JP2022014751A - Heat storage nucleating agent, heat storage medium, and method for producing the same - Google Patents

Heat storage nucleating agent, heat storage medium, and method for producing the same Download PDF

Info

Publication number
JP2022014751A
JP2022014751A JP2020117275A JP2020117275A JP2022014751A JP 2022014751 A JP2022014751 A JP 2022014751A JP 2020117275 A JP2020117275 A JP 2020117275A JP 2020117275 A JP2020117275 A JP 2020117275A JP 2022014751 A JP2022014751 A JP 2022014751A
Authority
JP
Japan
Prior art keywords
resin particles
heat storage
nuclide
storage material
salt hydrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020117275A
Other languages
Japanese (ja)
Inventor
誠 井上
Makoto Inoue
亮子 川上
Ryoko Kawakami
侑記 岩田
Yuki Iwata
昂士 平田
Takashi Hirata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2020117275A priority Critical patent/JP2022014751A/en
Priority to PCT/JP2021/024469 priority patent/WO2022009726A1/en
Publication of JP2022014751A publication Critical patent/JP2022014751A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F23/00Features relating to the use of intermediate heat-exchange materials, e.g. selection of compositions
    • F28F23/02Arrangements for obtaining or maintaining same in a liquid state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

To provide: a heat storage nucleating agent having excellent nucleating properties, a heat storage medium that can suppress supercooling and has high repeated coagulation stability, and a method for producing the heat storage medium.SOLUTION: Provided are: a heat storage nucleating agent containing resin particles on which nucleus-forming nuclear seeds are supported; and a heat storage medium containing a salt hydrate and resin particles holding nucleus-forming nuclear seeds on the surfaces thereof.SELECTED DRAWING: None

Description

本発明は、蓄熱用発核剤、蓄熱材及び蓄熱材の製造方法に関する。 The present invention relates to a heat storage nucleating agent, a heat storage material, and a method for producing the heat storage material.

従来より、夜間電力の有効活用及び保温・保冷剤用途として相変化材料の転移熱を利用した潜熱蓄熱材が多く活用されている。特に、比較的低温で潜熱量の大きい塩水和物系蓄熱材は家庭用省エネルギー対策として魅力的であり、エアコンや蓄熱断熱材などのスマートハウス向けに様々な材料及び組成が種々提案されている。 Conventionally, latent heat storage materials that utilize the transition heat of phase change materials have been widely used for effective utilization of nighttime electric power and applications for heat and cold insulation agents. In particular, a salt hydrate-based heat storage material having a relatively low temperature and a large latent heat is attractive as a household energy saving measure, and various materials and compositions have been proposed for smart houses such as air conditioners and heat storage heat insulating materials.

近年、前記塩水和物系蓄熱材は、スマートフォンの高速及び高性能化に伴って、比較的短時間での繰返し冷却・凝固が必要とされる、スマートフォンのCPUやバッテリーの発熱対策としても注目されている。
このような酢酸ナトリウム三水和物(SAT)は、その水和数が小さいことから比較的凝固再現性の良好な塩水和物であり、融点が58℃と生活温度に近いこと、また、リン酸塩が酢酸ナトリウム三水和物(SAT)の発核触媒として機能すること、リン酸水素2ナトリウム(DSP)及びピロリン酸四ナトリウム(TSPP)などの添加により繰返し融解・凝固可能であることが開示されている(例えば、非特許文献1参照)。
また、リン酸水素2ナトリウム(DSP)の高融点水和物(2水和物)が発核性核種であることが開示されている(例えば、特許文献1参照)。
In recent years, the salt hydrate-based heat storage material has been attracting attention as a measure against heat generation of smartphone CPUs and batteries, which require repeated cooling and solidification in a relatively short time as smartphones become faster and have higher performance. ing.
Such sodium acetate trihydrate (SAT) is a salt hydrate having relatively good coagulation reproducibility due to its small hydration number, and has a melting point of 58 ° C., which is close to the living temperature, and phosphorus. The acid salt functions as a nuclear catalyst for sodium acetate trihydrate (SAT), and can be repeatedly thawed and coagulated by the addition of disodium hydrogen phosphate (DSP) and tetrasodium pyrophosphate (TSPP). It is disclosed (see, for example, Non-Patent Document 1).
Further, it is disclosed that the refractory hydrate (dihydrate) of disodium hydrogen phosphate (DSP) is a nuclide nuclide (see, for example, Patent Document 1).

しかしながら、上記のような高融点の水和物又は難溶性の塩は、酢酸ナトリウム三水和物(SAT)の融解時に沈降分離しやすく、冷却過程においては沈殿した発核性化合物との界面から徐々に結晶化が始まるため、短時間での全体凝固は困難である。つまり、過冷却が大きいという問題がある。
そこで、例えば、リン酸ドデシルナトリウム(SLP)等の末端にリン酸ナトリウムを持つアルキル界面活性剤を発核性化合物として用いることが提案されている(例えば、特許文献2参照)。
However, the above-mentioned high melting point hydrate or sparingly soluble salt tends to precipitate and separate when the sodium acetate trihydrate (SAT) is thawed, and in the cooling process, from the interface with the precipitated nucleating compound. Since crystallization starts gradually, it is difficult to solidify in a short time. That is, there is a problem that supercooling is large.
Therefore, for example, it has been proposed to use an alkyl surfactant having sodium phosphate at the terminal such as sodium dodecyl phosphate (SLP) as a nucleating compound (see, for example, Patent Document 2).

上記のリン酸ドデシルナトリウム(SLP)は、酢酸ナトリウム三水和物(SAT)の融解液に溶解しないこと、また、リン酸ドデシルナトリウムは真密度が小さく沈降しないことから、リン酸塩などに比べて発核触媒として有効であり、過冷却現象を抑え、比較的短時間での融解・凝固の繰返しが可能であるが、以下の課題がある。
(1)リン酸ドデシルナトリウムは水に難溶のアルキル界面活性剤であるため、大部分が凝集固体として分離しており、採取場所による存在状態のムラがある。
(2)リン酸ドデシルナトリウムは真密度が小さいため、塩水和物の融解時に浮遊してしまい、特に塩水和物の量が多い場合には上部への分離が顕著となる。
The above-mentioned sodium dodecyl phosphate (SLP) does not dissolve in the melt of sodium acetate trihydrate (SAT), and sodium dodecyl phosphate has a small true density and does not precipitate, so that it is compared with phosphate or the like. It is effective as a nuclear catalyst, suppresses the supercooling phenomenon, and can repeat melting and solidification in a relatively short time, but has the following problems.
(1) Since dodecyl sodium phosphate is an alkyl surfactant that is sparingly soluble in water, most of it is separated as an aggregated solid, and the existence state varies depending on the collection location.
(2) Since sodium dodecyl phosphate has a low true density, it floats when the salt hydrate is thawed, and the separation to the upper part becomes remarkable especially when the amount of the salt hydrate is large.

したがって、上記の理由から、リン酸ドデシルナトリウムには、融解量、融解時間、採取場所、採取方法などにより発核機能が安定せず、凝固再現性が不十分であるという問題がある。 Therefore, for the above reasons, sodium dodecyl phosphate has a problem that the nuclear function is not stable depending on the amount of melting, the melting time, the collection place, the collection method, and the like, and the coagulation reproducibility is insufficient.

特許第6423870号公報Japanese Patent No. 6423870 特許第6045944号公報Japanese Patent No. 6045944

STUDIES ON SODIUM ACETATE TRIHYDRATE FOR LATENTHEAT STORAGE_和田 隆博(Osaka University Knowledge Archive:OUKA)STUDIES ON SODIUM ACETATE TRIHYDRATE FOR LATENTHEAT STORAGE_Takahiro Wada (Osaka University Knowledge Archive: OKA)

本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、良好な発核性を有する蓄熱用発核剤、過冷却を抑制でき、繰返し凝固安定性の高い蓄熱材、及び蓄熱材の製造方法を提供することを目的とする。 An object of the present invention is to solve the above-mentioned problems in the prior art and to achieve the following objects. That is, an object of the present invention is to provide a heat storage nucleating agent having good nucleating properties, a heat storage material capable of suppressing supercooling and having high repetitive solidification stability, and a method for producing the heat storage material.

