JPS6040799B2 - Direct heat exchange type latent heat storage device - Google Patents

Direct heat exchange type latent heat storage device

Info

Publication number
JPS6040799B2
JPS6040799B2 JP56202700A JP20270081A JPS6040799B2 JP S6040799 B2 JPS6040799 B2 JP S6040799B2 JP 56202700 A JP56202700 A JP 56202700A JP 20270081 A JP20270081 A JP 20270081A JP S6040799 B2 JPS6040799 B2 JP S6040799B2
Authority
JP
Japan
Prior art keywords
heat storage
heat
storage material
storage device
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56202700A
Other languages
Japanese (ja)
Other versions
JPS58104494A (en
Inventor
岑雄 小坂
正 朝比奈
博史 垰田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP56202700A priority Critical patent/JPS6040799B2/en
Publication of JPS58104494A publication Critical patent/JPS58104494A/en
Publication of JPS6040799B2 publication Critical patent/JPS6040799B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/025Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being in direct contact with a heat-exchange medium or with another heat storage material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Description

【発明の詳細な説明】 本発明は、直援熱交換方式の潜熱型蓄熱器に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a direct assisted heat exchange type latent heat type heat storage device.

現在、熱エネルギーの経済的な管理を目的として、優秀
な蓄熱器の出現が待望されている。
Currently, the emergence of an excellent heat storage device is eagerly awaited for the purpose of economical management of thermal energy.

これまでに、物質の温度変化そのものを利用する函霞熱
型、物質の溶融潜熱を利用する潜熱型、物質の化学変化
熱を利用する反応形など、多くの蓄熱朝珍式が研究され
ているが、いずれも一長一短がある。蓄熱研究の主要な
課題が蓄熱器の性能の向上であることは言うまでもない
が、さらに重要な問題としてそのコストがあげられる。
蓄熱器は省資源、省エネルギーを目的とする機器である
ため、あまり高コストとなっては、いかに性能が優秀で
あっても開発の意義がうすれる。本発明は、このような
蓄熱器において大幅なコストの低減をはかることを目的
とするものである。
To date, many heat storage Chochin methods have been studied, including the Kakasumi type, which uses the temperature change itself of the material, the latent heat type, which uses the latent heat of fusion of the material, and the reaction type, which uses the heat of chemical change of the material. However, each has its advantages and disadvantages. It goes without saying that the main challenge in heat storage research is improving the performance of heat storage devices, but an even more important issue is their cost.
A heat storage device is a device whose purpose is to conserve resources and energy, so if the cost is too high, no matter how good the performance is, the purpose of its development will be lost. The present invention aims to significantly reduce costs in such a heat storage device.

一般に、冷暖房や給湯を目的とする蓄熱では、無機水和
塩(結晶水を持つ無機塩類、たとえば硫酸ナトリウム1
0k塩、Na2S04・1皿20やチオ硫酸ナトリウム
5水塩、Na2S2Q・斑20など)が蓄熱材の有力な
候補物質とされてきた。
In general, in heat storage for heating, cooling, and hot water supply, inorganic hydrated salts (inorganic salts with crystal water, such as sodium sulfate 1
0k salt, Na2S04, 1 plate 20, sodium thiosulfate pentahydrate, Na2S2Q, 20, etc.) have been considered to be promising candidates for heat storage materials.

第1図a,bはそれらの蓄熱材を用いる従来の潜熱型蓄
熱器の構造例を示すもので、同図aはカプセル型、bは
シェル・チューブ型と呼ばれている。第1図aのカプセ
ル型篭熱器において、1は蓄熱容器、2は熱媒体の入口
、3は同出口、4は無機水和塩よりなる潜熱型蓄熱村、
5はその蓄熱、材を充填・密封した多数のカプセルを示
す。また、第1図bのシェル。チューブ型篭熱器におい
て、竃1は蓄熱容器、12は熱媒体の入口、13は同出
口、14は無機水勅塩よりなる潜熱型蓄熱材、15は熱
媒体を通過させるための熱交換チューブを示す。これら
の潜熱型蓄熱器において、蓄熱材4,亀4は溶融と凝固
をくり返すことにより、蓄熱・放熱を行うが、図示した
カプセルや熱交換チューフは、蓄熱材と熱媒体の間に適
当な熱交換面を確保する目的と、溶融した蓄熱材が熱媒
体と共に流出しないように防護する目的をもって設備さ
れている。
FIGS. 1a and 1b show structural examples of conventional latent heat type heat storage devices using these heat storage materials, and FIG. 1a is called a capsule type, and FIG. 1b is called a shell-tube type. In the capsule-type heat storage device shown in FIG.
5 shows a large number of capsules filled and sealed with heat storage material. Also, the shell of FIG. 1b. In the tube-type heat exchanger, the oven 1 is a heat storage container, 12 is an inlet for the heat medium, 13 is an outlet thereof, 14 is a latent heat type heat storage material made of inorganic water salt, and 15 is a heat exchange tube for passing the heat medium. shows. In these latent heat type heat storage devices, the heat storage material 4 and the heat storage material 4 store and release heat by repeating melting and solidification. It is installed for the purpose of securing a heat exchange surface and protecting the molten heat storage material from flowing out together with the heat medium.

