JPS6228995B2 - - Google Patents

Info

Publication number
JPS6228995B2
JPS6228995B2 JP56164165A JP16416581A JPS6228995B2 JP S6228995 B2 JPS6228995 B2 JP S6228995B2 JP 56164165 A JP56164165 A JP 56164165A JP 16416581 A JP16416581 A JP 16416581A JP S6228995 B2 JPS6228995 B2 JP S6228995B2
Authority
JP
Japan
Prior art keywords
heat storage
heat
nucleating
sodium thiosulfate
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56164165A
Other languages
Japanese (ja)
Other versions
JPS5866799A (en
Inventor
Keiichi Koike
Michio Yanatori
Hideaki Kanbara
Seigo Myamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56164165A priority Critical patent/JPS5866799A/en
Publication of JPS5866799A publication Critical patent/JPS5866799A/en
Publication of JPS6228995B2 publication Critical patent/JPS6228995B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は太陽熱利用暖房装置の蓄熱器用蓄熱材
に関するものである。太陽熱などを利用して冷暖
房を行わせる方法として水を蓄熱物質として用い
その顕熱を利用する場合と塩類水和物の融解一凝
固時の潜熱を利用する場合がある。ヒートポンプ
を用いず、ボイラーの温水熱、工場排熱などを蓄
熱し、そのまま暖房に利用する場合には40〜50℃
の範囲に融点を有する蓄熱材が必要である。 これにはチオ硫酸ナトリウム(Na2S2O3
5H2O)が48.5℃の融点を有し、蓄熱量も82Cal/
c.c.と大きく安価である点にすぐれている。しかし
この物質は凝固時の過冷が大きく、ガラス容器中
では20〜30℃の過冷を示し貯えた熱を所定温度で
放出できない欠点を有している。本発明の目的は
このチオ硫酸ナトリウム5水塩の過冷を防止し、
所定温度で蓄熱放熱が行なわれる蓄熱材を提供す
ることである。 一般に液相から固相への相変化は結晶核の発生
段階と核を中心として結晶の成長段階に分けて考
えることができる。核発生には大きなエネルギー
を必要とし過冷現象はこのエネルギー障壁のため
に生ずることが知られている。このため過冷を防
止するため核物質を添加する方法が行なわれてい
る。この場合核物質は液相中に溶解せずに存在
し、界面上に新たに生成する結晶との界面エネル
ギーが小さいこと、核がある臨界半径以上の大き
さを持つことが必要であることも知られている。
(臨界半径は1〜100mμ)また結晶の成長は低分
子密度の結晶面(立方晶系ならば100,110,111
面)で起り易く、また結晶はステツプの移動の形
をとつて成長することが知られている。 このような発核材の例として塩化カルシウム6
水塩に対する水酸化バリウム、水酸化ストロンチ
ウムの発核効果が認められている。しかしチオ硫
酸ナトリウムはアルカリ性になると分解するので
アルカリ性物質である水酸化バリウム、水酸化ス
トロンチウムを添加することはできない。 このような理論的見地に立脚してチオ硫酸ナト
リウムの発核材を実験検討した結果、劈開性を有
する有機化合物結晶で昇華性であるか、あるいは
水またはチオ硫酸ナトリウムの水溶液中に微量溶
解する物質はチオ硫酸ナトリウムの発核材になり
うること、また発核材の密度がチオ硫酸ナトリウ
ムの比重1.74±0.3の範囲(1.44〜2.04)にある場
合、発核材としての効果が特に大きいことがわか
つた。 劈開性結晶は劈開面における結合力が弱いこと
が知られている。例えば、原子が二次元に配列し
て薄片状結晶を作る場合、薄片の平面間の結合は
弱く劈開面になり易い。この劈開面は低エネルギ
ー面(低密度面)であり、この面上に結晶が生長
し易いと考えられる。また発核材の密度が蓄熱材
の密度に近い(1.74±0.3)ことは結晶すべき塩
類溶液中に結晶核を均一に分散させ、溶液内の各
所で結晶生長を促進する効果がある。 また発核材が昇華性あるいは水及び塩類水溶液
に微量溶解することは結晶表面が微量に溶解除去
されて清浄化し、結晶の生長に好適な表面が形成
されることによると考えられる。 また平面状に分子が配列し、層構造をとる有機
化合物では層間が劈開面になることが多い。 このような化合物では劈開面に垂直方向の結晶
成長速度が大きく、層に平行方向の結晶成長速度
は遅い。一般に棒状の分子軸を有する結晶では分
子軸に垂直方向に成長し易く、平板状の分子配列
をとる結晶では平面がつみ重なつて成長すること
が多く、格子間隔が小さい方向に成長し、単位格
子と結晶形態は相反則をとることが多い。このた
め結晶成長方向に直角に破断(劈開など)された
面は発核材としてその面上に他の結晶を成長させ
ることができるのである。 これらの発核材は微量添加しても効果が認めら
れるが実用的にはチオ硫酸ナトリウムに対して
0.01重量%以上である。添加の上限は特に作用効
果上限定する理由はないが多量の添加は蓄熱密度
を減少させるので10重量%程度に限定することが
実用的である。これらの発核材の添加方法として
はチオ硫酸ナトリウム5水塩に直接添加してもよ
いし、その他必要に応じて適当な支持体、担体に
発核材を保持させ、これをチオ硫酸ナトリウム中
に介在させてもよい。 第1図はチオ硫酸ナトリウム5水塩
(Na2SO3・5H2O)に本発明の発核材を添加した
蓄熱材の蓄熱一放熱状況を発核材無添加の場合及
び水を蓄熱材としたものとを対比して示したもの
である。 この図から発核材無添加の場合は48.5℃以上で
融解したのち冷却すると過冷却のため25℃までは
凝固せず25℃で1′(CD)に示すように放熱し、
ACDFAで示す熱履歴を画く。これに対して本発
明の発核材である無水フタル酸を0.1%添加した
蓄熱材では45℃で2′(BE)で示すように放熱
し、ABFFAの吸熱一放熱の熱履歴サイクルを画
くことを示している。なお、図の矢印は蓄熱量の
変化方向を示している(1′,2′は放熱、2は吸
熱)。 こゝでチオ硫酸ナトリウムの単位体積当りの蓄
熱量を比較するとチオ硫酸ナトリウム5水塩の場
合48.5℃で約82KCal/であるのに対して曲線
3に示した水の同温度における蓄熱量は約
10KCal/であり、チオ硫酸ナトリウムが蓄熱
材としてすぐれていることは明らかである。 第2図は蓄熱器のモデル実験装置を示したもの
で1は内部に蓄熱材が充填された蓄熱槽、2は熱
交換用の円筒水槽、3は撹拌装置、4は温度セン
サ、5は断熱材である。 第3図は第2図の装置で蓄熱槽と熱交換用の水