前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 発核性核種が担持された樹脂粒子を含むことを特徴とする蓄熱用発核剤である。
<2> 樹脂粒子の体積平均粒径が0.05μm以上1.0μm以下である、前記<1>に記載の蓄熱用発核剤である。
<3> 樹脂粒子は、表面塩基性のアミノ系樹脂粒子を含む、前記<1>から<2>のいずれかに記載の蓄熱用発核剤である。
<4> 前記表面塩基性のアミノ系樹脂粒子が、メラミン樹脂粒子、ベンゾグアナミン樹脂粒子、及び尿素樹脂粒子の少なくともいずれかである、前記<3>に記載の蓄熱用発核剤である。
<5> 前記発核性核種がリン酸水素2ナトリウム又は四ホウ酸2ナトリウムである、前記<1>から<4>のいずれかに記載の蓄熱用発核剤である。
<6> 表面に発核性核種を保持する樹脂粒子と、塩水和物とを含有することを特徴とする蓄熱材である。
<7> 樹脂粒子の真密度Aと前記塩水和物の真密度Bとの差(A-B)が±0.25g/cm以内である、前記<6>に記載の蓄熱材である。
<8> 樹脂粒子の体積平均粒径が0.05μm以上1.0μm以下である、前記<6>から<7>のいずれかに記載の蓄熱材である。
<9> 樹脂粒子は、表面塩基性のアミノ系樹脂粒子を含む、前記<6>から<8>のいずれかに記載の蓄熱材である。
<10> 前記表面塩基性のアミノ系樹脂粒子が、メラミン樹脂粒子、ベンゾグアナミン樹脂粒子、及び尿素樹脂粒子の少なくともいずれかである、前記<9>に記載の蓄熱材である。
<11> 前記発核性核種がリン酸水素2ナトリウム又は四ホウ酸2ナトリウムであり、
前記塩水和物が酢酸ナトリウム三水和物又は硫酸ナトリウム10水和物である、前記<6>から<10>のいずれかに記載の蓄熱材である。
<12> 融解及び凝固を繰返し可能である、前記<6>から<11>のいずれかに記載の蓄熱材である。
<13> 溶媒に溶解した発核性化合物に樹脂粒子を添加し混合分散した後、乾燥し得られた乾燥物を粉砕する工程と、
得られた粉砕物を塩水和物に添加する工程と、
を含むことを特徴とする蓄熱材の製造方法である。
The means for solving the above problems are as follows. That is,
<1> A heat storage nuclide agent characterized by containing resin particles carrying a nuclide nuclide.
<2> The heat storage nucleating agent according to <1>, wherein the volume average particle size of the resin particles is 0.05 μm or more and 1.0 μm or less.
<3> The resin particles are the heat storage nucleating agent according to any one of <1> to <2>, which contains surface-basic amino-based resin particles.
<4> The heat storage nucleating agent according to <3>, wherein the surface-based amino resin particles are at least one of melamine resin particles, benzoguanamine resin particles, and urea resin particles.
<5> The heat storage nuclide according to any one of <1> to <4>, wherein the nuclide nuclide is disodium hydrogen phosphate or disodium tetraborate.
<6> A heat storage material characterized by containing resin particles holding nuclide nuclides on the surface and salt hydrate.
<7> The heat storage material according to <6>, wherein the difference (AB) between the true density A of the resin particles and the true density B of the salt hydrate is within ± 0.25 g / cm 3 .
<8> The heat storage material according to any one of <6> to <7>, wherein the volume average particle size of the resin particles is 0.05 μm or more and 1.0 μm or less.
<9> The resin particles are the heat storage materials according to any one of <6> to <8>, which contain surface-basic amino-based resin particles.
<10> The heat storage material according to <9>, wherein the surface-based amino resin particles are at least one of melamine resin particles, benzoguanamine resin particles, and urea resin particles.
<11> The nuclide nuclide is disodium hydrogen phosphate or disodium tetraborate.
The heat storage material according to any one of <6> to <10>, wherein the salt hydrate is sodium acetate trihydrate or sodium sulfate decahydrate.
<12> The heat storage material according to any one of <6> to <11>, which can be repeatedly melted and solidified.
<13> A step of adding resin particles to a nucleating compound dissolved in a solvent, mixing and dispersing the mixture, and then pulverizing the dried product obtained by drying.
The step of adding the obtained ground product to the salt hydrate,
It is a method of manufacturing a heat storage material characterized by containing.

本発明によると、良好な発核性を有する蓄熱用発核剤、過冷却を抑制でき、繰返し凝固安定性の高い蓄熱材、及び蓄熱材の製造方法を提供することができる。 According to the present invention, it is possible to provide a heat storage nucleating agent having good nucleating properties, a heat storage material capable of suppressing supercooling and having high repetitive solidification stability, and a method for producing the heat storage material.

図1は、アミノ系樹脂粒子表面にリン酸ナトリウムが担持している状態の一例を示す模式図である。FIG. 1 is a schematic view showing an example of a state in which sodium phosphate is supported on the surface of amino resin particles. 図2の(A)~(C)は、塩水和物の融解液中における発核性化合物の存在状態の一例を示す模式図である。(A) to (C) of FIG. 2 are schematic views showing an example of the state of existence of a nucleating compound in a melt of salt hydrate. 図3は、発核性化合物としてリン酸ドデシルナトリウム(アルキル界面活性剤)を用いた場合に、リン酸ドデシルナトリウムが塩水和物の融解液上部へ分離した状態となることを示す写真である。FIG. 3 is a photograph showing that when sodium dodecyl phosphate (alkyl surfactant) is used as the nucleating compound, sodium dodecyl phosphate is separated into the upper part of the melt of salt hydrate. 図4は、本発明の蓄熱用発核剤を用いた場合に、塩水和物の融解液中で全体に均一分散した状態となることを示す写真である。FIG. 4 is a photograph showing that when the heat storage nucleating agent of the present invention is used, it is uniformly dispersed throughout in the melt of salt hydrate. 図5は、実施例1におけるNo.3の蓄熱材について測定したDSCチャートである。FIG. 5 shows No. 1 in Example 1. It is a DSC chart measured about 3 heat storage materials. 図6は、実施例2におけるNo.9の蓄熱材について測定したDSCチャートである。FIG. 6 shows No. 6 in Example 2. It is a DSC chart measured about 9 heat storage materials. 図7は、実施例2におけるNo.9の蓄熱材について10サイクル連続して測定した際のDSCチャートであるFIG. 7 shows No. 7 in Example 2. It is a DSC chart when the heat storage material of 9 was measured continuously for 10 cycles. 図8は、実施例3におけるNo.3の蓄熱材について測定したDSCチャートである。FIG. 8 shows No. 3 in Example 3. It is a DSC chart measured about 3 heat storage materials.

(蓄熱用発核剤)
本発明の蓄熱用発核剤は、発核性核種が担持された樹脂粒子を含む。なお、発核性核種を「発核剤」、「発核触媒」、「核生成促進剤」、「核生成触媒」と称することもある。
(Nucleating agent for heat storage)
The heat storage nuclide of the present invention contains resin particles carrying a nuclide nuclide. The nuclide nuclide may also be referred to as a "nuclide agent", a "nucleation catalyst", a "nucleation promoter", or a "nucleation catalyst".

ここで、前記「発核性核種が樹脂粒子に担持されている」とは、発核性核種が樹脂粒子に付着、凝着、吸着、ファンデルワールス結合等の任意の相互作用した状態で存在しているか、あるいは共有結合、イオン結合、水素結合、金属結合等の任意の化学結合した状態で存在していることを意味する。なお、発核性核種と樹脂粒子とは少なくとも一部が化学結合していてもよく、大部分が化学結合していてもよく、化学結合していない場合も含まれる。
樹脂粒子が発核性核種を担持していることは、例えば、X線光電子分光(XPS)、粉末X線回折(XRD)、中和滴定法等により分析することで、確認することができる。
Here, the above-mentioned "the nucleating nuclei are carried on the resin particles" means that the nucleating nuclei exist in an arbitrary interacting state such as attachment, adhesion, adsorption, and van der Waals bond to the resin particles. It means that it exists in any chemically bonded state such as a covalent bond, an ionic bond, a hydrogen bond, or a metal bond. It should be noted that at least a part of the nuclide nuclide and the resin particles may be chemically bonded, most of them may be chemically bonded, and a case where they are not chemically bonded is also included.
The fact that the resin particles carry the nucleating nuclei can be confirmed by analysis by, for example, X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), neutralization titration method or the like.

<発核性核種>
前記発核性核種としては、発核性を有していれば特に制限はなく、目的に応じて適宜選択することができ、例えば、リン酸水素2ナトリウム、四ホウ酸2ナトリウム、リン酸3ナトリウム、ピロリン酸4ナトリウム、アルキルリン酸ナトリウムなどが挙げられる。
<Nuclide nuclide>
The nucleating nuclei are not particularly limited as long as they have nucleating properties, and can be appropriately selected depending on the intended purpose. For example, disodium hydrogen phosphate, disodium tetraborate, and phosphoric acid 3 can be selected. Examples thereof include sodium, tetrasodium pyrophosphate, and sodium alkylphosphate.

