JPH0372675B2 - - Google Patents

Info

Publication number
JPH0372675B2
JPH0372675B2 JP8472982A JP8472982A JPH0372675B2 JP H0372675 B2 JPH0372675 B2 JP H0372675B2 JP 8472982 A JP8472982 A JP 8472982A JP 8472982 A JP8472982 A JP 8472982A JP H0372675 B2 JPH0372675 B2 JP H0372675B2
Authority
JP
Japan
Prior art keywords
acid
heat storage
nucleating
heat
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8472982A
Other languages
Japanese (ja)
Other versions
JPS58204085A (en
Inventor
Keiichi Koike
Michio Yanatori
Seigo Myamoto
Hideaki Kanbara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8472982A priority Critical patent/JPS58204085A/en
Publication of JPS58204085A publication Critical patent/JPS58204085A/en
Publication of JPH0372675B2 publication Critical patent/JPH0372675B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は太陽熱,工場廃熱などの利用に有効な
蓄熱材料に関するものである。 太陽熱および工場廃熱を利用する場合、そのエ
ネルギーを物質の融解の潜熱として蓄熱し、凝固
の際に放出させる、いわゆる潜熱蓄熱材料はエネ
ルギーの貯蔵密度が大きく、エネルギーの利用上
の効果は大である。この蓄熱材料として塩化カル
シウム(6水塩、融点29.2℃)が最も広く知られ
ている。この塩化カルシウムは融点が30℃以下で
あるため、ヒートポンプ用の熱源として用いられ
る。 蓄熱材から放出される熱をそのまま暖房に使用
する目的のためには、チオ硫酸ナトリウム
(Na2S2O3・5H2O、融点48.5℃)が用いられてい
る。このチオ硫酸ナトリウムは蓄熱量が大で、か
つ安価であるため、太陽熱および廃熱などを利用
して蓄熱しておき、暖房および給湯装置の補助熱
源として空気または水の加熱に使用することがで
きる。 しかし太陽熱を利用したランキン機関のフロン
蒸気発生用熱源として蓄熱材を利用する場合に
は、融点80℃以上の高温の蓄熱材が必要である。
これを満足させる比較的に安価な蓄熱材として、
融点93.5℃のアンモニウム明ばん(AlNH4
(SO42・12H2O)があげられる。ところがこの
アンモニウム明ばんは凝固の際に30℃以上の大き
な過冷を示す欠点があり、しかもこの欠点を解消
する対策がないのが現状である。 本発明は上記にかんがみアンモニウム明ばんの
過冷を防止し、所定温度で蓄熱と放熱を行う蓄熱
材料を提供することを目的とするもので、アンモ
ニウム明ばんに融点が93.5℃以上であつて、しか
も低分子密度の結晶面を有する有機化合物を発核
材として添加することを特徴とするものである。 一般に液体から固体への相変化は結晶核の発生
段階と核を中心とした結晶の成長段階に分けて考
えることができる。その核発生には大きなエネル
ギーを必要とし、過冷現象はそのエネルギー障壁
のために生ずることが知られている。したがつて
過冷防止のために核物質を添加する方法が行われ
ている。この場合、核物質は液相中に溶解せずに
存在し、界面上に新たに生成する結晶との界面エ
ネルギーが小さいこと、核はある臨界半径(1〜
100μm)以上の大きさを持つことなどが必要で
あることも知られている。また結晶の成長は低分
子密度の結晶面例えば立方晶系では100,110,
111面で起り易く、かつ結晶はステツプの移動の
形をとつて成長することが知られている。 このような発核材の一例として塩化カルシウム
(6水塩)に対する水酸化バリウムおよび水酸化
ストロンチウムの発核効果が認められている。と
ころがこの水酸化ストロンチウムは、硫酸塩水溶
液中では不溶性の塩(BaSO4・SrSO4)となつて
沈澱するから、発核材としての効果が失われる。
すなわち蓄熱物質と化学反応を起す物質は発核材
として不適格である。 本発明者は上記の理論的見地に基づきアンモニ
ウム明ばん(AlNH4(SO42・12H2O)に対する
発核材を実験、研究を行つて検討した結果、融点
が93.5℃以上でで劈開性を有する有機化合物結晶
で、かつ昇華性であるか、あるいは水またはアン
モニウム明ばんの水溶液中に微量溶解するが、ア
ンモニウム明ばんと化学反応を生じない有機物質
を発核材として用いればよいことが判つた。さら
に発核材の比重がアンモニウム明ばんの比重に対
して±0.3の範囲(1.64±0.3=1.34〜1.94)にある
場合に、発核材としての効果が特に大きいことも
わかつた。 上記劈開性結晶は劈開面における結合力が弱い
ことは公知である。例えば原子が二次元に配列し
て薄片状結晶を作る場合、薄片の平面間の結合は
弱い劈開面になり易い。この劈開面は低エネルギ
一面(低密度面)であり、この面上に結晶が生長
し易いと考えられる。また発核材の密度が蓄熱材
の密度に近いことは、結晶すべき塩類溶液(蓄熱
材)中に結晶核を均一に分散させ、溶液内の各所
で結晶の生長を促進する効果がある。 さらに発核材が昇華性あるいは水および塩類水
溶液に微量溶解することは、結晶表面が微量に溶
解除去されて清浄化し、結晶の生長に好適な表面
が形成されることによると考えられる。アンモニ
ウム明ばんは等軸晶系に属するが、発核材の結晶
形は必ずしも等軸晶である必要はなく、100,
110,111などの結晶面を有するか、または劈開に
より前記結晶面が現われている場合には、その面
上に結晶が生長すると考えられる。 この種の発核材しては具体的に次に示すような
有機化合物がある。即ち、単斜昌系の有機化合物
としてピクリン酸、ピクラミド、ダンボース、フ
マル酸サリチル酸、シアヌル酸、O−クロル安息
香酸、ズルシツト、3.5ジニトロ安息香酸、メラ
ミン、オキサミド、P−オキシ安息香酸、チアン
トレン、P−ニトロ安息香酸、没食子酸があり、
また斜方昌系の有機化合物として無水フタル酸、
無水コハク酸がある。 上記発核材は微量添加しても効果が認められる
が、実用的にはアンモニウム明ばんに対して0.01
%(重量)以上である。その添加の上限は特に作
用および効果上、限定する理由はないが、多量の
添加は蓄熱密度を減少させるので、10%(重量)
程度に限定することが実用的である。これらの発
核材はアンモニウム明ばんに直接添加してもよい
が、必要に応じて適当な支持体により発核体を保
持してアンモニウム明ばん中に介在させてもよ