ところがこのカプセルや熱交換チューブの製作と加工に
は、非常に多大の経費が必要であり「場合によれば誓熱
材そのものの価格を上回ることもめずらし〈ない。本発
明は、このよつな経費の軽減をはかるため「直接熱交換
方式を用いて、カプセルや熱交換チューブを省略し、蓄
熱器を構造が簡単で低コストに構成したものであって「
蓄熱材と混合しない熱煤(液)体を小滴としてt蓄熱村
と直接接触させ、熱交換を行わしめる方式の潜熱型蓄熱
器において、蓄教材が無機水和塩とその飽和水溶液から
なり、かつその飽和水溶液量が熱エネルギーを貯蔵する
前、または熱エネルギーを放出した後の状態において、
蓄熱材全体の8〜1群容積パーセントとなるように水分
量が調節したことを特徴とするものである。
However, manufacturing and processing these capsules and heat exchange tubes requires an extremely large amount of expense, and in some cases, it is not unusual for the cost to exceed the cost of the thermal insulation material itself. In order to reduce costs, the heat storage device uses a direct heat exchange method, omitting capsules and heat exchange tubes, and has a simple structure and low cost.
In a latent heat type heat storage device in which a hot soot (liquid) that does not mix with the heat storage material is brought into direct contact with the heat storage village in the form of small droplets to perform heat exchange, the storage material consists of an inorganic hydrated salt and its saturated aqueous solution, and before the amount of the saturated aqueous solution stores thermal energy or after releasing thermal energy,
The heat storage material is characterized in that the moisture content is adjusted to be 8 to 1 volume percent of the entire heat storage material.

以下、図面を参照して本発明の蓄熱器についてさらに詳
細に説明する。
Hereinafter, the heat storage device of the present invention will be explained in more detail with reference to the drawings.

第2図は本発明に係る潜熱型蓄熱器の基本的構造を示し
、21は蓄熱容器、22は熱媒体の入口、23はその出
口、24は蓄熱に適した材料からなる蓄熱材、25は上
記蓄熱材よりも比重が小さい熱媒(液)体であって「上
記蓄熱容器21内においては、充填した蓄熱村24の上
方に熱媒体の出口23に通じる熱媒体貯留空間25′を
形成している。
FIG. 2 shows the basic structure of the latent heat type heat storage device according to the present invention, in which 21 is a heat storage container, 22 is a heat medium inlet, 23 is an outlet thereof, 24 is a heat storage material made of a material suitable for heat storage, and 25 is a heat storage material. A heat medium (liquid) body having a specific gravity smaller than that of the heat storage material, "In the heat storage container 21, a heat medium storage space 25' communicating with the heat medium outlet 23 is formed above the filled heat storage village 24. ing.