本発明においては、塩水和物融解液との親和性があり、沈降や浮遊分離しない発核性化合物として、真密度が近い樹脂粒子表面に発核性核種としてのリン酸塩を担持させ、これを蓄熱用発核剤として用いる。これにより、発核性化合物が塩水和物融解液中で沈降や浮遊分離することなく均一に分布し、採取場所や採取方法によらず安定な凝固再現性が得られる。
樹脂粒子に対する発核性核種の処理量(担持量)は、5質量%以上30質量%以下が好ましく、5質量%以上15質量%以下がより好ましい。
In the present invention, as a nucleating compound having affinity with a salt hydrate melt and not precipitating or floating-separating, a phosphate as a nucleating nuclei is supported on the surface of resin particles having a similar true density. Is used as a nucleating agent for heat storage. As a result, the nucleating compound is uniformly distributed in the salt hydrate melt without sedimentation or floating separation, and stable solidification reproducibility can be obtained regardless of the collection location and collection method.
The treated amount (supported amount) of the nuclide nuclide with respect to the resin particles is preferably 5% by mass or more and 30% by mass or less, and more preferably 5% by mass or more and 15% by mass or less.

<樹脂粒子>
樹脂粒子としては、特に制限はなく、目的に応じて適宜選択することができるが、リン酸塩の担持性の点から、表面塩基性のアミノ系樹脂粒子が好ましい。
表面塩基性のアミノ系樹脂粒子としては、例えば、メラミン樹脂粒子、ベンゾグアナミン樹脂粒子、尿素樹脂粒子などが挙げられる。これらの中でも、塩水和物として酢酸ナトリウム三水和物を用いる場合には、該酢酸ナトリウム三水和物と真密度が同程度である点から、メラミン樹脂粒子が好ましい。
<Resin particles>
The resin particles are not particularly limited and may be appropriately selected depending on the intended purpose, but surface-basic amino resin particles are preferable from the viewpoint of carrying phosphate.
Examples of the surface basic amino resin particles include melamine resin particles, benzoguanamine resin particles, urea resin particles and the like. Among these, when sodium acetate trihydrate is used as the salt hydrate, melamine resin particles are preferable because the true density is about the same as that of the sodium acetate trihydrate.

前記樹脂粒子の体積平均粒径は、0.05μm以上1.0μm以下が好ましく、0.05μm以上0.5μm以下がより好ましい。
体積平均粒径が0.05μm以上1.0μm以下であるコロイドサイズの樹脂粒子を用いると、塩水和物の融解液が長時間安定な乳液状態になる。また、ミクロな領域で発核性核種が分布しているので、採取場所や採取方法によるムラが無く、多量の塩水和物であっても安定な発核性及び凝固再現性が得られる。
前記樹脂粒子の体積平均粒径は、顕微鏡観察による画像からの実測でも算定可能であるが、市販のレーザー回折・散乱法や光子相関法(動的散乱法)などの光学的粒子径測定装置を用いることにより測定可能であり、例えば、Microtrac MT3300EX(マイクロトラック・ベル株式会社)、Partica LA-960(株式会社堀場製作所製)などを用いて測定することができる。
The volume average particle size of the resin particles is preferably 0.05 μm or more and 1.0 μm or less, and more preferably 0.05 μm or more and 0.5 μm or less.
When colloid-sized resin particles having a volume average particle diameter of 0.05 μm or more and 1.0 μm or less are used, the melt of salt hydrate becomes a stable emulsion state for a long time. Further, since the nuclide nuclides are distributed in the microscopic region, there is no unevenness depending on the collection place and collection method, and stable nuclides and solidification reproducibility can be obtained even with a large amount of salt hydrate.
The volume average particle size of the resin particles can be calculated by actual measurement from an image observed under a microscope, but an optical particle size measuring device such as a commercially available laser diffraction / scattering method or a photon correlation method (dynamic scattering method) can be used. It can be measured by using it, and can be measured by using, for example, Microtrac MT3300EX (Microtrac Bell Co., Ltd.), Partica LA-960 (manufactured by Horiba Seisakusho Co., Ltd.) and the like.

発核性核種が担持された樹脂粒子(蓄熱用発核剤)は、後述する塩水和物と組み合わせることによって、本発明の蓄熱材が得られる。
前記樹脂粒子の真密度Aと前記塩水和物の真密度Bとの差(A-B)は、±0.25g/cm以内が好ましく、±0.1g/cm以内がより好ましい。前記差(A-B)が±0.25g/cm以内であると、樹脂粒子の真密度と塩水和物の真密度が同程度であるため、塩水和物を融解時に乳液状に安定分散して成分分離が無く、繰返し凝固可能な蓄熱材を得ることができる。
前記真密度の測定方法としては、例えば、JIS Z8807:2012に記載されているような、比重カップ、液中浸漬法、気体置換法などの各種方法があるが、本発明においては、有機物である樹脂粒子を用いるので気体置換法が好適である。前記気体置換法としては、例えば、Accu Pyc II 1340(マイクロメリティックス社製)などが挙げられる。
The heat storage material of the present invention can be obtained by combining the resin particles (heat storage nuclides) carrying the nuclide nuclides with the salt hydrate described later.
The difference (AB) between the true density A of the resin particles and the true density B of the salt hydrate is preferably within ± 0.25 g / cm 3 , and more preferably within ± 0.1 g / cm 3 . When the difference (AB) is within ± 0.25 g / cm 3 , the true density of the resin particles and the true density of the salt hydrate are about the same, so that the salt hydrate is stably dispersed in a milky liquid when melted. Therefore, it is possible to obtain a heat storage material that can be repeatedly solidified without component separation.
As the method for measuring the true density, for example, there are various methods such as a specific gravity cup, a submersible method, and a gas substitution method as described in JIS Z8807: 2012, but in the present invention, they are organic substances. Since resin particles are used, the gas substitution method is suitable. Examples of the gas substitution method include Accu Pyc II 1340 (manufactured by Micromeritics).

従来技術では、酢酸ナトリウム三水和物及び硫酸ナトリウム水和物等の塩水和物は高潜熱を有する蓄熱材として注目され、その過冷却防止のための発核性核種として様々な材料や物質が検討されてきたが、融解時に成分が分離するために短時間での凝固再現性が悪く、用途が限られてしまうという課題があった。
本発明者らは、前記課題を解決するため鋭意検討を重ねた結果、リン酸ナトリウム又はホウ酸ナトリウムで表面処理した(担持した)樹脂粒子が優れた発核性を有することを知見した。また、塩水和物と真密度が同程度であり、体積平均粒径が0.05μm以上1.0μm以下であるコロイドサイズの樹脂粒子(ナノ粒子)を用いることによって、塩水和物が融解時に乳液状に安定分散して成分分離が無く、繰返し凝固可能な蓄熱材が得られること、更に、リン酸ナトリウム又はホウ酸ナトリウムを担持した樹脂粒子の添加量は前記塩水和物に対して数質量%程度の少量添加で有効であるため、潜熱量の低下も少なく、高潜熱の蓄熱材が得られることを見出した。その結果、特にスマートフォンのCPUやバッテリーの冷却など、比較的短時間での繰返し冷却・凝固が必要とされる用途に好適なものである。
In the prior art, salt hydrates such as sodium acetate trihydrate and sodium sulfate hydrate have attracted attention as heat storage materials having high latent heat, and various materials and substances have been used as nucleating nuclei to prevent supercooling. Although it has been studied, there is a problem that the coagulation reproducibility in a short time is poor due to the separation of the components at the time of thawing, and the use is limited.
As a result of diligent studies to solve the above problems, the present inventors have found that the resin particles surface-treated (supported) with sodium phosphate or sodium borate have excellent nucleation. Further, by using colloid-sized resin particles (nanoparticles) having the same true density as the salt hydrate and having a volume average particle size of 0.05 μm or more and 1.0 μm or less, the salt hydrate becomes a milky lotion when it is thawed. A heat storage material that can be stably dispersed in a stable manner without component separation and can be repeatedly solidified can be obtained, and the amount of resin particles carrying sodium phosphate or sodium borate is several mass% with respect to the salt hydrate. It has been found that since it is effective with a small amount of addition, the latent heat amount does not decrease much and a high latent heat storage material can be obtained. As a result, it is particularly suitable for applications that require repeated cooling and solidification in a relatively short time, such as cooling the CPU and battery of a smartphone.

ここで、発核性化合物としてリン酸水素二ナトリウム水和物と、樹脂粒子としてメラミン樹脂粒子を用いた場合には、メラミン樹脂粒子表面のアミノ基とリン酸水素二ナトリウムのOH基とがイオン結合して存在すると考えられている。なお、発核性核種と樹脂粒子とが共有結合している態様、発核性核種が樹脂粒子表面にグラフト重合している態様などが好適に挙げられる。 Here, when disodium hydrogen phosphate hydrate is used as the nucleating compound and melamine resin particles are used as the resin particles, the amino group on the surface of the melamine resin particles and the OH group of disodium hydrogen phosphate are ions. It is believed to exist in combination. Preferred examples thereof include a mode in which the nuclide nuclide and the resin particles are covalently bonded, and a mode in which the nuclide nuclide is graft-polymerized on the surface of the resin particles.