い。 本実施例、例えばアンモニウム明ばん
(AlNH4(SO42・12H2O)に発核材として無水フ
タル酸を添加してなる蓄熱材の蓄熱−放熱状況を
発核材無添加の場合および水を蓄熱材としたもの
と対比して示すと第1図のとおりで、実線は発核
材添加、破線は発核材無添加、一点鎖線は水の場
合をそれぞれ示す。 この図より発核材無添加の場合には、93.5℃以
上で融解した後に冷却すると、過冷却のために45
℃まで凝固せずに45℃で破線1′(CD)で示すよう
に放熱し、ACDFAで示す熱履歴サイクルを画
く。これに対し無水フタル酸を0.1%添加した本
実施例の蓄熱材は、90℃で実線2′(BE)に示すよ
うに放熱し、ABEFAの吸熱−放熱の熱履歴サイ
クルを画く。なお図中の矢印方向は蓄熱量変化の
方向を示し、1′,2′は放熱、2は吸熱を示すもの
とする。 ここでアンモニウム明ばんの単位体積当りの蓄
熱量を比較すると、アンモニウム明ばんの場合に
は93.5℃で約97.8kcal/であるに対し、一点鎖
線3で示す水の同温度(80〜93.5℃)における蓄
熱量は13.5kcal/であるから、アンモニウム明
ばんが蓄熱材として優れていることは明白であ
る。 次に実施例について説明する。 第2図はモデル実験装置で、この装置は撹拌器
3と温度センサ4aを挿入した水槽2内に、温度
センサ4bを挿入した蓄熱槽1を収納し、その両
槽1,2を容器5内に収納して構成されている。
前記蓄熱槽1内に蓄熱材すなわちアンモニウム明
ばん(AlNH4(SO42・12H2O)に第1表に示す
発核材を0.05%添加したものを入れ、20〜105℃
の範囲で加熱と冷却を繰返し行つて蓄熱材の融解
−凝固特性を測定した。 その結果は第1表に示すとおりであり、この表
The present invention relates to a heat storage material that is effective for utilizing solar heat, factory waste heat, etc. When using solar heat and factory waste heat, so-called latent heat storage materials, which store the energy as latent heat when melting a substance and release it during solidification, have a large energy storage density and are not very effective in terms of energy utilization. be. Calcium chloride (hexahydrate, melting point 29.2°C) is the most widely known heat storage material. This calcium chloride has a melting point of 30°C or less, so it is used as a heat source for heat pumps. Sodium thiosulfate (Na 2 S 2 O 3 .5H 2 O, melting point 48.5°C) is used to directly use the heat released from the heat storage material for heating. This sodium thiosulfate has a large heat storage capacity and is inexpensive, so it can be stored using solar heat and waste heat, and used to heat air or water as an auxiliary heat source for space heaters and water heaters. . However, when using a heat storage material as a heat source for generating fluorocarbon steam in a Rankine engine that uses solar heat, a high temperature heat storage material with a melting point of 80°C or higher is required.
As a relatively inexpensive heat storage material that satisfies this requirement,
Ammonium alum ( AlNH4) with a melting point of 93.5℃
(SO 4 ) 2・12H 2 O). However, this ammonium alum has the drawback of exhibiting large supercooling of 30°C or more during solidification, and there is currently no countermeasure to overcome this drawback. In view of the above, the present invention aims to provide a heat storage material that prevents overcooling of ammonium alum and stores and releases heat at a predetermined temperature. Moreover, it is characterized in that an organic compound having a crystal plane with a low molecular density is added as a nucleating material. In general, the phase change from liquid to solid can be divided into a crystal nucleus generation stage and a crystal growth stage centered on the nucleus. Nuclear generation requires a large amount of energy, and it is known that the supercooling phenomenon occurs due to the energy barrier. Therefore, a method of adding nuclear material is being used to prevent overcooling. In this case, the nuclear substance exists undissolved in the liquid phase, the interfacial energy with the newly generated crystal on the interface is small, and the nucleus has a certain critical radius (1 to