また、26は断熱材層L 271ま案内板、28はポン
プ、29は熱源または熱負荷「 3川まポンプ281こ
よって供給される熱媒体25を入口22において蓄熱村
24中に小滴として分散噴出させる多孔体、3亀は蓄熱
容器2亀から断熱材層26を通してパイプ先端を外部に
導出することにより形成した種子結晶発生器を示してい
る。而して、上記蓄熱容器21の底部の入口22におい
て熱媒体を小滴として噴出させる構成は、熱媒体を蓄熱
材に直接接触させるための手段を構成し、また蓄熱容器
21の上部に形成した熱媒体貯留空間25′及びそれに
通じる出口23は、熱媒体25の比重を蓄熱材24のそ
れよりも小さくしたことから、熱交換のために直接接触
した熱媒体25を蓄熱村24から分離抽出するための手
段を*構成することになる。上記熱媒体25を蓄熱材2
恥こ直接接触させるための手段及び接触した熱媒体2S
を蓄熱材24から分離する手段としては、図示の穣成例
に限ることなく、同一の作用を期待できる他の構成を採
用することができる。上記叢熱材24としては無機水和
塩を用いるが「その中を熱媒体25が小滴となって浮上
するため「蓄放熱操作の過程で全体的に固体化すること
があってはならない。
Further, 26 is a heat insulating material layer L, 271 is a guide plate, 28 is a pump, 29 is a heat source or heat load, and the heat medium 25 supplied by the pump 281 is dispersed as small droplets into the heat storage village 24 at the inlet 22. The porous body to be ejected, 3 indicates a seed crystal generator formed by leading the tip of the pipe from the heat storage container 2 to the outside through the heat insulating material layer 26.Thus, the inlet at the bottom of the heat storage container 21 The configuration in which the heat medium is ejected as small droplets at 22 constitutes a means for bringing the heat medium into direct contact with the heat storage material, and the heat medium storage space 25' formed in the upper part of the heat storage container 21 and the outlet 23 communicating therewith constitute a means for directly contacting the heat medium with the heat storage material. Since the specific gravity of the heat medium 25 is made smaller than that of the heat storage material 24, it constitutes a means for separating and extracting the heat medium 25 that has been in direct contact with it for heat exchange from the heat storage village 24. Heat medium 25 as heat storage material 2
Means for direct contact with the shame and the contacted heat medium 2S
The means for separating the heat storage material 24 from the heat storage material 24 is not limited to the illustrated example, and other configurations that can be expected to have the same effect can be adopted. Inorganic hydrated salt is used as the heat flux material 24, but since the heat medium 25 floats therein in the form of small droplets, it must not solidify as a whole during the heat storage/dissipation operation.

そのため、無機水和塩にその化学量論比以上の水を含有
させ「無機水和塩の融点以下の温度でも「即ち熱エネル
ギーを貯蔵する前または熱エネルギーを放出した後の状
態においても、無機水勅塩の結晶とその飽和水溶液とが
共存するように調整したものが使用される。無機水和塩
の種類は非常に多く〜適当な無機水和塩を選択使用でき
るが「適量の飽和水溶液量を得るために添加すべき水分
量は、無機水和塩の種類によってそれぞれ相違する。こ
の水分量は、あまり少なくては熱媒体の浮上が困難であ
り「 またあまり多くては蓄熱材の単位体積当りの溶融
潜熱が低下する。種々検討した結果、適当と考えられる
水分量の一例を次表に示す。このような水分量では「蓄
熱村に熱エネルギーを貯蔵する前、またわ熱ェネルギ山
を放出した後の状態において、蓄熱材はその全量に対し
8〜18容積パーセントの飽和水溶液と残部の水和塩結
晶を含有しており、熱媒体が小摘となって、蓄熱材中を
上昇することが可能である。
Therefore, by containing more than the stoichiometric ratio of water in the inorganic hydrated salt, the inorganic Inorganic hydrated salts prepared so that crystals and their saturated aqueous solutions coexist are used.There are many types of inorganic hydrated salts, and an appropriate inorganic hydrated salt can be selected and used. The amount of water that should be added to obtain the desired amount of water differs depending on the type of inorganic hydrated salt.If this water content is too small, it will be difficult for the heat medium to float; The latent heat of fusion per volume decreases.As a result of various studies, an example of the moisture content that is considered to be appropriate is shown in the table below. In the state after the heat storage material is released, the heat storage material contains 8 to 18 volume percent of the saturated aqueous solution and the remaining hydrated salt crystals based on the total amount, and the heat transfer medium becomes small pieces and rises in the heat storage material. It is possible to do so.

なお、無機水和塩と適量の飽和水溶液が共存することに
より、従来法でみられた「過冷」や「相分離」などの不
都合な現象も大幅に改善される。また、上記蓄熱体とし
ては、二種以上の無機水和塩の結晶とそれらの飽和水溶
液を用いることもできる。
Furthermore, by coexisting an inorganic hydrated salt with an appropriate amount of a saturated aqueous solution, disadvantageous phenomena such as "overcooling" and "phase separation" observed in conventional methods can be significantly improved. Further, as the heat storage body, crystals of two or more types of inorganic hydrated salts and saturated aqueous solutions thereof can also be used.