槽の容積比が1:5である場合の熱交換水槽の温
度変化を経時的に示したものである。図の測定条
件は蓄熱槽内のチオ硫酸ナトリウム5水塩を予め
60℃に加熱しておき熱交換水槽の温度を20℃とし
て撹拌しながら温度の経時変化を測定した。 曲線1a及び1bはそれぞれ発核材なし及びあ
りの場合の蓄熱槽1の温度変化を、曲線2a及び
2bは蓄熱材の温度変化から求めた蓄熱槽1の放
熱速度をそれぞれ発核材なし及び発核材あり(無
水フタル酸0.1%添加)の場合について示したも
のである。本発明による場合は曲線2bから明ら
かなように大きな放熱速度が得られ、20〜60℃の
範囲で熱交換を行わせる場合、本発明の発核材は
蓄熱量が大きくする効果が認められる。 以下本発明の実施例につき説明する。 チオ硫酸ナトリウム5水塩(Na2S2O3
5H2O)に第1表に示す発核材を0.05%添加した
蓄熱材に温度計(銅−ユニスタンヌン熱電対)を
挿入して70℃〜20℃の範囲に加熱冷却を繰返し、
蓄熱材の融解―凝固特性を測定した。この結果を
第1表に示した。 第1表の結果から発核材を添加した蓄熱材は過
冷が少なく一定温度で凝固、融解し蓄熱材として
安定していることが認められる。 また、第1表に示す発核材を1%添加した場合
も同様の効果が得られた。
The present invention relates to a heat storage material for a heat storage device of a solar heating system. There are two ways to perform air conditioning and heating using solar heat and the like: one uses water as a heat storage material and uses its sensible heat, and the other uses the latent heat from the melting and solidification of salt hydrates. If you do not use a heat pump and store boiler hot water heat, factory exhaust heat, etc. and use it as is for heating, the temperature will be 40 to 50℃.
A heat storage material with a melting point in the range of . This includes sodium thiosulfate (Na 2 S 2 O 3
5H 2 O) has a melting point of 48.5℃, and the amount of heat storage is 82Cal/
It is excellent in that it is large in size and inexpensive. However, this substance suffers from a large degree of supercooling during solidification, and has the disadvantage that it is supercooled to 20 to 30°C in a glass container and cannot release the stored heat at a predetermined temperature. The purpose of the present invention is to prevent overcooling of this sodium thiosulfate pentahydrate,
It is an object of the present invention to provide a heat storage material that stores and releases heat at a predetermined temperature. In general, a phase change from a liquid phase to a solid phase can be thought of as being divided into a crystal nucleus generation stage and a crystal growth stage centered on the nucleus. Nuclear generation requires a large amount of energy, and it is known that supercooling occurs due to this energy barrier. For this reason, a method of adding nuclear material is used to prevent overcooling. In this case, the nuclear substance exists without being dissolved in the liquid phase, the interfacial energy with the newly generated crystal on the interface is small, and the nucleus needs to have a size larger than a certain critical radius. Are known.
(The critical radius is 1 to 100 mμ) Also, crystal growth occurs on crystal planes with low molecular density (100, 110, 111 for cubic systems)
It is also known that crystals grow in the form of step movement. An example of such a nucleating material is calcium chloride 6
The nucleating effect of barium hydroxide and strontium hydroxide on water salts has been recognized. However, since sodium thiosulfate decomposes when it becomes alkaline, barium hydroxide and strontium hydroxide, which are alkaline substances, cannot be added. Based on this theoretical perspective, we conducted an experimental study on the nucleating material of sodium thiosulfate, and found that it is an organic compound crystal with cleavage properties and is sublimable, or that