しない熱媒体液を小滴として、蓄熱
材と直接接触させ、熱交換を行わしめる方式の潜
熱型蓄熱器であつて、蓄熱材が、無機水和塩とそ
の飽和水溶液からなり、蓄熱器内部に、平板部の
片側に熱媒体を小滴として流出浮上させる小孔群
を有し、かつ蓄熱材結晶を担持するための縁板を
有する案内板を、小孔群を有する側が交互に位置
し、かつこの側が高くなるように、水平に対し5
〜7゜の角度だけ傾斜させて複数個配設したことを
特徴とするものである。 [作用] 上記構成の蓄熱器においては、流出浮上する熱
媒体は複数の案内板のそれぞれに交互に位置する
ように設けられた小孔群を通つて直接的に効率の
よい熱交換が行われる。また、蓄熱器の放熱過程
において融液から析出した結晶は各案内板に分散
した状態に担持され、それらの結晶の全てが器底
に堆積することなく、これによつても効率のよい
熱交換が行われる。 [実施例] 以下、図面を参照して本発明の蓄熱器について
さらに詳細に説明する。 第2図は本発明に係る潜熱型蓄熱器の基本的構
造を示し、21は蓄熱容器、22は熱媒体の入
口、23はその出口、24は蓄熱に適した材料か
らなる蓄熱材、25は上記蓄熱材よりも比重が小
さい熱媒体液であつて、上記蓄熱容器21内にお
いては、充填した蓄熱材24の上方に熱媒体の出
口23に通じる熱媒体貯留空間25′を形成して
いる。また、26は断熱材層、27は案内板、2
8はポンプ、29は熱源または熱負荷、30はポ
ンプ28によつて供給される熱媒体25を入口2
2において蓄熱材24中に小滴として分散噴出さ
せる多孔体、31は蓄熱容器21から断熱材層2
6を通してパイプ先端を外部に導出することによ
り形成した種子結晶発生器を示している。 而して、上記蓄熱容器21の底部の入口22に
おいて熱媒体を小滴として噴出させる構成は、熱
媒体を蓄熱材に直接接触させるための手段を構成
し、また蓄熱容器21の上部に形成した熱媒体貯
留空間25及びそれに通じる出口23は、熱媒体
25の比重を蓄熱材24のそれよりも小さくした
ことから、熱交換のために直接接触した熱媒体2
5を蓄熱材24から分離抽出するための手段を構
成することになる。上記熱媒体25を蓄熱材24
に直接接触させるための手段及び接触した熱媒体
25を蓄熱材24から分離する手段としては、図
示の構成例に限ることなく、同一の作用を期待で
きる他の構成を採用することができる。 上記蓄熱材24としては無機水和塩を用いる
が、その中を熱媒体25が小滴となつて浮上する
ため、蓄放熱操作の過程で全体的に固体化するこ
とがあつてはならない。そのため、無機水和塩に
その化学量論比以上の水を含有させ、無機水和塩
の融点以下の温度でも、即ち熱エネルギーを貯蔵
する前または熱エネルギーを放出した後の状態に
おいても、無機水和塩の結晶とその飽和水溶液と
が共存するように調製したものが使用される。 無機水和塩の種類は非常に多く、適当な無機水
和塩を選択使用できるが、適量の飽和水溶液量を
得るために添加すべき水分量は、無機水和塩の種
類によつてそれぞれ相違する。この水分量は、あ
まり少なくては熱媒体の浮上が困難であり、また
あまり多くては蓄熱材の単位体積当りの溶融潜熱
が低下する。種々検討した結果、適当と考えられ
る水分量の一例を次表に示す。 このような水分量では、蓄熱材に熱エネルギー
を貯蔵する前、または熱エネルギーを放出した後
の状態において、蓄熱材はその全量に対し8〜18
容積パーセントの飽和水溶液と残部の水和塩結晶
を含有しており、熱媒体が小滴となつて、蓄熱材
中を上昇することが可能である。なお、無機水和
塩と適量の飽和水溶液が共存することにより、従
来法でみられた「過冷」や「相分離」などの不都
合な現象も大幅に改善される。 また、上記蓄熱材としては、二種以上の無機水
和塩の結晶とそれらの飽和水溶液を用いることも
できる。このような蓄熱体の見かけ融点は、熱エ
ネルギーの使途(冷房、暖房、給湯など)と関連
して重要であるが、無機水和塩の種類、水含量、
二種以上の塩の混合比を適切に選定することによ
りその見かけ融点を調節し、幅広い使途に対応さ
せることができる。
[Industrial Application Field] The present invention relates to a direct heat exchange type latent heat type heat storage device. [Prior Art] Currently, the emergence of an excellent heat storage device is eagerly awaited for the purpose of economical management of thermal energy. To date, many types of heat storage have been studied, including the sensible heat type, which uses the temperature change itself of the material, the latent heat type, which uses the latent heat of melting of the material, and the reaction type, which uses the heat of chemical change of the material. There are also pros and cons.