このような蓄熱体の見かけ融点は、熱エネルギーの使途
(冷房、暖房、給湯など)と関連して重要であるが、無
機水和塩の種類、水含量「二種以上の塩の混合比を適切
に選定することによりその見かけ融点を調節し、幅広い
使途に対応させることができる。第1表 一方、熱媒体25としては、一般に、蓄熱村24と化学
反応や溶解等の相互作用がなく「かつ蓄熱材よりも比重
の小さい液体、例えばシリコ−ン油、灯油、軽油、石油
石油パラフィン、やし油等が使用される。
The apparent melting point of such a heat storage body is important in relation to the use of thermal energy (cooling, heating, hot water supply, etc.), but it also depends on the type of inorganic hydrated salt, the water content, the mixing ratio of two or more salts, etc. By appropriately selecting it, its apparent melting point can be adjusted and it can be used in a wide range of applications.Table 1 On the other hand, the heat medium 25 is generally a material that does not interact with the heat storage village 24 through chemical reactions, melting, etc. In addition, a liquid having a specific gravity lower than that of the heat storage material, such as silicone oil, kerosene, light oil, petroleum paraffin, and coconut oil, is used.

特殊な場合には、空気等の気体を使用することもできる
。上記液体について種々検討したが、粘度が使用温度に
おいて5〜20センチストークスのシリコーン油が最適
である。シリコーン油は、表面張力が小さく、小滴にな
り易い上に、蓄熱村融液とェマルジョンを生成しないの
で容易に分離できるなどの点ですぐれているが、あまり
‘こ高粘度のシリコーン油は、ポンプ28による輸送動
力が過大となるために適さない。またシリコーン油は蓄
熱材の上面を覆って蓄熱材の水分の変動を防止するほか
、他の機器、例えば太陽熱集熱器や給湯器等の腐食を軽
減させる効果をも有している。上記構成を有する蓄熱容
器に熱を貯蔵する場合には、熱媒体25をポンプ28に
より熱源29に送給し、それを熱源29において加熱し
てから蓄熱容器の入口22に戻して循環させる。
In special cases, a gas such as air may also be used. Various studies have been conducted on the above liquid, and silicone oil having a viscosity of 5 to 20 centistokes at the operating temperature is optimal. Silicone oil is excellent in that it has a low surface tension, easily forms droplets, and does not form an emulsion with the thermal storage melt, making it easy to separate. However, silicone oil with a high viscosity is This is not suitable because the transport power by the pump 28 becomes excessive. In addition, silicone oil covers the top surface of the heat storage material to prevent fluctuations in the moisture content of the heat storage material, and also has the effect of reducing corrosion of other equipment, such as solar heat collectors and water heaters. When storing heat in the heat storage container having the above configuration, the heat medium 25 is fed to the heat source 29 by the pump 28, heated in the heat source 29, and then returned to the inlet 22 of the heat storage container for circulation.

上記熱源29としては、例えば太陽熱、工場廃液、夜間
電力などがある。熱源29において加熱されて蓄熱容器
に送られた熱媒体は、多孔体30内を通過することによ
りづ・滴となって篭熱体24の中を上昇(浮上)しつつ
直接的に蓄熱材24と熱交換を行い、篭熱容器21内の
上方の熱媒体貯留空間25′へ戻る。このような操作を
継続すると、蓄熱村24の温度が上昇すると同時に、そ
の中に含まれる無機水和塩結晶が融解して、溶融潜熱に
相当する熱量が貯蔵される。逆に、蓄熱器から熱を放出
させる場合には「熱媒体25を暖房用ファンコイル、吸
収式冷凍機、給油器などの熱負荷29へ送り、熱媒体2
5を冷却させてから入口22に戻して還流させる。
Examples of the heat source 29 include solar heat, factory waste liquid, and nighttime electricity. The heat medium heated by the heat source 29 and sent to the heat storage container passes through the porous body 30, becomes droplets, and rises (floats) inside the cage heat body 24, and directly flows into the heat storage material 24. and returns to the upper heat medium storage space 25' in the cage heat container 21. If such an operation is continued, the temperature of the heat storage village 24 rises, and at the same time, the inorganic hydrated salt crystals contained therein melt, and the amount of heat corresponding to the latent heat of fusion is stored. On the other hand, when releasing heat from a heat storage device, the heat medium 25 is sent to a heat load 29 such as a heating fan coil, an absorption chiller, or an oil supply device.
5 is allowed to cool and then returned to the inlet 22 to reflux.