本発明においては、以下の条件を充たす、発核性核種が担持された樹脂粒子を蓄熱用発核剤として用いる。
(1)酢酸ナトリウム三水和物等の高潜熱を有する塩水和物系蓄熱材であって、その過冷却防止のための蓄熱用発核剤として、リン酸ナトリウム等の発核性核種で表面処理した樹脂粒子を用いる。
(2)樹脂粒子の真密度が塩水和物の真密度に近いものを用いる(例えば、真密度が約1.5g/cmのメラミン樹脂粒子など)。
(3)樹脂粒子は体積平均粒径が0.05μm以上1.0μm以下であるコロイドサイズの微粒子(ナノ粒子)を用いる。
上記(1)~(3)を充たすことによって、樹脂粒子の真密度は塩水和物の真密度に近くなり、また樹脂粒子の体積平均粒径がコロイドサイズであるため、塩水和物の融解時に沈降し、浮遊して分離することが無く、良好な発核性を示す。これによって、過冷却を抑制し、繰返し凝固安定性の高い蓄熱材が得られる。
In the present invention, resin particles carrying a nuclide nuclide, which satisfy the following conditions, are used as a heat storage nuclide.
(1) A salt hydrate-based heat storage material having high latent heat such as sodium acetate trihydrate, which is surfaced with a nucleating nuclei such as sodium phosphate as a heat storage nucleating agent for preventing supercooling. Use treated resin particles.
(2) Use resin particles having a true density close to that of salt hydrate (for example, melamine resin particles having a true density of about 1.5 g / cm 3 ).
(3) As the resin particles, colloid-sized fine particles (nanoparticles) having a volume average particle diameter of 0.05 μm or more and 1.0 μm or less are used.
By filling the above (1) to (3), the true density of the resin particles becomes close to the true density of the salt hydrate, and since the volume average particle size of the resin particles is a colloidal size, when the salt hydrate is thawed. It does not settle, float and separate, and shows good nucleation. As a result, a heat storage material that suppresses supercooling and has high repeated solidification stability can be obtained.

ここで、図2の(A)に示すように、本発明においては発核性核種を担持した樹脂粒子が沈降、浮遊することなく融解した塩水和物内に均一に分布しており、採取場所や採取方法によらず安定な凝固再現性が得られる。図2の(B)に示すように、真密度が小さい発核性化合物としてリン酸ドデシルナトリウム(アルキル界面活性剤)を用いると、界面活性剤が融解した塩水和物の表面に浮遊してしまう。図2の(C)に示すように、真密度の大きい発核性化合物を用いると融解した塩水和物中に沈降してしまう。
また、図3は、真密度が小さい発核性化合物としてリン酸ドデシルナトリウム(アルキル界面活性剤)を用いた場合に、リン酸ドデシルナトリウムが塩水和物の融解液上部へ分離した状態となることを示す写真である。図4は、本発明の蓄熱用発核剤を用いた場合に、塩水和物の融解液中で全体に均一分散した状態となることを示す写真である。
Here, as shown in FIG. 2A, in the present invention, the resin particles carrying the nuclide nuclides are uniformly distributed in the melted salt hydrate without sedimentation and suspension, and the collection place. Stable solidification reproducibility can be obtained regardless of the sampling method. As shown in FIG. 2B, when dodecyl sodium phosphate (alkyl surfactant) is used as a nucleating compound having a low true density, the surfactant floats on the surface of the melted salt hydrate. .. As shown in FIG. 2C, if a nucleating compound having a high true density is used, it will settle in the melted salt hydrate.
Further, FIG. 3 shows that when sodium dodecyl phosphate (alkyl surfactant) is used as a nucleating compound having a low true density, sodium dodecyl phosphate is separated into the upper part of the melt of salt hydrate. It is a photograph showing. FIG. 4 is a photograph showing that when the heat storage nucleating agent of the present invention is used, it is uniformly dispersed throughout in the melt of salt hydrate.

(蓄熱材)
本発明の蓄熱材は、表面に発核性核種を保持する樹脂粒子と、塩水和物とを含有し、更に必要に応じてその他の成分を含有する。
前記蓄熱材は比較的短時間で融解及び凝固を繰り返し可能であるため、特に、スマートフォンのCPUやバッテリーの冷却に好適に用いられる。
(Heat storage material)
The heat storage material of the present invention contains resin particles that retain nuclides on the surface and salt hydrate, and further contains other components as necessary.
Since the heat storage material can repeatedly melt and solidify in a relatively short time, it is particularly preferably used for cooling a CPU or a battery of a smartphone.

<表面に発核性核種を保持する樹脂粒子>
表面に発核性核種を保持する樹脂粒子としては、本発明の蓄熱用発核剤が用いられる。
<Resin particles holding nuclide nuclides on the surface>
As the resin particles that retain the nuclide nuclide on the surface, the heat storage nuclide of the present invention is used.

<塩水和物>
塩水和物としては、例えば、酢酸ナトリウム三水和物、硫酸ナトリウム10水和物などが挙げられる。
酢酸ナトリウム三水和物は、水和数が小さいことから凝固再現性の良い塩水和物であり、融点が58℃と生活温度に近いことから好ましい。
<Salt hydrate>
Examples of the salt hydrate include sodium acetate trihydrate, sodium sulfate decahydrate and the like.
Sodium acetate trihydrate is a salt hydrate having good coagulation reproducibility due to its small hydration number, and is preferable because it has a melting point of 58 ° C. and is close to the living temperature.

本発明の蓄熱材において、表面に発核性核種を保持する樹脂粒子の含有量は、塩水和物に対して、0.5質量%以上5質量%以下が好ましく、1質量%以上4質量%以下がより好ましい。 In the heat storage material of the present invention, the content of the resin particles that retain the nuclide nuclide on the surface is preferably 0.5% by mass or more and 5% by mass or less, and 1% by mass or more and 4% by mass with respect to the salt hydrate. The following is more preferable.

<その他の成分>
前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ホルムアミド、尿素などが挙げられる。酢酸ナトリウム三水和物にホルムアミドや尿素を所定量添加することによって、40℃前後に融点を持つ共晶系化合物を形成することができる。
<Other ingredients>
The other components are not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include formamide and urea. By adding a predetermined amount of formamide or urea to sodium acetate trihydrate, a eutectic compound having a melting point of around 40 ° C. can be formed.

(蓄熱材の製造方法)
本発明の蓄熱材の製造方法は、溶媒に溶解した発核性化合物に樹脂粒子を添加し混合分散した後、乾燥し得られた乾燥物を粉砕する工程と、得られた粉砕物を塩水和物に添加する工程と、を含み、更に必要に応じてその他の工程を含む。これにより、表面に発核性核種を保持する樹脂粒子を効率よく製造することができる。
(Manufacturing method of heat storage material)
The method for producing a heat storage material of the present invention includes a step of adding resin particles to a nucleating compound dissolved in a solvent, mixing and dispersing the mixture, and then pulverizing the dried product obtained by drying, and salt hydration of the obtained pulverized product. It includes a step of adding to a substance, and further includes other steps as necessary. This makes it possible to efficiently produce resin particles that retain nuclides on the surface.

前記発核性化合物としては、樹脂粒子表面に担持されると発核性核種となる化合物であり、例えば、発核性核種の水和物などが挙げられる。
前記発核性化合物としては、例えば、リン酸水素2ナトリウム12水和物、四ホウ酸2ナトリウム水和物、リン酸水素2ナトリウム2水和物、ピロリン酸4ナトリウム水和物、アルキルリン酸ナトリウムなどが挙げられる。
前記溶媒としては、特に制限はなく、発核性化合物の種類に応じて適宜選択することができ、例えば、水、アルコール、炭化水素などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記アルコールとしては、例えば、メタノール、エタノール、イソプロピルアルコールなどが挙げられる。
前記炭化水素としては、例えば、n-ペンタン、n-ヘキサン、n-オクタン、1,5-ヘキサジエン、シクロヘキサン、メチルシクロヘキサン、シクロヘキサジエン、ベンゼン、トルエン、o-キシレン、m-キシレン、p-キシレン、エチルベンゼン、クメンなどが挙げられる。
The nuclide compound is a compound that becomes a nuclide nuclide when supported on the surface of resin particles, and examples thereof include hydrates of the nuclide nuclide.
Examples of the nucleating compound include hydrogen phosphate disodium dodecahydrate, tetraborate disodium hydrate, hydrogen phosphate disodium disodium dihydrate, pyrophosphate tetrasodium hydrate, and alkyl phosphate. Examples include sodium.
The solvent is not particularly limited and may be appropriately selected depending on the type of the nucleating compound, and examples thereof include water, alcohol and hydrocarbons. These may be used alone or in combination of two or more.
Examples of the alcohol include methanol, ethanol, isopropyl alcohol and the like.
Examples of the hydrocarbon include n-pentane, n-hexane, n-octane, 1,5-hexadiene, cyclohexane, methylcyclohexane, cyclohexadiene, benzene, toluene, o-xylene, m-xylene, p-xylene, and the like. Examples include ethylbenzene and cumene.

乾燥温度については、特に制限はなく、用いる発核性化合物の種類に応じて適宜選択することができるが、60℃以上100℃以下が好ましい。 The drying temperature is not particularly limited and may be appropriately selected depending on the type of the nucleating compound to be used, but is preferably 60 ° C. or higher and 100 ° C. or lower.