It goes without saying that the main challenge in heat storage research is improving the performance of heat storage devices, but an even more important issue is their cost. The heat storage device saves resources,
Since the purpose of the device is to save energy, if the cost is too high, the purpose of development will be lost, no matter how excellent the performance is. That is, in general, in heat storage for heating, cooling, and hot water supply, inorganic hydrated salts (inorganic salts with water of crystallization, such as sodium sulfate decahydrate, Na 2 SO 4 .10H 2 O, sodium thiosulfate pentahydrate, Na 2 SO 4 , 5H 2 O, etc.) have been considered promising candidates for heat storage materials. FIGS. 1a and 1b show structural examples of conventional latent heat type heat storage devices using these heat storage materials, and FIG. 1a is called a capsule, and FIG. 1b is called a shell tube type. In the capsule type shown in Fig. 1a, 1 is a heat storage container, 2
3 is a heat medium inlet, 3 is a heat medium outlet, 4 is a latent heat type heat storage material made of an inorganic hydrated salt, and 5 is a large number of capsules filled and sealed with the heat storage material. Also, b in Figure 1
In the shell tube type heat storage device, 11 is a heat storage container, 12 is an inlet of the heat medium, 13 is an outlet of the same, 1
4 is a latent heat type heat storage material made of an inorganic hydrated salt, and 15 is a heat exchange tube through which a heat medium passes. In these latent heat type heat storage devices, heat storage materials 4, 1
4 stores and radiates heat by repeating melting and solidification, but the capsules and heat exchange tubes shown in the figure are used to secure an appropriate heat exchange surface between the heat storage material and the heat medium, and to dissipate heat from the molten heat storage material. The purpose of this equipment is to prevent heat transfer from flowing out together with the heat transfer medium. However, manufacturing and processing these capsules and heat exchange tubes requires an extremely large amount of expense.
In some cases, it is not uncommon for the price to exceed the price of the heat storage material itself. [Problems to be Solved by the Invention] In order to reduce such costs, the purpose of the present invention is to use a direct heat exchange method, omit capsules and heat exchange tubes, and create a heat storage device with a simple structure. The purpose is to provide it as a low-cost configuration. [Means for solving the problems] In order to achieve the above object, the heat storage device of the present invention has the following features:
A latent heat type heat storage device in which small droplets of a heat medium liquid that does not mix with the heat storage material are brought into direct contact with the heat storage material to perform heat exchange, and the heat storage material is made of an inorganic hydrated salt and its saturated aqueous solution, Inside the heat storage device, on one side of the flat plate part, a guide plate is provided, which has a group of small holes for causing the heat medium to flow out and float as small droplets, and has an edge plate for supporting the heat storage material crystals, and the side having the group of small holes alternates. 5 points above the horizontal, and this side is higher.
It is characterized by having a plurality of them arranged at an angle of ~7°. [Function] In the heat storage device having the above configuration, the floating heat medium is directly and efficiently exchanged heat through the small holes provided alternately on each of the plurality of guide plates. . In addition, the crystals precipitated from the melt during the heat dissipation process of the heat accumulator are supported in a dispersed state on each guide plate, and all of the crystals do not accumulate on the bottom of the vessel, resulting in efficient heat exchange. will be held. [Example] Hereinafter, the heat storage device of the present invention will be described in more detail with reference to the drawings. FIG. 2 shows the basic structure of the latent heat type heat storage device according to the present invention, in which 21 is a heat storage container, 22 is a heat medium inlet, 23 is an outlet thereof, 24 is a heat storage material made of a material suitable for heat storage, and 25 is a heat storage material. The heat medium liquid has a specific gravity smaller than that of the heat storage material, and in the heat storage container 21, a heat medium storage space 25' communicating with the heat medium outlet 23 is formed above the filled heat storage material 24. Further, 26 is a heat insulating material layer, 27 is a guide plate, 2
8 is a pump, 29 is a heat source or heat load, and 30 is a heat medium 25 supplied by the pump 28, which is connected to the inlet 2.