入口22から送入された熱媒体25は、蓄熱村24中を
小滴となって上昇(浮上)しつつ熱交換を行い、蓄熱材
24が冷却される。その結果、融解していた無機水和塩
が析出し、相当する溶融潜熱が熱線体25に与えられる
。以上の説明から明らかのように、上記蓄熱器では、蓄
熱材24の温度変化にに伴って、その中に含まれる無機
水和塩の結晶とその融液である飽和水溶液の量比が大き
く変化する。
The heat medium 25 introduced from the inlet 22 exchanges heat while rising (floating) in the form of small droplets in the heat storage village 24, thereby cooling the heat storage material 24. As a result, the molten inorganic hydrated salt precipitates, and the corresponding latent heat of melting is imparted to the heating wire 25. As is clear from the above description, in the heat storage material 24, as the temperature of the heat storage material 24 changes, the ratio of the amounts of the inorganic hydrated salt crystals contained therein to the saturated aqueous solution that is the melt thereof changes greatly. do.

しかし、蓄放熱操作の過程で、蓄熱材全体が固体化しな
いように、無機水和塩の化学量論比以上の水を含有させ
、水和塩の融点以下の温度でも、適量の飽和水溶液が無
機水和塩の結晶と共存する状態に調製しているため、熱
媒体を蓄熱体中にづ・満として分散させることによる両
者の直接接触に支障を来たすことはない。次に、前記案
内板27について説明する。
However, in order to prevent the entire heat storage material from solidifying in the process of heat storage and release, it is necessary to contain water in an amount higher than the stoichiometric ratio of the inorganic hydrated salt, so that even at a temperature below the melting point of the hydrated salt, an appropriate amount of saturated aqueous solution is produced. Since it is prepared in a state where it coexists with the crystals of the inorganic hydrated salt, direct contact between the two by dispersing the heat medium in the heat storage body will not be hindered. Next, the guide plate 27 will be explained.

この案内板27は、熱媒体25が蓄熱材24中を急速に
上昇して分離するのを抑制し、両者の接触時間を十分に
保って熱交換性能を高めるためのもので、第3図a,b
にその構造例を示している。同図の案内板27は、その
平板部32の片側に熱媒体を小滴状として流出浮上させ
る小孔鬼羊33を有し、かつその周囲に熱媒体流(矢印
)を適正な方向に譲導すると同時に平板部32の上に析
出した水和塩結晶35をすべり落ちないように支持する
緑板34を有するものである。平板部32は小孔群33
を有する側が高くなるようにして水平に対して5〜7o
の角度だけ煩斜するように縁板34と接合され、第2図
及び第3図bに示すように、小孔群33を有する側が左
右交互に位置するように蓄熱容器21中に配置される。
このような案内板27を設置しない場合には、蓄熱器の
放熱過程において、融液から無機水和塩が析出すると、
比重差によって水和塩結晶が容器の底部に沈降し、大量
の水和塩結晶が容器底部に推債すると、入口22を通っ
て熱媒体が流入することが困難となり、また偏流を生じ
て熱交換が不良になることもある。
This guide plate 27 is for suppressing the rapid rise and separation of the heat medium 25 in the heat storage material 24 and for maintaining sufficient contact time between the two to improve heat exchange performance. ,b
An example of its structure is shown below. The guide plate 27 in the same figure has a small hole 33 on one side of its flat plate part 32 that causes the heat medium to flow out and float in the form of small droplets, and around the small hole 33 to direct the flow of the heat medium (arrow) in an appropriate direction. It has a green plate 34 that supports the hydrated salt crystals 35 deposited on the flat plate part 32 so that they do not slip off. The flat plate part 32 has a small hole group 33
5 to 7 degrees from the horizontal with the side with the
The heat storage container 21 is joined to the edge plate 34 so as to be inclined at an angle of .
If such a guide plate 27 is not installed, inorganic hydrated salts will precipitate from the melt during the heat dissipation process of the heat storage device.
The hydrated salt crystals settle to the bottom of the container due to the difference in specific gravity, and when a large amount of hydrated salt crystals settle to the bottom of the container, it becomes difficult for the heat transfer medium to flow through the inlet 22, and a drift occurs, causing heat transfer. Sometimes the replacement is defective.

しかるに、上記案内板を設置すると、蓄熱材中に生成し
た水和塩結晶が分散して担持され、その全部が器底に推
積することがなく、熱交換性能が高められる。案内板の
間隔は5〜10秘が好適である。次に、前記種子結晶発
生器31について説明する。
However, when the guide plate is installed, the hydrated salt crystals generated in the heat storage material are dispersed and supported, and all of them do not accumulate at the bottom of the vessel, improving heat exchange performance. The preferred distance between the guide plates is 5 to 10 spaces. Next, the seed crystal generator 31 will be explained.