以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。 Hereinafter, examples of the present invention will be described, but the present invention is not limited to these examples.

<真密度の測定>
粒子の真密度は、気体置換法により測定することができ、乾式自動密度計(Accu Pyc II 1340、マイクロメリティックス社製)を用いて測定した。
<Measurement of true density>
The true density of the particles could be measured by the gas substitution method and was measured using a dry automatic density meter (Accu Pyc II 1340, manufactured by Micromeritics).

<体積平均粒径の測定>
粒子の体積平均粒径は、市販のレーザー回折・散乱法や光子相関法(動的散乱法)などの光学的粒子径測定装置を用いて測定することができ、Microtrac MT3300EX(マイクロトラック・ベル株式会社)又はPartica LA-960(株式会社堀場製作所製)を用いて測定した。
<Measurement of volume average particle size>
The volume average particle size of particles can be measured using an optical particle size measuring device such as a commercially available laser diffraction / scattering method or photon correlation method (dynamic scattering method). Microtrac MT3300EX (Microtrac Bell Co., Ltd.) Measurement was performed using (company) or Partica LA-960 (manufactured by Horiba Seisakusho Co., Ltd.).

(実施例1)
<粒子の選定>
以下のようにして、発核性核種を担持する粒子の選定を行った。
-処理粒子の作製-
リン酸水素2ナトリウム12水和物(富士フイルム和光純薬株式会社製)1gを純水4mLに溶解した。この溶液に表1-1に示す各粒子を1g添加し、混合撹拌して、スラリーを作製した。得られたスラリーを、熱風循環オーブンを用い60℃にて乾燥した後、減圧乾燥し、乾燥物を粉砕して、表1-2に示すリン酸ナトリウム処理粒子A-1~A-4を作製した。
(Example 1)
<Selection of particles>
Particles carrying nuclide nuclides were selected as follows.
-Preparation of treated particles-
1 g of disodium hydrogen phosphate dodecahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 4 mL of pure water. 1 g of each particle shown in Table 1-1 was added to this solution, and the mixture was mixed and stirred to prepare a slurry. The obtained slurry was dried at 60 ° C. using a hot air circulation oven, dried under reduced pressure, and the dried product was pulverized to prepare sodium phosphate-treated particles A-1 to A-4 shown in Table 1-2. did.

-蓄熱材の作製-
次に、酢酸ナトリウム三水和物(富士フイルム和光純薬株式会社製、特級)5gを10mLガラス瓶に取り、これにホルムアミド(富士フイルム和光純薬株式会社製、特級)1.25gを加え、各処理粒子A-1からA-4を1.0質量%添加して、これらを60℃で融解して、No.1~4の乳白色液体(蓄熱材)を得た。
-Making heat storage material-
Next, take 5 g of sodium acetate trihydrate (manufactured by Wako Pure Chemical Industries, Ltd., special grade) in a 10 mL glass bottle, add 1.25 g of formamide (manufactured by Wako Pure Chemical Industries, Ltd., special grade) to this, and add each. 1.0% by mass of treated particles A-1 to A-4 were added, and these were melted at 60 ° C. to obtain No. 1 to 4 milky white liquids (heat storage materials) were obtained.

次に、得られた各蓄熱材について、以下のようにして、サイクル安定性を評価し、2サイクル目の潜熱(凝固熱)を測定した。結果を表1-2に示した。 Next, for each of the obtained heat storage materials, the cycle stability was evaluated as follows, and the latent heat (heat of solidification) in the second cycle was measured. The results are shown in Table 1-2.

<サイクル安定性の評価及び2サイクル目の潜熱の測定>
得られた各蓄熱材を測定セルに採取して、下記の測定条件により示差走査熱量計(DSC)にて昇温時、降温時の熱特性を測定した。
なお、No.3の蓄熱材について測定したDSCチャートを図5に示した。図5の結果から、融点(融解時吸熱開始温度)は約41℃、凝固点(凝固時発熱開始温度)は約37℃であった。
また、No.3の蓄熱材について吸熱及び発熱ピークの面積から熱量を求めると234mJ/mgの高い潜熱が見られた。
次に、各蓄熱材について、以下の評価基準に基づき、サイクル安定性を評価した。結果を表1-2に示した。
<Evaluation of cycle stability and measurement of latent heat in the second cycle>
Each of the obtained heat storage materials was collected in a measurement cell, and the thermal characteristics at the time of temperature rise and temperature decrease were measured with a differential scanning calorimeter (DSC) under the following measurement conditions.
In addition, No. The DSC chart measured for the heat storage material of No. 3 is shown in FIG. From the results of FIG. 5, the melting point (endothermic start temperature at the time of melting) was about 41 ° C., and the freezing point (heat generation start temperature at the time of solidification) was about 37 ° C.
In addition, No. When the amount of heat was calculated from the area of the endothermic and heat generation peaks of the heat storage material of No. 3, a high latent heat of 234 mJ / mg was observed.
Next, the cycle stability of each heat storage material was evaluated based on the following evaluation criteria. The results are shown in Table 1-2.

[サイクル安定性の評価基準]
〇:2サイクル安定に融解・凝固している
△:2サイクル融解・凝固しているが凝固の遅れ、或いは潜熱低下が大きい
×:測定サイクル内で安定な融解・凝固が見られない
[Evaluation criteria for cycle stability]
〇: Stable melting / solidification for 2 cycles Δ: Melting / solidifying for 2 cycles but delay in solidification or large decrease in latent heat ×: Stable melting / solidification is not observed within the measurement cycle

-測定条件-
・示差走査熱量計:DSC7000X(株式会社日立ハイテクサイエンス製)
・密封セル:アルミニウム(Al)製、15μL(株式会社日立ハイテクサイエンス製、GCA-017)
・温度範囲:20℃~50℃、昇降温速度2℃/分
・測定回数:2~10サイクル
-Measurement condition-
-Differential scanning calorimeter: DSC7000X (manufactured by Hitachi High-Tech Science Corporation)
-Sealed cell: Aluminum (Al), 15 μL (Hitachi High-Tech Science Corporation, GCA-017)
・ Temperature range: 20 ° C to 50 ° C, elevating temperature rate 2 ° C / min ・ Measurement frequency: 2 to 10 cycles

Figure 2022014751000001
Figure 2022014751000001

Figure 2022014751000002
Figure 2022014751000002

表1-2及び図5の結果から、A-3のリン酸ナトリウム処理粒子は、融点約41℃、凝固点約37℃での繰り返し融解、凝固が見られ、担持したリン酸ナトリウムが発核触媒として機能することがわかった。また、真密度が1.50g/cmであり、酢酸ナトリウム三水和物の真密度(1.43g/cm)に近いA-3のリン酸ナトリウム処理メラミン樹脂粒子は、酢酸ナトリウム三水和物の融解液中に安定に分散し、凝固再現性が良好であることがわかった。
これに対して、A-1及びA-2のリン酸ナトリウム処理架橋PMMA微粒子は真密度が1.19g/cmであり、酢酸ナトリウム三水和物の真密度よりも小さいので、酢酸ナトリウム三水和物の融解液表面に浮遊してしまい、凝固再現性が劣ることがわかった。
また、A-4のリン酸ナトリウム処理シリカゲルは真密度が2g/cm以上であるため、酢酸ナトリウム三水和物の融解液中に沈降してしまい、凝固再現性が劣ることがわかった。
From the results of Table 1-2 and FIG. 5, the sodium phosphate-treated particles of A-3 were repeatedly thawed and solidified at a melting point of about 41 ° C. and a freezing point of about 37 ° C., and the carried sodium phosphate was a nuclear catalyst. It turned out to work as. The sodium phosphate-treated melamine resin particles of A-3 having a true density of 1.50 g / cm 3 and close to the true density of sodium acetate trihydrate (1.43 g / cm 3 ) are sodium acetate trihydrate. It was found that it was stably dispersed in the melt of Japanese product and had good solidification reproducibility.
In contrast, the sodium phosphate-treated crosslinked PMMA fine particles of A-1 and A-2 have a true density of 1.19 g / cm 3 , which is smaller than the true density of sodium acetate trihydrate. It was found that the solidification reproducibility was inferior because it floated on the surface of the hydrate melt.
Further, it was found that since the true density of A-4 sodium phosphate-treated silica gel was 2 g / cm 3 or more, it settled in the melt of sodium acetate trihydrate, and the coagulation reproducibility was poor.

以上の結果から、以下の実施例及び比較例では、担持粒子としてメラミン樹脂粒子(株式会社日本触媒製、エポスターSS、メラミン・ホルムアルデヒド縮合物、体積平均粒径0.1μm、真密度1.50g/cm)を用いた。 From the above results, in the following Examples and Comparative Examples, the melamine resin particles (manufactured by Nippon Catalyst Co., Ltd., Epostal SS, melamine / formaldehyde condensate, volume average particle size 0.1 μm, true density 1.50 g /) were used as the supporting particles. cm 3 ) was used.