2 is a porous body that is dispersed and ejected as small droplets into the heat storage material 24; 31 is a porous body that is dispersed and ejected as small droplets into the heat storage material 24;
6 shows a seed crystal generator formed by leading the tip of the pipe to the outside through 6. Therefore, the configuration in which the heat medium is spouted as small droplets at the inlet 22 at the bottom of the heat storage container 21 constitutes a means for bringing the heat medium into direct contact with the heat storage material, and the structure formed at the top of the heat storage container 21 constitutes a means for bringing the heat medium into direct contact with the heat storage material. The heat medium storage space 25 and the outlet 23 communicating therewith have the specific gravity of the heat medium 25 smaller than that of the heat storage material 24, so that the heat medium 2 that is in direct contact with it for heat exchange is
5 from the heat storage material 24. The heat medium 25 is transferred to the heat storage material 24
The means for directly contacting the heating medium 25 and the means for separating the contacting heat medium 25 from the heat storage material 24 are not limited to the illustrated configuration example, and other configurations that can be expected to have the same effect can be adopted. Inorganic hydrated salt is used as the heat storage material 24, but since the heat medium 25 floats therein in the form of small droplets, it must not solidify as a whole during the heat storage/dissipation operation. Therefore, by making the inorganic hydrated salt contain more than its stoichiometric ratio of water, the inorganic A hydrated salt crystal and a saturated aqueous solution thereof prepared so as to coexist are used. There are many types of inorganic hydrated salts, and an appropriate inorganic hydrated salt can be selected and used, but the amount of water that should be added to obtain an appropriate amount of saturated aqueous solution varies depending on the type of inorganic hydrated salt. do. If this moisture content is too small, it will be difficult for the heat medium to float, and if it is too large, the latent heat of fusion per unit volume of the heat storage material will decrease. As a result of various studies, the following table shows an example of the moisture content that is considered appropriate. With such a moisture content, before storing thermal energy in the thermal storage material or after releasing thermal energy, the thermal storage material has a moisture content of 8 to 18