It is also known that it is necessary to have a size of 100 μm or more. In addition, crystal growth occurs on crystal planes with low molecular density, such as 100, 110,
It is known that crystal growth tends to occur on 111 planes, and that crystals grow in the form of step movement. As examples of such nucleating materials, the nucleating effect of barium hydroxide and strontium hydroxide on calcium chloride (hexahydrate) has been recognized. However, this strontium hydroxide becomes an insoluble salt (BaSO 4 .SrSO 4 ) and precipitates in an aqueous sulfate solution, so it loses its effectiveness as a nucleating material.
In other words, substances that cause chemical reactions with heat storage substances are not suitable as nucleating materials. Based on the above theoretical viewpoint, the present inventor conducted experiments and research on nucleating materials for ammonium alum (AlNH 4 (SO 4 ) 2.12H 2 O) and found that it cleaves at a melting point of 93.5°C or higher. It is sufficient to use as a nucleating material an organic compound crystal that has a property and is sublimable, or an organic substance that dissolves in trace amounts in water or an aqueous solution of ammonium alum but does not cause a chemical reaction with ammonium alum. I found out. Furthermore, it was found that the effect as a nucleating material is particularly large when the specific gravity of the nucleating material is in the range of ±0.3 with respect to the specific gravity of ammonium alum (1.64±0.3=1.34 to 1.94). It is known that the above-mentioned cleavable crystal has a weak bonding force at the cleavage plane. For example, when atoms are arranged two-dimensionally to form a flaky crystal, the bonds between the planes of the flakes tend to form weak cleavage planes. This cleavage plane is a low energy plane (low density plane), and it is considered that crystals are likely to grow on this plane. Furthermore, the fact that the density of the nucleating material is close to that of the heat storage material has the effect of uniformly dispersing crystal nuclei in the salt solution (heat storage material) to be crystallized and promoting the growth of crystals at various locations within the solution. Furthermore, the fact that the nucleating material sublimes or dissolves in a small amount in water and aqueous salt solutions is thought to be due to the fact that the crystal surface is dissolved and removed in a small amount to clean it and form a surface suitable for crystal growth. Ammonium alum belongs to the equiaxed crystal system, but the crystal form of the nucleating material does not necessarily have to be equiaxed;
If the crystal has a crystal face such as 110 or 111, or if the crystal face is exposed by cleavage, it is considered that the crystal grows on that face. Specific examples of this type of nucleating material include the following organic compounds. That is, as monoclinic organic compounds, picric acid, picramide, dambose, salicylic acid fumarate, cyanuric acid, O-chlorobenzoic acid, dulcitrate, 3.5 dinitrobenzoic acid, melamine, oxamide, P-oxybenzoic acid, thianthrene, P - Contains nitrobenzoic acid and gallic acid,