it dissolves in trace amounts in water or an aqueous solution of sodium thiosulfate. The substance can be a nucleating material for sodium thiosulfate, and it is particularly effective as a nucleating material when the density of the nucleating material is in the range of 1.74 ± 0.3 (1.44 to 2.04), which is the specific gravity of sodium thiosulfate. I understood. It is known that cleavable crystals have weak bonding strength at the cleavage plane. For example, when atoms are arranged two-dimensionally to form a flaky crystal, the bonds between the planes of the flakes are weak and tend to form cleavage planes. This cleavage plane is a low energy plane (low density plane), and it is considered that crystals are likely to grow on this plane. Furthermore, the fact that the density of the nucleating material is close to that of the heat storage material (1.74±0.3) has the effect of uniformly dispersing crystal nuclei in the salt solution to be crystallized and promoting crystal growth at various locations within the solution. Furthermore, the fact that the nucleating material sublimes or dissolves in small amounts in water and aqueous salt solutions is thought to be due to the fact that the crystal surface is dissolved and removed in small amounts to clean it and form a surface suitable for crystal growth. Furthermore, in organic compounds that have a layered structure in which molecules are arranged in a planar manner, cleavage planes often form between the layers. In such a compound, the crystal growth rate in the direction perpendicular to the cleavage plane is high, and the crystal growth rate in the direction parallel to the layer is slow. In general, crystals with rod-shaped molecular axes tend to grow perpendicular to the molecular axis, whereas crystals with a plate-like molecular arrangement often grow with planes stacked on top of each other, resulting in growth in the direction of smaller lattice spacing, and unit Lattice and crystal morphology often exhibit reciprocity. Therefore, a surface fractured (cleaved, etc.) perpendicular to the crystal growth direction can serve as a nucleating material on which other crystals can grow. These nucleating materials are effective even when added in small amounts, but in practical terms they are more effective than sodium thiosulfate.
It is 0.01% by weight or more. There is no particular reason to limit the upper limit of addition in terms of effects, but since adding a large amount will reduce the heat storage density, it is practical to limit it to about 10% by weight. These nucleating materials may be added directly to sodium thiosulfate pentahydrate, or if necessary, the nucleating materials may be held on a suitable support or carrier and then added to sodium thiosulfate. may be interposed. Figure 1 shows the heat storage and heat release conditions of a heat storage material made by adding the nucleating material of the present invention to sodium thiosulfate pentahydrate (Na 2 SO 3 .5H 2 O) and the heat storage material with no nucleating material added and water as a heat storage material. This is a comparison of the above. This figure shows that when no nucleating material is added, when it is melted at 48.5°C or higher and then cooled, it does not solidify until 25°C due to supercooling, and heat is dissipated at 25°C as shown in 1' (CD).