It contains a volume percent saturated aqueous solution and the balance hydrated salt crystals, allowing the heat transfer medium to rise in droplets through the heat storage material. Furthermore, by coexisting an inorganic hydrated salt with an appropriate amount of a saturated aqueous solution, disadvantageous phenomena such as "overcooling" and "phase separation" observed in conventional methods can be significantly improved. Further, as the heat storage material, crystals of two or more types of inorganic hydrated salts and saturated aqueous solutions thereof can also be used. The apparent melting point of such a heat storage body is important in relation to the use of thermal energy (cooling, heating, hot water supply, etc.), but it also depends on the type of inorganic hydrated salt, water content,
By appropriately selecting the mixing ratio of two or more types of salts, the apparent melting point can be adjusted to accommodate a wide range of uses.

【表】 一方、熱媒体25としては、一般に、蓄熱材2
と化学反応や溶解等の相互作用がなく、かつ蓄熱
材よりも比重の小さい液体、例えばシリコーン
油、灯油、軽油、石油パラフイン、やし油等が使
用される。特殊な場合には、空気等の気体を使用
することもできる。上記液体について種々検討し
たが、粘度が使用温度において5〜20センチスト
ークスのシリコーン油が最適である。シリコーン
油は、表面張力が小さく、小滴になり易い上に、
蓄熱材融液とエマルジヨンを生成しないので容易
に分離できるなどの点ですぐれているが、あまり
に高粘度のシリコーン油は、ポンプ28による輸
送動力が過大となるために適さない。またシリコ
ーン油は蓄熱材上面を覆つて蓄熱材の水分の変動
を防止するほか、他の機器、例えば太陽熱集熱器
や給湯器等の腐食を軽減させる効果をも有してい
る。上記構成を有する蓄熱容器に熱を貯蔵する場
合には、熱媒体25をポンプ28により熱源29
に送給し、それを熱源29において加熱してから
蓄熱容器の入口22に戻して循環させる。上記熱
源29としては、例えば太陽熱、工場排液、夜間
電力などがある。熱源29において加熱されて蓄
熱容器に送られた熱媒体は、多孔体30内を通過
することにより小滴となつて蓄熱材24の中を上
昇(浮上)しつつ直接的に蓄熱材24と熱交換を
行い、蓄熱容器21内の上方の熱媒体貯留空間2
5′へ戻る。このような操作を継続すると、蓄熱
材24の温度が上昇すると同時に、その中に含ま
れる無機水和塩結晶が融解して、溶融潜熱に相当
する熱量が貯蔵される。 逆に、蓄熱器から熱を放出させる場合には、熱
媒体25を暖房用フアンコイル、吸収式冷凍機、
給湯器などの熱負荷29へ送り、熱媒体25を冷
却させてから入口22に戻して還流させる。入口
22から送入された熱媒体25は、蓄熱材24中
を小滴となつて上昇(浮上)しつつ熱交換を行
い、蓄熱材24が冷却される。その結果、融解し
ていた無機水和塩が析出し、相当する溶融潜熱が
熱媒体25に与えられる。 以上の説明から明らかなように、上記蓄熱器で
は、蓄熱材24の温度変化に伴つて、その中に含
まれる無機水和塩の結晶とその融液である飽和水
溶液の量比が大きく変化する。しかし、蓄放熱操
作の過程で、蓄熱材全体が固体化しないように、
無機水和塩の化学量論比以上の水を含有させ、水
和塩の融点以下の温度でも、適量の飽和水溶液が
無機水和塩の結晶と共存する状態に調整している
ため、熱媒体を蓄熱材中に小滴として分散させる
ことによる両者の直接接触に支障を来たすことは
ない。 次に、前記案内板27について説明する。この
案内板27は、熱媒体25が蓄熱材24中を急速
に上昇して分離するのを抑制し、両者の接触時間
を十分に保つて熱交換性能を高めるためのもの
で、第3図a,bにその構造例を示している。同
図の案内板27は、その平板部32の片側に熱媒
体を小滴状として流出浮上させる小孔群33を有
し、かつその周囲に熱媒体流(矢印)を適正な方
向に誘導すると同時に平板部32の上に析出した
水和塩結晶35をすべり落ちないように支持する
縁板34を有するものである。平板部32は小孔
群33を有する側が高くなるようにして水平に対
して5〜7゜の角度だけ傾斜するように縁板34と
接合され、第2図及び第3図bに示すよように、
小孔群33を有する側が左右交互に位置するよう
に蓄熱容器21中に配置される。 このような案内板27を設置しない場合には、
蓄熱器の放熱過程において、融液から無機水和塩
が析出すると、比重差によつて水和塩結晶が容器
の底部に沈降し、大量の水和塩結晶が容器底部に
堆積すると、入口22を通つて熱媒体が流入する
ことが困難となり、また偏流を生じて熱交換が不
良になることもある。しかるに、上記案内板を設
置すると、蓄熱材中に生成した水和塩結晶が分散
して担持され、その全部が器底に堆積することが
なく、熱交換性能が高められる。案内板の間隔は
5〜10cmが好適である。 次に、前記種子結晶発生器31について説明す
る。この種子結晶発生器31は管状容器の中に、
蓄熱材と同種の無機水和塩を充填し、その一端が
蓄熱容器21内部に蓄熱材24と接触して開口し
ており、他端が断熱材層26を貫通して外部へ引
出され、封止されている。蓄熱材が十分に昇温さ
れ、蓄熱材中の無機水和塩が完全に溶融している
場合、次の放熱を行わせようとすると、結晶核の
不足のため、軽度の過冷が観察されることがあ
る。種子結晶発生器31中の水和塩は、特に外部
に引出された部分では加熱をうけないため、溶融
せずに結晶のままで残基できる。このため、放熱
に際してその結晶が種子結晶として作用し、過冷
の少ない円滑な凝固を進行させることができる。 [発明の効果] 以上に詳述したところから明らかなように、本