In addition, phthalic anhydride and orthorhombic anhydride are organic compounds.
There is succinic anhydride. The effect of the above nucleating material is recognized even when added in small amounts, but in practical terms, 0.01
% (weight) or more. The upper limit of its addition is 10% (by weight), although there is no reason to limit it in terms of function and effect, but adding a large amount will reduce the heat storage density.
It is practical to limit the amount to a certain extent. These nucleating materials may be added directly to the ammonium alum, but if necessary, the nucleating material may be held by a suitable support and interposed in the ammonium alum. In this example, the heat storage and heat dissipation conditions of a heat storage material made by adding phthalic anhydride as a nucleating material to ammonium alum (AlNH 4 (SO 4 ) 2.12H 2 O) as a nucleating material are evaluated. A comparison with water as a heat storage material is shown in FIG. 1, where the solid line shows the case in which the nucleating material is added, the broken line shows the case in which the nucleating material is not added, and the dashed line shows the case in which water is used. This figure shows that when no nucleating material is added, when cooling after melting at 93.5°C or higher, the temperature rises to 45°C due to supercooling.
It does not solidify until it reaches 45°C and radiates heat as shown by the dashed line 1' (CD), creating a thermal history cycle shown by ACDFA. On the other hand, the heat storage material of this example to which 0.1% of phthalic anhydride was added releases heat at 90°C as shown by the solid line 2' (BE), which shows the thermal history cycle of heat absorption and heat release of ABEFA. Note that the arrow direction in the figure indicates the direction of heat storage amount change, 1' and 2' indicate heat radiation, and 2 indicates heat absorption. Comparing the amount of heat stored per unit volume of ammonium alum, it is approximately 97.8 kcal/at 93.5℃, while that of water at the same temperature (80 to 93.5℃) shown by the dashed-dotted line 3 Since the amount of heat storage is 13.5kcal/, it is clear that ammonium alum is excellent as a heat storage material. Next, an example will be described. Figure 2 shows a model experimental device, in which a heat storage tank 1 in which a temperature sensor 4b is inserted is housed in a water tank 2 in which a stirrer 3 and a temperature sensor 4a are inserted, and both tanks 1 and 2 are placed in a container 5. It is constructed by storing it in.
A heat storage material, that is, ammonium alum (AlNH 4 (SO 4 ) 2.12H 2 O) to which 0.05% of the nucleating material shown in Table 1 was added was placed in the heat storage tank 1, and the temperature was heated to 20 to 105°C.
The melting-solidification characteristics of the heat storage material were measured by repeatedly heating and cooling within the range of . The results are shown in Table 1.