(実施例2)
<樹脂粒子に対するリン酸水素2ナトリウムの処理量>
表2に示すように、リン酸水素2ナトリウム12水和物とメラミン樹脂粒子の添加比率を変えた以外は、実施例1と同様にして、リン酸水素2ナトリウム(NaHPO)の処理量が異なるB-1~B-4のリン酸ナトリウム処理樹脂粒子を作製した。
(Example 2)
<Treatment amount of disodium hydrogen phosphate for resin particles>
As shown in Table 2, treatment with disodium hydrogen phosphate (Na 2 HPO 4 ) was carried out in the same manner as in Example 1 except that the addition ratios of disodium hydrogen phosphate dodecahydrate and melamine resin particles were changed. Sodium phosphate-treated resin particles of B-1 to B-4 in different amounts were prepared.

Figure 2022014751000003
Figure 2022014751000003

<蓄熱材の作製>
次に、酢酸ナトリウム三水和物(富士フイルム和光純薬株式会社製、特級)5gを10mLガラス瓶に取り、これにホルムアミド(富士フイルム和光純薬株式会社製、特級)1.25gを加え、処理樹脂粒子B-1からB-4を表3に示す量添加して、これらを60℃で融解して、No.1~13の乳白色液体(蓄熱材)を得た。なお、No.8及びNo.9については、酢酸ナトリウム三水和物の量を60gとした。
加熱終了後、10分間以内に固化開始し、層分離することなく乳白色の固体となった。
次に、熱特性測定のため、液体状態でサンプリング、あるいは室温まで下げて凝固後に解砕して粉体でサンプリングした。
<Making heat storage material>
Next, take 5 g of sodium acetate trihydrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., special grade) in a 10 mL glass bottle, and add 1.25 g of formamide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., special grade) to the treatment. Resin particles B-1 to B-4 were added in the amounts shown in Table 3, and these were melted at 60 ° C. to obtain No. 1 to 13 milky white liquids (heat storage materials) were obtained. In addition, No. 8 and No. For 9, the amount of sodium acetate trihydrate was 60 g.
After the completion of heating, solidification started within 10 minutes, and the solid became a milky white solid without layer separation.
Next, in order to measure the thermal characteristics, sampling was performed in a liquid state, or the mixture was cooled to room temperature, solidified, crushed, and sampled as a powder.

次に、得られた表3に示す各蓄熱材について、以下のようにして、サイクル安定性を評価し、2サイクル目の潜熱(凝固熱)を測定した。結果を表3に示した。 Next, for each of the obtained heat storage materials shown in Table 3, the cycle stability was evaluated and the latent heat (heat of solidification) in the second cycle was measured as follows. The results are shown in Table 3.

<サイクル安定性の評価及び2サイクル目の潜熱の測定>
得られた各蓄熱材を測定セルに採取して、上記実施例1と同じ測定条件により示差走査熱量計(DSC)にて昇温時、降温時の熱特性を測定した。
なお、No.9の蓄熱材について測定したDSCチャートを図6に示す。また、No.9の蓄熱材について10サイクル連続測定した際のDSCチャートを図7に示した。
図6の結果から、融点(融解時吸熱開始温度)は約41℃、凝固点(凝固時発熱開始温度)は約37℃であった。
また、No.9の蓄熱材について吸熱及び発熱ピークの面積から熱量を求めると250mJ/mgの高い潜熱が見られた。
また、各蓄熱材について、実施例1と同様の評価基準に基づき、サイクル安定性を評価した。結果を表3に示した。
<Evaluation of cycle stability and measurement of latent heat in the second cycle>
Each of the obtained heat storage materials was collected in a measurement cell, and the thermal characteristics at the time of temperature rise and temperature decrease were measured with a differential scanning calorimeter (DSC) under the same measurement conditions as in Example 1 above.
In addition, No. The DSC chart measured for the heat storage material of 9 is shown in FIG. In addition, No. The DSC chart of the heat storage material of 9 when continuously measured for 10 cycles is shown in FIG.
From the results of FIG. 6, the melting point (endothermic start temperature at the time of melting) was about 41 ° C., and the freezing point (heat generation start temperature at the time of solidification) was about 37 ° C.
In addition, No. When the amount of heat was calculated from the area of the endothermic and heat generation peaks of the heat storage material of No. 9, high latent heat of 250 mJ / mg was observed.
In addition, the cycle stability of each heat storage material was evaluated based on the same evaluation criteria as in Example 1. The results are shown in Table 3.

Figure 2022014751000004
*表3中の2サイクル目の潜熱が「-」は、凝固しなかったため、測定不能であることを示す。
Figure 2022014751000004
* If the latent heat of the second cycle in Table 3 is "-", it means that it cannot be measured because it did not solidify.

表3の結果から、メラミン樹脂粒子に対するリン酸水素2ナトリウムの処理量が7質量%以上28質量%以下、酢酸ナトリウム三水和物に対するメラミン樹脂粒子の添加量が1.0質量%以上、酢酸ナトリウム三水和物に対するリン酸水素2ナトリウム濃度が約0.3質量%以上0.6質量%以下である時に、良好なサイクル安定性、及び高い潜熱量が得られることがわかった。
また、No.8及びNo.9の結果から、酢酸ナトリウム三水和物の添加量を60gに増やしても、採取方法によらず安定な凝固再現性が得られることが確認できた。
From the results in Table 3, the amount of disodium hydrogen phosphate treated with respect to the melamine resin particles was 7% by mass or more and 28% by mass or less, the amount of the melamine resin particles added to the sodium acetate trihydrate was 1.0% by mass or more, and acetic acid. It was found that good cycle stability and high latent calorific value can be obtained when the concentration of disodium hydrogen phosphate with respect to sodium trihydrate is about 0.3% by mass or more and 0.6% by mass or less.
In addition, No. 8 and No. From the results of No. 9, it was confirmed that stable coagulation reproducibility can be obtained regardless of the collection method even if the amount of sodium acetate trihydrate added is increased to 60 g.

(比較例1)
酢酸ナトリウム三水和物(富士フイルム和光純薬株式会社製、特級)5gを10mLガラス瓶に取り、これにホルムアミド(富士フイルム和光純薬株式会社製、特級)1.25gを加え、リン酸水素2ナトリウム12水和物(富士フイルム和光純薬株式会社製、特級)を1.0質量%添加して、これを60℃で融解して透明液体(蓄熱材)を作製した。
(Comparative Example 1)
Take 5 g of sodium acetate trihydrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., special grade) in a 10 mL glass bottle, add 1.25 g of formamide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., special grade) to this, and add hydrogen phosphate 2 1.0% by mass of sodium 12 hydrate (manufactured by Wako Pure Chemical Industries, Ltd., special grade) was added and melted at 60 ° C. to prepare a transparent liquid (heat storage material).

(比較例2)
比較例1において、リン酸水素2ナトリウム12水和物(富士フイルム和光純薬株式会社製、特級)を3.0質量%添加した以外は、比較例1と同様にして、蓄熱材を作製した。
(Comparative Example 2)
A heat storage material was prepared in the same manner as in Comparative Example 1 except that 3.0% by mass of disodium hydrogen phosphate dodecahydrate (manufactured by Wako Pure Chemical Industries, Ltd., special grade) was added in Comparative Example 1. ..

(比較例3)
比較例1において、リン酸水素2ナトリウム12水和物1.0質量%を、ピロリン酸四ナトリウム10水和物(富士フイルム和光純薬株式会社製、特級)3.0質量%に変えた以外は、比較例1と同様にして、蓄熱材を作製した。
(Comparative Example 3)
In Comparative Example 1, 1.0% by mass of disodium hydrogen phosphate dodecahydrate was changed to 3.0% by mass of tetrasodium pyrophosphate decahydrate (manufactured by Wako Pure Chemical Industries, Ltd., special grade). Made a heat storage material in the same manner as in Comparative Example 1.

(比較例4)
比較例1において、リン酸水素2ナトリウム12水和物1.0質量%を、リン酸モノドデシルナトリウム(東京化成工業株式会社製、特級)1.0質量%に変えた以外は、比較例1と同様にして、蓄熱材を作製した。
(Comparative Example 4)
In Comparative Example 1, Comparative Example 1 except that 1.0% by mass of disodium hydrogen phosphate dodecahydrate was changed to 1.0% by mass of monododecyl sodium phosphate (manufactured by Tokyo Kasei Kogyo Co., Ltd., special grade). In the same manner as above, a heat storage material was produced.

(比較例5)
比較例1において、リン酸水素2ナトリウム12水和物1.0質量%を、リン酸モノドデシルナトリウム(東京化成工業株式会社製、特級)1.0質量%に変え、酢酸ナトリウム三水和物5gを60gに変えた以外は、比較例1と同様にして、蓄熱材を作製した。
(Comparative Example 5)
In Comparative Example 1, 1.0% by mass of disodium hydrogen phosphate dodecahydrate was changed to 1.0% by mass of monododecyl sodium phosphate (manufactured by Tokyo Kasei Kogyo Co., Ltd., special grade), and sodium acetate trihydrate was changed. A heat storage material was produced in the same manner as in Comparative Example 1 except that 5 g was changed to 60 g.