発明の蓄熱器によれば、直接接触の熱交換方式を
とることによつて従来の装置では多大の経費を要
していたカプセルや熱交換チユーブを不要とし、
極めて安価に蓄熱器を構成することができ、熱エ
ネルギーの有効利用に資するところが大である。 また、本発明においては、熱媒体を小滴として
流出浮上させる小孔群を有する複数の案内板を小
孔群が交互に位置するように配置したので、熱交
換を効率良く行うことができ、また上記案内板に
蓄熱材結晶を担持するための縁板を設けたので、
析出した結晶の全てが容器底部に堆積するのを回
避して、それらの結晶を各案内板に分散担持させ
ることができ、これによつても熱交換性能が高め
られる。 以下に本発明の実験例を示す。 実験例 1 第2図に示す構造を有し、その蓄熱容器の直径
が30cm、高さが80cmの円筒型蓄熱器を製作した。
この中に底部からの高さが65cmとなるまで蓄熱材
A(水分量66重量パーセント、残部が無水炭酸ナ
トリウム)を入れ、蓄熱材の上部に厚みが7cmに
なるまでシリコーン油を入れて熱媒体とした。案
内板は第3図a,bの形状のものを10枚設置し
た。熱媒体を出口23から電動ポンプで汲出し、
入口22に還流する途中で電熱を用いて加熱し、
入口22での温度が60℃になるように調節を行つ
た。シリコーン油の出口と入口での温度差を計測
し、その比熱と流速を用いて熱媒体から蓄熱材へ
移動した熱エネルギー量を計算した。求められた
蓄熱材の熱含量Qと蓄熱材との平均温度Tの関係
を第4図に示した。図中の曲線C1は蓄熱材Aの
ものであり、曲線C2は比較のために蓄熱材Aと
等容積の水について実験したものである。Qが急
増する温度(蓄熱材の見かけ融点)は約33℃であ
つた。この見かけ融点から上下10℃、(計20℃)
の温度幅をとるとき、蓄熱材Aの熱容量は水のそ
れの約3.7倍である。シリコーン油の流速を500
ml/分に一定とすると、第4図のP1点からP2
に到達するのに約1.8時間を要したが、案内板2
7を取去つた場合は所要時間が約3.3時間となり、
案内板の熱交換促進効果が大であることが示され
た。 実験例 2 実験例1と同一の装置に、蓄熱材B(水分量43
重量パーセント、残部が無水酢酸ナトリウム)を
充填した。あらかじめ蓄熱器全体を均一に65℃に
なるまで昇温させ、蓄熱材中の無機水和塩を完全
に溶融させた。次に、電動ポンプを用いてシリコ
ーン油を汲出し、入口22に還流する途中で水流
熱交換器により冷却し、入口温度を24℃に保持し
た。シリコーン油の出口と入口における温度差、
流速及び比熱から、蓄熱材Bから熱媒体へと移行
した熱エネルギー量を計算し、蓄熱材の熱含量Q
と平均温度Tの関係を第5図に示す。曲線C3
蓄熱材Bに、また曲線C4は比較のため計測した
蓄熱材Bと等容積の水に対応する結果である。蓄
熱材Bの見かけ融点は約57℃であつた。この温度
から上下10℃(計20℃)の温度幅で比較すると、
蓄熱材Bの熱含量は水の約4.1倍となる。種子結
晶発生器を取除いて試験すると、前述の見かけ融
点から約8℃の過冷が観察された。 実験例 3 上述と同一の装置を用いて、蓄熱材C(水分量
40.5重量パーセント、無水酢酸ナトリウム30.5重
量パーセント、チオ硫酸ナトリウム29重量パーセ
ント)により試験した。この場合の溶解は40〜55
℃で起こり、前述のようなはつきりした見かけ融
点は示さなかつたが、この温度範囲での熱含量は
水の3.4倍に達することが観察された。
[Table] On the other hand, the heat storage material 2 is generally used as the heat medium 25.
A liquid that does not interact with the heat storage material such as chemical reaction or dissolution and has a specific gravity lower than that of the heat storage material, such as silicone oil, kerosene, light oil, petroleum paraffin, and coconut oil, is used. In special cases, a gas such as air may also be used. Various studies have been conducted on the above liquid, but silicone oil having a viscosity of 5 to 20 centistokes at the operating temperature is optimal. Silicone oil has a low surface tension and easily forms droplets.
Silicone oil is excellent in that it can be easily separated from the heat storage material melt because it does not form an emulsion, but silicone oil with too high a viscosity is not suitable because the transport power by the pump 28 becomes excessive. In addition, silicone oil covers the top surface of the heat storage material to prevent moisture content in the heat storage material from fluctuating, and also has the effect of reducing corrosion of other equipment, such as solar heat collectors and water heaters. When storing heat in the heat storage container having the above configuration, the heat medium 25 is pumped to the heat source 29 by the pump 28.