Draw the thermal history shown by ACDFA. In contrast, the heat storage material to which 0.1% of phthalic anhydride, which is the nucleating material of the present invention, is added releases heat as shown by 2' (BE) at 45°C, and the heat history cycle of heat absorption and heat release of ABFFA is drawn. It shows. Note that the arrows in the figure indicate the direction of change in the amount of heat storage (1', 2' are heat radiation, 2 is heat absorption). Comparing the amount of heat storage per unit volume of sodium thiosulfate, in the case of sodium thiosulfate pentahydrate it is approximately 82 KCal/at 48.5℃, while the amount of heat storage at the same temperature of water shown in curve 3 is approximately
It is clear that sodium thiosulfate is excellent as a heat storage material. Figure 2 shows a model experimental device for a heat storage device. 1 is a heat storage tank filled with heat storage material, 2 is a cylindrical water tank for heat exchange, 3 is a stirring device, 4 is a temperature sensor, and 5 is a heat insulator. It is a material. FIG. 3 shows the temperature change of the heat exchange tank over time when the volume ratio of the heat storage tank and the heat exchange water tank is 1:5 in the apparatus shown in FIG. The measurement conditions shown in the figure are sodium thiosulfate pentahydrate in the heat storage tank.
It was heated to 60°C, and the temperature of the heat exchange tank was set at 20°C, and the temperature change over time was measured while stirring. Curves 1a and 1b represent the temperature change of the heat storage tank 1 without and with the nucleating material, respectively, and curves 2a and 2b represent the heat release rate of the heat storage tank 1 determined from the temperature change of the heat storage material without the nucleating material and with the nucleating material, respectively. This shows the case with a core material (0.1% phthalic anhydride added). In the case of the present invention, a large heat dissipation rate is obtained as is clear from curve 2b, and when heat exchange is performed in the range of 20 to 60°C, the nucleating material of the present invention is recognized to be effective in increasing the amount of heat storage. Examples of the present invention will be described below. Sodium thiosulfate pentahydrate (Na 2 S 2 O 3
A thermometer (copper-unistannun thermocouple) was inserted into the heat storage material made by adding 0.05% of the nucleating material shown in Table 1 to 5H 2 O), and the temperature was repeatedly heated and cooled in the range of 70°C to 20°C.
The melting-solidification characteristics of the heat storage material were measured. The results are shown in Table 1. From the results in Table 1, it is recognized that the heat storage material to which the nucleating material is added is stable as a heat storage material because it solidifies and melts at a constant temperature with little overcooling. Further, similar effects were obtained when 1% of the nucleating material shown in Table 1 was added.