【表】 から本発明に係わる蓄熱材は過冷が少なく、一定
温度で凝固・融解するから蓄熱材として安定して
いることが認められた。また第1表の発核材を1
%添加した場合にも同様な効果がえられた。 以上説明したように本発明によれば、アンモニ
ウム明ばんの過冷を防止し、所定温度で蓄熱と放
熱を行う蓄熱材料をうることができる。
From [Table], it was confirmed that the heat storage material according to the present invention is stable as a heat storage material because it has little supercooling and solidifies and melts at a constant temperature. In addition, 1 nucleating material from Table 1
A similar effect was obtained when adding %. As explained above, according to the present invention, it is possible to obtain a heat storage material that prevents overcooling of ammonium alum and stores and releases heat at a predetermined temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の蓄熱材料、発核材無添加の蓄
熱材料および水の蓄熱−放熱状況を比較して示し
た図、第2図はモデル実験装置の断面図である。
FIG. 1 is a diagram comparing the heat storage and heat release states of the heat storage material of the present invention, the heat storage material without addition of nucleating material, and water, and FIG. 2 is a sectional view of a model experimental device.

Claims (1)

【特許請求の範囲】 1 アンモニウム明ばん(AlNH4(SO42
12H2O)に、発核材として融点が93.5℃以上で、
比重が1.47〜1.8の範囲にあつて、かつ劈開面を
有する単斜昌系又は斜方昌系の有機化合物を添加
してなることを特徴とする蓄熱材料。 2 前記発核材は、ピクリン酸、ピクラミド、ダ
ンボース、フマル酸、サリチル酸、シアヌル酸、
O−クロル安息香酸、ズルシツト、3.5ジニトロ
安息香酸、メラミン、オキサミド、P−オキシ安
息香酸、チアントレン、P−ニトロ安息香酸、没
食子酸、無水フタル、酸無水コハク酸の群の中か
ら一種以上からなることを特徴とする特許請求の
範囲第1項記載の蓄熱材料。 3 前記発核材の添加量を0.01〜10重量%とした
ことを特徴とする特許請求の範囲第1項又は第2
項記載の蓄熱材料。
[Claims] 1. Ammonium alum (AlNH 4 (SO 4 ) 2 .
12H 2 O), with a melting point of 93.5℃ or higher as a nucleating material,
1. A heat storage material comprising a monoclinic or orthorhombic organic compound having a specific gravity in the range of 1.47 to 1.8 and having a cleavage plane. 2 The nucleating material includes picric acid, picramide, danbose, fumaric acid, salicylic acid, cyanuric acid,
Consists of one or more from the group of O-chlorobenzoic acid, dulcitrate, 3.5 dinitrobenzoic acid, melamine, oxamide, P-oxybenzoic acid, thianthrene, P-nitrobenzoic acid, gallic acid, phthalic anhydride, and acid anhydride. The heat storage material according to claim 1, characterized in that: 3. Claim 1 or 2, characterized in that the amount of the nucleating material added is 0.01 to 10% by weight.
Heat storage material as described in section.
JP8472982A 1982-05-21 1982-05-21 Heat storage material Granted JPS58204085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8472982A JPS58204085A (en) 1982-05-21 1982-05-21 Heat storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8472982A JPS58204085A (en) 1982-05-21 1982-05-21 Heat storage material

Publications (2)

Publication Number Publication Date
JPS58204085A JPS58204085A (en) 1983-11-28
JPH0372675B2 true JPH0372675B2 (en) 1991-11-19

Family

ID=13838772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8472982A Granted JPS58204085A (en) 1982-05-21 1982-05-21 Heat storage material

Country Status (1)

Country Link
JP (1) JPS58204085A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6187775A (en) * 1984-10-05 1986-05-06 Kubota Ltd Thermal energy storage material composition
CN102072571A (en) * 2009-11-20 2011-05-25 强新民 Solar energy storage water heater capable of being used at midnight
WO2018159828A1 (en) * 2017-03-03 2018-09-07 日産化学株式会社 Heat storage material comprising metal salt of cyanuric acid
CN117030635B (en) * 2023-10-09 2023-12-15 自贡市凤祥化工有限公司 Quality analysis method of aluminum sulfate based on multi-index measurement

Also Published As

Publication number Publication date
JPS58204085A (en) 1983-11-28

Similar Documents

Publication Publication Date Title
CA1327697C (en) Phase change thermal energy storage material
JPS6324555B2 (en)
JPH0372675B2 (en)
JPS6228995B2 (en)
JPS6351478B2 (en)
JPS61197668A (en) Thermal energy storage material
JPH0215598B2 (en)
JPS588711B2 (en) heat storage material
JPS6147190B2 (en)
JPH0292987A (en) Cold-storing material composition
JPS63273787A (en) Capsule for heat accumulating material
JPS58195796A (en) Heat accumulating material for use in space heating
JPH0348238B2 (en)
JPS58219399A (en) Heat accumulating material
JPS63309582A (en) Heat storage device
JPH0347889A (en) Latent heat-accumulating material
JPS5893779A (en) Thermal energy storing composition
JPH0470599A (en) Solidification method for radioactive waste
JPS5993779A (en) Heat accumulative material
JPS60181185A (en) Thermal energy storage agent composition
JPS64637B2 (en)
JPS6153385A (en) Heat-storing material
JPH021195B2 (en)
JPS6151080A (en) Latent heat storage material
JPH0453913B2 (en)