It is heated in a heat source 29 and then returned to the inlet 22 of the heat storage container for circulation. Examples of the heat source 29 include solar heat, factory waste water, and nighttime electricity. The heat medium heated in the heat source 29 and sent to the heat storage container passes through the porous body 30 and becomes small droplets that rise (float) in the heat storage material 24 and directly interact with the heat storage material 24. The upper heat medium storage space 2 inside the heat storage container 21
Return to 5'. If such an operation is continued, the temperature of the heat storage material 24 rises, and at the same time, the inorganic hydrated salt crystals contained therein melt, and the amount of heat corresponding to the latent heat of fusion is stored. Conversely, when releasing heat from the heat storage device, the heat medium 25 is used as a heating fan coil, an absorption refrigerator,
The heat medium 25 is sent to a heat load 29 such as a water heater, cooled, and then returned to the inlet 22 for reflux. The heat medium 25 introduced from the inlet 22 exchanges heat while rising (floating) in the heat storage material 24 as small droplets, and the heat storage material 24 is cooled. As a result, the molten inorganic hydrated salt precipitates, and the corresponding latent heat of melting is imparted to the heating medium 25. As is clear from the above explanation, in the heat storage material 24, as the temperature of the heat storage material 24 changes, the ratio of the amounts of the inorganic hydrated salt crystals contained therein to the saturated aqueous solution that is the melt thereof changes greatly. . However, to prevent the entire heat storage material from solidifying during the heat storage/release operation,
It contains water in an amount greater than the stoichiometric ratio of the inorganic hydrated salt, and is adjusted to a state in which an appropriate amount of saturated aqueous solution coexists with the inorganic hydrated salt crystals even at temperatures below the hydrated salt's melting point. Dispersing the heat storage material as small droplets in the heat storage material does not interfere with direct contact between the two. Next, the guide plate 27 will be explained. This guide plate 27 is for suppressing the rapid rise and separation of the heat medium 25 in the heat storage material 24 and for maintaining sufficient contact time between the two to improve heat exchange performance. , b shows an example of its structure. The guide plate 27 shown in the figure has a group of small holes 33 on one side of its flat plate portion 32 through which the heat medium flows out and floats in the form of small droplets, and around which the heat medium flow (arrow) is guided in an appropriate direction. At the same time, it has an edge plate 34 that supports the hydrated salt crystals 35 deposited on the flat plate part 32 so that they do not slip off. The flat plate part 32 is joined to the edge plate 34 so that the side having the small holes 33 is higher and is inclined at an angle of 5 to 7 degrees with respect to the horizontal, as shown in FIGS. 2 and 3b. To,
They are arranged in the heat storage container 21 so that the sides having the small hole groups 33 are located alternately on the left and right sides. If such a guide board 27 is not installed,
During the heat dissipation process of the heat storage device, when inorganic hydrated salt is precipitated from the melt, the hydrated salt crystals settle to the bottom of the container due to the difference in specific gravity. It becomes difficult for the heat medium to flow through the tube, and uneven flow may occur, resulting in poor heat exchange. However, when the guide plate is installed, the hydrated salt crystals generated in the heat storage material are dispersed and supported, and all of them are not deposited on the bottom of the vessel, thereby improving heat exchange performance. The preferred distance between the guide plates is 5 to 10 cm. Next, the seed crystal generator 31 will be explained. This seed crystal generator 31 is placed in a tubular container.
The same type of inorganic hydrated salt as the heat storage material is filled, and one end thereof is opened inside the heat storage container 21 in contact with the heat storage material 24, and the other end penetrates the heat insulating material layer 26 and is drawn out to the outside, and is sealed. It has been stopped. If the temperature of the heat storage material is raised sufficiently and the inorganic hydrated salt in the heat storage material is completely melted, when the next heat dissipation is attempted, slight supercooling will be observed due to the lack of crystal nuclei. Sometimes. The hydrated salt in the seed crystal generator 31 is not heated, especially in the portion pulled out to the outside, so it can remain as a crystal without melting. Therefore, the crystals act as seed crystals during heat dissipation, allowing smooth solidification to proceed with little overcooling. [Effects of the Invention] As is clear from the detailed description above, the heat storage device of the present invention uses a direct contact heat exchange method, which requires a large amount of expense in conventional devices. Eliminates the need for capsules and heat exchange tubes,
The heat storage device can be configured at an extremely low cost, and it greatly contributes to the effective use of thermal energy. Furthermore, in the present invention, a plurality of guide plates each having a group of small holes through which the heat medium flows out and floats in the form of small droplets are arranged so that the groups of small holes are arranged alternately, so that heat exchange can be performed efficiently. In addition, since an edge plate for supporting the heat storage material crystals was provided on the guide plate,
All of the precipitated crystals can be prevented from being deposited on the bottom of the container, and the crystals can be dispersed and supported on each guide plate, which also improves the heat exchange performance. Experimental examples of the present invention are shown below. Experimental Example 1 A cylindrical heat storage device having the structure shown in Fig. 2 and having a heat storage container diameter of 30 cm and a height of 80 cm was manufactured.