【表】 以上説明したように、本発明によればチオ硫酸
ナトリウム5水塩の過冷が防止でき、所定温度で
蓄放熱が行なわれる蓄熱材が得られる。
[Table] As explained above, according to the present invention, it is possible to prevent overcooling of sodium thiosulfate pentahydrate and to obtain a heat storage material that stores and releases heat at a predetermined temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の発核材を添加した蓄熱材の蓄
熱一放熱状況を発核材無添加の場合及び水を蓄熱
材としたものとを対比して示した図、第2図は蓄
熱器のモデル実験装置を示す図である。 1…蓄熱槽、2…用筒水槽、3…撹拌装置、4
…温度センサ。
Figure 1 is a diagram showing the heat storage and heat release status of the heat storage material to which the nucleating material of the present invention is added, in comparison with the case without the nucleating material and the case where water is used as the heat storage material. FIG. 1... Heat storage tank, 2... Water tank, 3... Stirring device, 4
...Temperature sensor.

Claims (1)

【特許請求の範囲】 1 チオ硫酸ナトリウム5水塩を主成分とし、こ
れに発核材としてP―オキシ安息香酸ピクリン
酸、塩ピクリル、無水フタル酸、塩化フタリル、
フマル酸、サリチル酸、シアヌル酸のいづれか1
つを添加したことを特徴とする蓄熱材。 2 発核剤の添加量が0.01重量%から10重量%の
範囲である特許請求の範囲第1項記載の蓄熱材。
[Scope of Claims] 1. Sodium thiosulfate pentahydrate as the main component, and as a nucleating material P-oxybenzoic acid picric acid, picrylic salt, phthalic anhydride, phthalyl chloride,
Any one of fumaric acid, salicylic acid, or cyanuric acid
A heat storage material characterized by adding: 2. The heat storage material according to claim 1, wherein the amount of the nucleating agent added is in the range of 0.01% by weight to 10% by weight.
JP56164165A 1981-10-16 1981-10-16 Heat-accumulating material Granted JPS5866799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56164165A JPS5866799A (en) 1981-10-16 1981-10-16 Heat-accumulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56164165A JPS5866799A (en) 1981-10-16 1981-10-16 Heat-accumulating material

Publications (2)

Publication Number Publication Date
JPS5866799A JPS5866799A (en) 1983-04-21
JPS6228995B2 true JPS6228995B2 (en) 1987-06-23

Family

ID=15787957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56164165A Granted JPS5866799A (en) 1981-10-16 1981-10-16 Heat-accumulating material

Country Status (1)

Country Link
JP (1) JPS5866799A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2693469B1 (en) * 1992-07-09 1994-10-07 Centre Nat Rech Scient Compositions for storing and restoring energy by latent heat.
CN110325615A (en) * 2017-03-03 2019-10-11 日产化学株式会社 Heat-storing material comprising cyanuric acid metal salt
JP2022014751A (en) * 2020-07-07 2022-01-20 デクセリアルズ株式会社 Heat storage nucleating agent, heat storage medium, and method for producing the same

Also Published As

Publication number Publication date
JPS5866799A (en) 1983-04-21

Similar Documents

Publication Publication Date Title
CA1327697C (en) Phase change thermal energy storage material
JPS6324555B2 (en)
JPS6228995B2 (en)
JPH0372675B2 (en)
JPS61197668A (en) Thermal energy storage material
JPS59543B2 (en) heat storage material
JPS58225181A (en) Heat storage material
JPH0450955B2 (en)
JPS5852995A (en) Heat accumulating material
JPH0215598B2 (en)
JPS588712B2 (en) Heat storage agent composition
JPS5821942B2 (en) Heat storage agent composition
JPS617379A (en) Production of thermal energy storage element
JPS581714B2 (en) Heat storage agent composition
JPS5893779A (en) Thermal energy storing composition
JP2982409B2 (en) Latent heat storage material
JPS581715B2 (en) Heat storage agent composition
JPS60203689A (en) Thermal energy storage material
JPS5845499A (en) Heat accumulating material
JPH0348238B2 (en)
JPS60101168A (en) Thermal energy storage material
JPH0450956B2 (en)
JPS58195796A (en) Heat accumulating material for use in space heating
JPH0453913B2 (en)
JPH021195B2 (en)