この種子結晶発生器31は管状容器の中に、蓄熱材と同
種の無機水和塩を充填し、その一端が蓄熱容器21内部
に蓄熱材24と接触して開〇しており、池端が断熱材層
26を貫通して外部へ引出され、封止されている。蓄熱
材が十分に昇温され、蓄熱村中の無機水和塩が完全に溶
融している場合、次に放熱を行わせようとすると、結晶
核の不足のため、軽度の過冷が観察されることがある。
種子結晶発生器31中の水和塩は、特に外部に引出され
た部分では加熱をうけないため、溶融せずに結晶のまま
で残存できる。このため、放熱に際してその結晶が種子
結晶として作用し、過冷の少ない円滑な凝固を進行させ
ることができる。以上に詳述したところから明らかなよ
うに、本発明の蓄熱器によれば、直接接触の熱交換方式
をとることによって従来の装置では多大の経費を要して
いたカプセルや熱交換チューブを不要とし、極めて安価
に蓄熱器を構成することができ、熱エネルギーの有効利
用に資するところが大である。以下に本発明の実施例を
示す。〔実施例 1〕 第2図に示す構造を有し、その蓄熱容器の直径が3ルネ
、高さが80肌の円筒型蓄熱器を製作した。
This seed crystal generator 31 has a tubular container filled with an inorganic hydrated salt of the same type as the heat storage material, one end of which is opened in contact with the heat storage material 24 inside the heat storage container 21, and the pond end is insulated. It penetrates the material layer 26, is drawn out to the outside, and is sealed. If the temperature of the heat storage material is sufficiently raised and the inorganic hydrated salt in the heat storage village is completely melted, the next time you try to dissipate heat, slight supercooling will be observed due to the lack of crystal nuclei. Sometimes.
The hydrated salt in the seed crystal generator 31 is not heated, especially in the portion pulled out to the outside, so it can remain as a crystal without melting. Therefore, the crystals act as seed crystals during heat dissipation, allowing smooth solidification to proceed with little overcooling. As is clear from the detailed description above, the heat storage device of the present invention uses a direct contact heat exchange method, thereby eliminating the need for capsules and heat exchange tubes, which required a great deal of expense in conventional devices. This makes it possible to construct a heat storage device at an extremely low cost, and greatly contributes to the effective use of thermal energy. Examples of the present invention are shown below. [Example 1] A cylindrical heat storage device having the structure shown in FIG. 2 and having a heat storage container diameter of 3 mm and height of 80 mm was manufactured.

この中に底部からの高さが65伽となるまで蓄熱村A(
水分量6亀重量パーセント、残部が無水炭酸ナトリウム
)を入れ、蓄熱材の上部に厚みが7弧になるまでシリコ
ーン油を入れて熱媒体とした。案内板は第3図a,bの
形状のものを10枚設置した。熱媒体を出口23から電
動ポンプで汲出し、入ロ22に還流する途中で髄熱を用
いて加熱し、入口22での温度が6びCになるように調
節を行った。シリコーン油の出口と入口での温度差を計
測し、その日韓熱と流速を用いて熱媒体から蓄熱材へ移
動した熱エネルギー量を計算した。求められた蓄熱材の
熱含量Qと蓄熱材の平均温度Tの関係を第4図に示した
。図中の曲線C,は蓄熱材1のものであり、曲線C2は
比較のために蓄熱材Aと等容積の水について実験したも
のである。Qが急増する温度(蓄熱村の見かけ融点)は
約33℃であった。この見かけ融点から上下1び0(計
2ぴ0)の温度幅をとるとき、蓄熱材Aの熱容量は水の
それの約3.7倍である。シリコーン油の流速を500
の‘/分に一定とすると、第4図のP,点からP2点に
到達するのに約1.8時間を要したが、案内板27を取
去った場合は所要時間が約3.袖時間となり、案内板の
熱交換促進効果が大であることが示された。〔実施例
2〕実施例1と同一の装置に、篭熱材B(水分量43重
量パーセント、残部が無水酢酸ナトリウム)を充填した
Heat storage village A (
A water content of 6% by weight and the remainder being anhydrous sodium carbonate) was added, and silicone oil was added to the top of the heat storage material until the thickness reached 7 arcs to serve as a heat medium. Ten guide boards with the shapes shown in Figure 3 a and b were installed. The heat medium was pumped out from the outlet 23 with an electric pump, heated using marrow heat while flowing back into the inlet 22, and the temperature at the inlet 22 was adjusted to 6°C. The temperature difference between the outlet and inlet of the silicone oil was measured, and the amount of thermal energy transferred from the heat medium to the heat storage material was calculated using the Japanese-Korean fever and flow velocity. The relationship between the determined heat content Q of the heat storage material and the average temperature T of the heat storage material is shown in FIG. Curve C in the figure is for heat storage material 1, and curve C2 is for comparison with heat storage material A and the same volume of water tested. The temperature at which Q rapidly increased (the apparent melting point of the thermal storage village) was approximately 33°C. When taking a temperature range of 1 and 0 above and below (total of 2 and 0) from this apparent melting point, the heat capacity of heat storage material A is about 3.7 times that of water. Increase the flow rate of silicone oil to 500
Assuming that the rate is constant at '/min, it took about 1.8 hours to reach point P2 from point P in Fig. 4, but if the guide board 27 was removed, the time required was about 3.5 hours. It was shown that the guide plate had a great effect on promoting heat exchange. 〔Example
2] The same apparatus as in Example 1 was filled with cage heating material B (moisture content: 43% by weight, remainder being anhydrous sodium acetate).