Heat storage material A (water content 66% by weight, remainder is anhydrous sodium carbonate) is poured into this until the height from the bottom reaches 65cm, and silicone oil is poured into the top of the heat storage material until the thickness becomes 7cm. And so. Ten information boards with the shapes shown in Figure 3 a and b were installed. Pumping out the heat medium from the outlet 23 with an electric pump,
It is heated using electric heat while flowing back to the inlet 22,
The temperature at the inlet 22 was adjusted to 60°C. The temperature difference between the outlet and inlet of the silicone oil was measured, and the amount of thermal energy transferred from the heat medium to the heat storage material was calculated using the specific heat and flow velocity. The relationship between the determined heat content Q of the heat storage material and the average temperature T of the heat storage material is shown in FIG. Curve C 1 in the figure is for heat storage material A, and curve C 2 is for comparison with heat storage material A and the same volume of water tested. The temperature at which Q rapidly increased (apparent melting point of the heat storage material) was approximately 33°C. 10℃ above and below this apparent melting point (20℃ in total)
When taking a temperature range of , the heat capacity of heat storage material A is approximately 3.7 times that of water. Silicone oil flow rate 500
Assuming a constant rate of ml/min, it took about 1.8 hours to reach point P 2 from point P 1 in Figure 4, but
If 7 is removed, the time required will be approximately 3.3 hours,
It was shown that the guide plate has a great effect on promoting heat exchange. Experimental Example 2 Heat storage material B (moisture content 43
weight percent, the balance being anhydrous sodium acetate). The temperature of the entire heat storage device was raised uniformly to 65°C in advance to completely melt the inorganic hydrated salt in the heat storage material. Next, the silicone oil was pumped out using an electric pump, and while being refluxed to the inlet 22, it was cooled by a water flow heat exchanger to maintain the inlet temperature at 24°C. Temperature difference between silicone oil outlet and inlet,
Calculate the amount of thermal energy transferred from the heat storage material B to the heat medium from the flow velocity and specific heat, and calculate the heat content Q of the heat storage material
The relationship between T and average temperature T is shown in FIG. The curve C3 corresponds to the heat storage material B, and the curve C4 corresponds to the same volume of water as the heat storage material B measured for comparison. The apparent melting point of heat storage material B was approximately 57°C. Comparing the temperature range of 10℃ above and below this temperature (total 20℃),
The heat content of heat storage material B is approximately 4.1 times that of water. When the seed crystal generator was removed and tested, subcooling of about 8° C. from the above-mentioned apparent melting point was observed. Experimental example 3 Using the same equipment as above, heat storage material C (moisture content
40.5 weight percent, anhydrous sodium acetate 30.5 weight percent, and sodium thiosulfate 29 weight percent). Dissolution in this case is 40-55
℃ and did not exhibit the sharp apparent melting point mentioned above, the heat content in this temperature range was observed to be 3.4 times that of water.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a,bは従来の潜熱型蓄熱器の断面図、
第2図は本発明の直接熱交換形式の蓄熱器の断面
図、第3図a,bは案内板の平面図及び断面図、
第4図及び第5図は試験結果を示す線図である。 21……蓄熱容器、22……入口、23……出
口、24……蓄熱材、25……熱媒体、25′…
…熱媒体貯留空間。
Figures 1a and 1b are cross-sectional views of a conventional latent heat type heat storage device.
FIG. 2 is a sectional view of a direct heat exchange type heat storage device of the present invention, FIGS. 3a and 3b are a plan view and a sectional view of a guide plate,
FIGS. 4 and 5 are diagrams showing the test results. 21... Heat storage container, 22... Inlet, 23... Outlet, 24... Heat storage material, 25... Heat medium, 25'...