(比較例6)
比較例1において、リン酸水素2ナトリウム12水和物1.0質量%を、リン酸モノドデシルナトリウム(東京化成工業株式会社製、特級)5.0質量%に変えた以外は、比較例1と同様にして、蓄熱材を作製した。
(Comparative Example 6)
In Comparative Example 1, Comparative Example 1 except that 1.0% by mass of disodium hydrogen phosphate dodecahydrate was changed to 5.0% by mass of monododecyl sodium phosphate (manufactured by Tokyo Kasei Kogyo Co., Ltd., special grade). In the same manner as above, a heat storage material was produced.

次に、得られた比較例1~6の蓄熱材について、実施例1と同様にして、サイクル安定性を評価し、2サイクル目の潜熱(凝固熱)を測定した。結果を表4に示した。 Next, with respect to the obtained heat storage materials of Comparative Examples 1 to 6, the cycle stability was evaluated in the same manner as in Example 1, and the latent heat (heat of solidification) in the second cycle was measured. The results are shown in Table 4.

Figure 2022014751000005
表4の結果から、比較例1~3の樹脂粒子に担持しないリン酸塩系結晶単独では発核性を示すものの、凝固遅れによるピーク分離や潜熱低下が見られた。
また、比較例4及び6では、アルキルリン酸エステルとしてのリン酸モノドデシルナトリウムは塩水和物としての酢酸ナトリウム三水和物が少量の時はサイクル安定性が見られたが、凝固再現性が乏しかった。また、比較例5のように塩水和物の添加量が多量である場合には、浮遊分離してしまい良好な発核性が得られなかった。
Figure 2022014751000005
From the results in Table 4, although the phosphate-based crystals alone not supported on the resin particles of Comparative Examples 1 to 3 showed nucleation, peak separation and a decrease in latent heat due to the delay in solidification were observed.
Further, in Comparative Examples 4 and 6, the sodium phosphate monododecyl as an alkyl phosphate ester showed cycle stability when the amount of sodium acetate trihydrate as a salt hydrate was small, but the coagulation reproducibility was high. It was scarce. Further, when the amount of salt hydrate added was large as in Comparative Example 5, suspension separation occurred and good nucleation could not be obtained.

以上の結果から、酢酸ナトリウム三水和物の蓄熱用発核剤としてリン酸ナトリウムで表面処理した樹脂粒子を用いることによって、安定な繰り返し凝固再現性が得られることがわかった。
また、樹脂粒子としては真密度が1.50g/cmであるメラミン樹脂粒子が好適であることがわかった。
また、樹脂粒子としては体積平均粒径が0.05μm以上1.0μm以下のコロイドサイズの微粒子が好ましいことがわかった。
また、樹脂粒子に対するリン酸ナトリウムの処理量は7.3質量%以上28.4質量%以下が好ましいことがわかった。
また、樹脂粒子の含有量は1質量%以上4.0質量%以下が好ましく、酢酸ナトリウム三水和物に対する濃度として換算すると0.3質量%以上0.6質量%以下が有効であることがわかった。
From the above results, it was found that stable repetitive coagulation reproducibility can be obtained by using resin particles surface-treated with sodium phosphate as a heat storage nucleating agent for sodium acetate trihydrate.
Further, it was found that melamine resin particles having a true density of 1.50 g / cm 3 are suitable as the resin particles.
Further, it was found that the resin particles preferably have colloidal size fine particles having a volume average particle size of 0.05 μm or more and 1.0 μm or less.
Further, it was found that the treatment amount of sodium phosphate with respect to the resin particles is preferably 7.3% by mass or more and 28.4% by mass or less.
Further, the content of the resin particles is preferably 1% by mass or more and 4.0% by mass or less, and when converted as a concentration with respect to sodium acetate trihydrate, 0.3% by mass or more and 0.6% by mass or less is effective. all right.

(実施例3)
<四ホウ酸2ナトリウム処理樹脂粒子C-1の作製>
表6に示すように、四ホウ酸2ナトリウム10水和物1.0gを純水30.0mlに溶解し、この溶液にメラミン樹脂粒子(株式会社日本触媒製、エポスターSS、メラミン・ホルムアルデヒド縮合物、平均粒径0.1μm、真密度1.5g/cm)1.0gを添加し混合して、80℃で25分間加熱して懸濁液を得た。
次に、得られた懸濁液を熱風循環オーブンで80℃にて乾燥した後、減圧乾燥し、粉砕して、四ホウ酸2ナトリウム処理樹脂粒子C-1を得た。
(Example 3)
<Preparation of resin particles C-1 treated with disodium tetraborate>
As shown in Table 6, 1.0 g of disodium tetraborate decahydrate is dissolved in 30.0 ml of pure water, and melamine resin particles (manufactured by Nippon Catalyst Co., Ltd., Epostal SS, melamine / formaldehyde condensate) are dissolved in this solution. , Average particle size 0.1 μm, true density 1.5 g / cm 3 ) 1.0 g was added and mixed, and heated at 80 ° C. for 25 minutes to obtain a suspension.
Next, the obtained suspension was dried at 80 ° C. in a hot air circulation oven, dried under reduced pressure, and pulverized to obtain disodium tetraborate-treated resin particles C-1.

Figure 2022014751000006
Figure 2022014751000006

<蓄熱材の作製>
塩水和物として硫酸ナトリウム10水和物(富士フイルム和光純薬株式会社製、特級)5gを10mLガラス瓶に取り、これに処理樹脂粒子C-1を表7に示す量添加して、温度50℃にて融解し、No.1~4の乳白色のクリーム状の液体(蓄熱材)を得た。
<Making heat storage material>
As a salt hydrate, take 5 g of sodium sulfate decahydrate (manufactured by Wako Pure Chemical Industries, Ltd., special grade) in a 10 mL glass bottle, add the treated resin particles C-1 to this in the amount shown in Table 7, and set the temperature at 50 ° C. Melted in No. 1 to 4 milky white creamy liquids (heat storage materials) were obtained.

<熱特性の測定>
熱特性の測定のため、凝固後に再度融解した液体でサンプリングして、実施例1と同様にしてDSC測定を行い、サイクル安定性を評価し、2サイクル目の潜熱を測定した。結果を表7に示した。また、No.3の蓄熱材について測定したDSCチャートを図8に示した。
<Measurement of thermal characteristics>
In order to measure the thermal characteristics, sampling was performed with the liquid melted again after solidification, DSC measurement was performed in the same manner as in Example 1, cycle stability was evaluated, and latent heat in the second cycle was measured. The results are shown in Table 7. In addition, No. The DSC chart measured for the heat storage material of No. 3 is shown in FIG.

Figure 2022014751000007
図8の結果から、融点約33℃、凝固点約26℃での繰返し融解及び凝固が認められた。このことから、四ホウ酸2ナトリウムを担持した樹脂粒子C-1が硫酸ナトリウム10水和物の発核触媒として機能していることがわかった。
従来から、四ホウ酸2ナトリウムはその結晶格子サイズの類似性から、硫酸ナトリウム10水和物がエピタキシャル成長可能な発核性核種として知られている。しかし、ホウ酸ナトリウム結晶は溶解し難いこと、また、硫酸ナトリウム水和物は不調和融解して無水硫酸ナトリウムが沈降することから、短時間での安定な繰返し凝固が難しかった。
表7の結果から、四ホウ酸2ナトリウムを担持した樹脂粒子を蓄熱用発核剤として用いることにより、硫酸ナトリウムの融解液がクリーム状となり成分分離が少ないことから、繰返し凝固安定性が高い硫酸ナトリウム水和物系の蓄熱材が得られることがわかった。
Figure 2022014751000007
From the results shown in FIG. 8, repeated melting and solidification were observed at a melting point of about 33 ° C. and a freezing point of about 26 ° C. From this, it was found that the resin particles C-1 carrying disodium tetraborate function as a nuclear catalyst for sodium sulfate decahydrate.
Conventionally, disodium tetraborate has been known as a nuclide nuclide on which sodium sulfate decahydrate can grow epitaxially because of its similarity in crystal lattice size. However, since sodium borate crystals are difficult to dissolve and sodium sulfate hydrate is dissonantly melted to precipitate anhydrous sodium sulfate, stable repeated coagulation in a short time is difficult.
From the results in Table 7, by using resin particles carrying disodium tetraborate as a nucleating agent for heat storage, the melt of sodium sulfate becomes creamy and component separation is small, so that sulfate with high repeated coagulation stability It was found that a sodium hydrate-based heat storage material can be obtained.