あらかじめ蓄熱器全体を均一に6g0になるまで昇温さ
せ、蓄熱材中の無機水和塩を完全に溶融させた。次に、
電動ポンプを用いてシリコーン油を汲出し、入口22に
還流する途中で水流熱交換器により冷却し、入口温度を
24℃に保持した。シリコーン油の出口と入口における
温度差、流速及び比熱から、姿熱材Bから熱媒体へと移
行した熱エネルギー量を計算し、蓄熱材の熱舎量Qと平
均温度Tの関係を第5図に示す。曲線C3は蓄熱材Bに
、また曲線C4は比較のため計測した蓄熱材Bと等容積
の水に対応する結果である。姿熱村Bの見かけ融点は5
70であった。この温度から上下1oo○(計20ご○
)の温度幅で比較すると蓄熱村Bの熱舎量は水の約4.
1倍となる。種子結晶発生器を取除いて試験すると、前
述の見かけ融点から約8℃の過冷が観察された。〔実施
例 3〕 上述と同一の装置を用いて、蓄熱材C(水分量40.5
重量パーセント、無水酢酸ナトリウム30.5重量パー
セント、チオ硫酸ナトリウム2携重量パーセント)によ
り試験した。
The temperature of the entire heat storage device was raised uniformly to 6g0 in advance to completely melt the inorganic hydrated salt in the heat storage material. next,
Silicone oil was pumped out using an electric pump and cooled by a water flow heat exchanger on the way to the inlet 22 to maintain the inlet temperature at 24°C. From the temperature difference, flow velocity, and specific heat at the outlet and inlet of the silicone oil, calculate the amount of thermal energy transferred from the bulk heat material B to the heat medium, and calculate the relationship between the heat capacity Q of the heat storage material and the average temperature T as shown in Figure 5. Shown below. The curve C3 corresponds to the heat storage material B, and the curve C4 corresponds to the same volume of water as the heat storage material B measured for comparison. The apparent melting point of Satatsumura B is 5
It was 70. From this temperature up and down 1oo○ (total 20 degrees
), the amount of heat storage in heat storage village B is approximately 4.5 times that of water.
It becomes 1 times. When the seed crystal generator was removed and tested, subcooling of about 8°C from the above-mentioned apparent melting point was observed. [Example 3] Using the same equipment as described above, heat storage material C (moisture content: 40.5
Weight percent, anhydrous sodium acetate 30.5 weight percent, sodium thiosulfate 30.5 weight percent).