...heat medium storage space.

Claims (1)

【特許請求の範囲】[Claims] 1 蓄熱材と混合しない熱媒体液を小滴として、
蓄熱材と直接接触させ、熱交換を行わしめる方式
の潜熱型蓄熱器であつて、蓄熱材が無機水和塩と
その飽和水溶液からなり、蓄熱器内部に、平板部
の片側に熱媒体を小滴として流出浮上させる小孔
群を有し、かつ蓄熱材結晶を担持するための縁板
を有する案内板を、小孔群を有する側が交互に位
置し、かつこの側が高くなるように、水平に対し
5〜7゜の角度だけ傾斜させて複数個配設したこと
を特徴とする直接熱交換方式の潜熱型蓄熱器。
1 Heat transfer liquid that does not mix with the heat storage material is made into small droplets,
It is a latent heat type heat storage device that is in direct contact with a heat storage material to perform heat exchange.The heat storage material is made of an inorganic hydrated salt and its saturated aqueous solution, and a small heat medium is placed inside the heat storage device on one side of the flat plate. A guide plate having a group of small holes that flows out and floats as droplets and an edge plate for supporting the heat storage material crystals is placed horizontally so that the sides with the group of small holes are alternately located and this side is higher. A direct heat exchange type latent heat type heat storage device characterized in that a plurality of latent heat type heat storage devices are arranged at an angle of 5 to 7 degrees with respect to each other.
JP60097614A 1985-05-07 1985-05-07 Latent heat type heat accumulator of direct heat exchange system Granted JPS60259889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60097614A JPS60259889A (en) 1985-05-07 1985-05-07 Latent heat type heat accumulator of direct heat exchange system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60097614A JPS60259889A (en) 1985-05-07 1985-05-07 Latent heat type heat accumulator of direct heat exchange system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56202700A Division JPS6040799B2 (en) 1981-12-15 1981-12-15 Direct heat exchange type latent heat storage device

Publications (2)

Publication Number Publication Date
JPS60259889A JPS60259889A (en) 1985-12-21
JPH0117079B2 true JPH0117079B2 (en) 1989-03-28

Family

ID=14197082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60097614A Granted JPS60259889A (en) 1985-05-07 1985-05-07 Latent heat type heat accumulator of direct heat exchange system

Country Status (1)

Country Link
JP (1) JPS60259889A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002162181A (en) * 2000-11-24 2002-06-07 Kubota Corp Heat storage unit
CN111154457B (en) * 2018-11-08 2021-07-09 江苏集萃分子工程研究院有限公司 Inorganic composite phase change energy storage material and preparation method thereof
CN112284167B (en) * 2019-07-24 2022-07-29 北京百年水木企业运营管理中心 Phase-change energy storage material and preparation method thereof

Also Published As

Publication number Publication date
JPS60259889A (en) 1985-12-21

Similar Documents

Publication Publication Date Title
US4219072A (en) Phase change material heat exchanger
Farid et al. Performance of direct contact latent heat storage units with two hydrated salts
US4111260A (en) Method of heat accumulation and a thermal accumulator for the application of said method
US4466478A (en) Method and apparatus in storing heat
EP0074612B1 (en) Heat-storing apparatus
CN103635757B (en) solar water heater
JP2016142514A (en) Thermal storage device
CN109297335A (en) A kind of Improvement type mixed heat accumulation list tank
KR20160053602A (en) Latent heat storage module and apprartus for latent heat storage
JPS6040799B2 (en) Direct heat exchange type latent heat storage device
US4099558A (en) Method of heat accumulation and a thermal accumulator for the application of said method
JPH0117079B2 (en)
Farid et al. Performance of direct contact latent heat storage unit
JPH0311399B2 (en)
US4285389A (en) Thermal energy storage apparatus
CN114935273A (en) Multistage phase change ball heat storage device
CN209689451U (en) Regenerative apparatus easy to assemble
JPS5849894A (en) Heat accumulating device utilizing latent heat
JPS61173085A (en) Latent heat storage device
JPH0579917B2 (en)
JPS591948B2 (en) heat storage device
JPS5995387A (en) Heat accumulating material for direct heat exchange
JP2012013342A (en) Thermal storage device for heating, and operating method thereof
Ali et al. Thermal Energy Storage System
JP2001041585A (en) Heat storage tank