本発明の蓄熱材は、過冷却を抑制でき、繰返し凝固安定性が高いので、様々な保温・保冷分野において用いられるが、特に、スマートフォンのCPUやバッテリーの冷却などの比較的短時間での繰返し冷却・凝固が必要とされる用途に好適に用いることができる。 The heat storage material of the present invention can suppress supercooling and has high repeated solidification stability, and is therefore used in various heat and cold insulation fields. In particular, it is repeated in a relatively short time such as cooling the CPU and battery of a smartphone. It can be suitably used for applications that require cooling and solidification.

Claims (13)

発核性核種が担持された樹脂粒子を含むことを特徴とする蓄熱用発核剤。 A heat storage nuclide agent comprising resin particles carrying a nuclide nuclide. 樹脂粒子の体積平均粒径が0.05μm以上1.0μm以下である、請求項1に記載の蓄熱用発核剤。 The heat storage nucleating agent according to claim 1, wherein the volume average particle diameter of the resin particles is 0.05 μm or more and 1.0 μm or less. 樹脂粒子は、表面塩基性のアミノ系樹脂粒子を含む、請求項1から2のいずれかに記載の蓄熱用発核剤。 The heat storage nucleating agent according to any one of claims 1 to 2, wherein the resin particles include surface-basic amino-based resin particles. 前記表面塩基性のアミノ系樹脂粒子が、メラミン樹脂粒子、ベンゾグアナミン樹脂粒子、及び尿素樹脂粒子の少なくともいずれかである、請求項3に記載の蓄熱用発核剤。 The heat storage nucleating agent according to claim 3, wherein the surface-basic amino resin particles are at least one of melamine resin particles, benzoguanamine resin particles, and urea resin particles. 前記発核性核種がリン酸水素2ナトリウム又は四ホウ酸2ナトリウムである、請求項1から4のいずれかに記載の蓄熱用発核剤。 The heat storage nuclide according to any one of claims 1 to 4, wherein the nuclide is disodium hydrogen phosphate or disodium tetraborate. 表面に発核性核種を保持する樹脂粒子と、塩水和物とを含有することを特徴とする蓄熱材。 A heat storage material characterized by containing resin particles holding nuclide nuclides on the surface and salt hydrate. 樹脂粒子の真密度Aと前記塩水和物の真密度Bとの差(A-B)が±0.25g/cm以内である、請求項6に記載の蓄熱材。 The heat storage material according to claim 6, wherein the difference (AB) between the true density A of the resin particles and the true density B of the salt hydrate is within ± 0.25 g / cm 3 . 樹脂粒子の体積平均粒径が0.05μm以上1.0μm以下である、請求項6から7のいずれかに記載の蓄熱材。 The heat storage material according to any one of claims 6 to 7, wherein the volume average particle diameter of the resin particles is 0.05 μm or more and 1.0 μm or less. 樹脂粒子は、表面塩基性のアミノ系樹脂粒子を含む、請求項6から8のいずれかに記載の蓄熱材。 The heat storage material according to any one of claims 6 to 8, wherein the resin particles include surface-basic amino-based resin particles. 前記表面塩基性のアミノ系樹脂粒子が、メラミン樹脂粒子、ベンゾグアナミン樹脂粒子、及び尿素樹脂粒子の少なくともいずれかである、請求項9に記載の蓄熱材。 The heat storage material according to claim 9, wherein the surface-basic amino resin particles are at least one of melamine resin particles, benzoguanamine resin particles, and urea resin particles. 前記発核性核種がリン酸水素2ナトリウム又は四ホウ酸2ナトリウムであり、
前記塩水和物が酢酸ナトリウム三水和物又は硫酸ナトリウム10水和物である、請求項6から10のいずれかに記載の蓄熱材。
The nuclide nuclide is disodium hydrogen phosphate or disodium tetraborate.
The heat storage material according to any one of claims 6 to 10, wherein the salt hydrate is sodium acetate trihydrate or sodium sulfate decahydrate.
融解及び凝固を繰返し可能である、請求項6から11のいずれかに記載の蓄熱材。 The heat storage material according to any one of claims 6 to 11, which can be repeatedly melted and solidified. 溶媒に溶解した発核性化合物に樹脂粒子を添加し混合分散した後、乾燥し得られた乾燥物を粉砕する工程と、
得られた粉砕物を塩水和物に添加する工程と、
を含むことを特徴とする蓄熱材の製造方法。
A step of adding resin particles to a nucleating compound dissolved in a solvent, mixing and dispersing the mixture, and then pulverizing the dried product obtained by drying.
The step of adding the obtained ground product to the salt hydrate,
A method for producing a heat storage material, which comprises.
JP2020117275A 2020-07-07 2020-07-07 Heat storage nucleating agent, heat storage medium, and method for producing the same Pending JP2022014751A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020117275A JP2022014751A (en) 2020-07-07 2020-07-07 Heat storage nucleating agent, heat storage medium, and method for producing the same
PCT/JP2021/024469 WO2022009726A1 (en) 2020-07-07 2021-06-29 Heat storage nucleating agent, heat storage medium, and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020117275A JP2022014751A (en) 2020-07-07 2020-07-07 Heat storage nucleating agent, heat storage medium, and method for producing the same

Publications (1)

Publication Number Publication Date
JP2022014751A true JP2022014751A (en) 2022-01-20

Family

ID=79553057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020117275A Pending JP2022014751A (en) 2020-07-07 2020-07-07 Heat storage nucleating agent, heat storage medium, and method for producing the same

Country Status (2)

Country Link
JP (1) JP2022014751A (en)
WO (1) WO2022009726A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56137099A (en) * 1980-03-28 1981-10-26 Agency Of Ind Science & Technol Latent heat type accumulator
JPS5719596A (en) * 1980-07-09 1982-02-01 Mitsubishi Electric Corp Regenerator
JPS5790589A (en) * 1980-11-22 1982-06-05 Matsushita Electric Works Ltd Heat accumulating device
JPS5852995A (en) * 1981-09-21 1983-03-29 Hitachi Ltd Heat accumulating material
JPS5866799A (en) * 1981-10-16 1983-04-21 Hitachi Ltd Heat-accumulating material
US6103139A (en) * 1998-08-08 2000-08-15 Allegiance Corporation Single-use encapsulated hot pack activator

Also Published As

Publication number Publication date
WO2022009726A1 (en) 2022-01-13

Similar Documents

Publication Publication Date Title
Li et al. Preparation and thermal energy storage studies of CH3COONa· 3H2O–KCl composites salt system with enhanced phase change performance
Wang et al. Preparation and thermal properties of sodium acetate trihydrate as a novel phase change material for energy storage
Yuan et al. Novel facile self-assembly approach to construct graphene oxide-decorated phase-change microcapsules with enhanced photo-to-thermal conversion performance
US6022487A (en) Heat-transfer concentrate, method of manufacturing it and its use as well as a latent-heat accumulator making use of the concentrate
Shao et al. Solidification behavior of hybrid TiO2 nanofluids containing nanotubes and nanoplatelets for cold thermal energy storage
Elarem et al. Experimental investigations on thermophysical properties of nano-enhanced phase change materials for thermal energy storage applications
Kardam et al. Ultrafast thermal charging of inorganic nano-phase change material composites for solar thermal energy storage
JP2018059676A (en) Heat storage device
Harikrishnan et al. Experimental investigation of improved thermal characteristics of SiO2/myristic acid nanofluid as phase change material (PCM)
Liang et al. Preparation and thermal properties of eutectic hydrate salt phase change thermal energy storage material
Mingear et al. Gallium–indium nanoparticles as phase change material additives for tunable thermal fluids
Gao et al. Magnetically accelerated thermal energy storage within Fe3O4‐anchored MXene‐based phase change materials
Hayat et al. Preparation and thermophysical characterisation analysis of potential nano-phase transition materials for thermal energy storage applications
Sriharan et al. Improved performance of composite phase change material for thermal energy storage
Qiao et al. Experimental study on the effect of different surfactants on the thermophysical properties of graphene filled nanofluids
Tamaru et al. Fabrication of hard-shell microcapsules containing inorganic materials
CN111978679A (en) Crystalline hydrated salt phase-change material and preparation method thereof
WO2022009726A1 (en) Heat storage nucleating agent, heat storage medium, and method for producing same
Ma et al. Development, characterization and modification of mannitol-water based nanocomposite phase change materials for cold storage
Wang et al. Effect of encapsulation and additives doping on the thermophysical properties of erythritol for thermal energy storage
Li et al. Preparation and characterization of Na2HPO4· 12H2O@ polymethyl methacrylate nanocapsule for efficient thermal energy storage
Kittusamy et al. Preparation and thermal characterization of nanographene-enhanced fatty acid-based solid-liquid organic phase change material composites for thermal energy storage
Tang et al. Experimental investigation of aluminum nitride/carbon fiber‐modified composite phase change materials for battery thermal management
Sundaram et al. Cold thermal energy storage performance of graphene nanoplatelets–DI water nanofluid PCM using gum acacia in a spherical encapsulation
Rizvi et al. Investigation of time–temperature dependency of heat capacity enhancement in molten salt nanofluids

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20220523