この場合の融解は40〜55℃で起り、前述のようなは
っきりした見かけ融点は示さなかったが、この温度範囲
での熱含量は水の3.4倍に達することが観察された。
Melting in this case occurred between 40 and 55° C., and although it did not exhibit a clear apparent melting point as described above, the heat content in this temperature range was observed to be 3.4 times higher than that of water.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは従来の潜熱型蓄熱器の断面図、第2図は
本発明の直接熱交換形式の蓄熱器の断面図、第3図a,
bは案内板の平面図及び断面図、第4図及び第5図は試
験結果を示す線図である。 21・・・・・・蓄熱容器、22・・・・・・入口、2
3・・・・・・出口、24・・・・・・蓄熱材、25・
・・・・・熱媒体、25′・・・・・・熱媒体貯留空間
。 第1図 第2図 第3図 第4図 第5図
Figures 1a and 1b are cross-sectional views of a conventional latent heat type heat storage device, Figure 2 is a sectional view of a direct heat exchange type heat storage device of the present invention, and Figures 3a,
b is a plan view and a sectional view of the guide plate, and FIGS. 4 and 5 are diagrams showing the test results. 21... Heat storage container, 22... Inlet, 2
3... Outlet, 24... Heat storage material, 25.
...Heat medium, 25'...Heat medium storage space. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1 蓄熱材と混合しない熱媒(液)体を小滴として、蓄
熱材と直接接触、させ熱交換を行わしめる方式の潜熱型
蓄熱器であつて、蓄熱材が無機水和塩とその飽和水溶液
からなり、かつその飽和水溶液量が熱エネルギーを貯蔵
する前、または熱エネルギーを放出した後の状態におい
て、蓄熱材全体の8〜18容積パーセントとなるように
水分量が調節されていることを特徴とする直接熱交換方
式の潜熱型蓄熱器。
1. A latent heat type heat storage device in which droplets of a heat medium (liquid) that does not mix with the heat storage material are brought into direct contact with the heat storage material to perform heat exchange, and the heat storage material is an inorganic hydrated salt and its saturated aqueous solution. , and the amount of water is adjusted so that the amount of the saturated aqueous solution is 8 to 18 percent by volume of the entire heat storage material before storing thermal energy or after releasing thermal energy. A direct heat exchange type latent heat storage device.
JP56202700A 1981-12-15 1981-12-15 Direct heat exchange type latent heat storage device Expired JPS6040799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56202700A JPS6040799B2 (en) 1981-12-15 1981-12-15 Direct heat exchange type latent heat storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56202700A JPS6040799B2 (en) 1981-12-15 1981-12-15 Direct heat exchange type latent heat storage device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP60097614A Division JPS60259889A (en) 1985-05-07 1985-05-07 Latent heat type heat accumulator of direct heat exchange system
JP60097615A Division JPS60259890A (en) 1985-05-07 1985-05-07 Latent heat type heat accumulator of direct heat exchange system

Publications (2)

Publication Number Publication Date
JPS58104494A JPS58104494A (en) 1983-06-21
JPS6040799B2 true JPS6040799B2 (en) 1985-09-12

Family

ID=16461705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56202700A Expired JPS6040799B2 (en) 1981-12-15 1981-12-15 Direct heat exchange type latent heat storage device

Country Status (1)

Country Link
JP (1) JPS6040799B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006308256A (en) * 2005-05-02 2006-11-09 Kobe Steel Ltd Heat storage device and method of operating heat storage device
JP2010043857A (en) * 2005-07-01 2010-02-25 Kobelco Eco-Solutions Co Ltd Method of storing heat into heat storage device
JP2007064614A (en) * 2005-08-03 2007-03-15 Kobelco Eco-Solutions Co Ltd Method for storing heat in heat storage apparatus, and heat storage system
JP4999538B2 (en) * 2007-05-14 2012-08-15 株式会社神戸製鋼所 Heat storage device
JP2007285701A (en) * 2007-08-06 2007-11-01 Kobe Steel Ltd Heat storage device and method of operating heat storage device
CN106123337A (en) * 2016-07-26 2016-11-16 李渊 A kind of energy storing electric water heater

Also Published As

Publication number Publication date
JPS58104494A (en) 1983-06-21

Similar Documents

Publication Publication Date Title
US5687706A (en) Phase change material storage heater
US4109702A (en) Energy storage and retrieval as heat
US4111260A (en) Method of heat accumulation and a thermal accumulator for the application of said method
EP0074612B1 (en) Heat-storing apparatus
US4466478A (en) Method and apparatus in storing heat
Heinz et al. Application of phase change materials and PCM-slurries for thermal energy storage
SE408955B (en) PROCEDURE AND DEVICE FOR STORING HEAT ENERGY
JPS6040799B2 (en) Direct heat exchange type latent heat storage device
JP2016142514A (en) Thermal storage device
CN103635757A (en) Solar water heater
US4099558A (en) Method of heat accumulation and a thermal accumulator for the application of said method
KR20160053602A (en) Latent heat storage module and apprartus for latent heat storage
CN109297335A (en) A kind of Improvement type mixed heat accumulation list tank
US4099557A (en) Method of heat accumulation and a thermal accumulator for the application of said method
JPH0117079B2 (en)
JPH0311399B2 (en)
CN114935273A (en) Multistage phase change ball heat storage device
JPH0245114B2 (en)
JPS5849894A (en) Heat accumulating device utilizing latent heat
HU188494B (en) High-capacity heat accumulator
JPS61173085A (en) Latent heat storage device
JPH0579917B2 (en)
JP2001041585A (en) Heat storage tank
Ali et al. Thermal Energy Storage System
JPS6228995B2 (en)