JPS58219399A - Heat accumulating material - Google Patents

Heat accumulating material

Info

Publication number
JPS58219399A
JPS58219399A JP10137282A JP10137282A JPS58219399A JP S58219399 A JPS58219399 A JP S58219399A JP 10137282 A JP10137282 A JP 10137282A JP 10137282 A JP10137282 A JP 10137282A JP S58219399 A JPS58219399 A JP S58219399A
Authority
JP
Japan
Prior art keywords
heat storage
calcium silicate
storage material
xonotrite
heat accumulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10137282A
Other languages
Japanese (ja)
Inventor
Kuniharu Matsumoto
松元 邦治
Takamune Nishioka
西岡 崇宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP10137282A priority Critical patent/JPS58219399A/en
Publication of JPS58219399A publication Critical patent/JPS58219399A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials

Abstract

PURPOSE:To substantially prevent a phase separation of the titled material to each other, and to make it repeatedly usable without trouble, by mixing calcium silicate having specific properties with a latent heat accumulating material consisting of an inorganic compound which tends to be separated from each other. CONSTITUTION:A calcium silicate of sonolite and/or tobermorite is mixed with a latent heat accumulating material which tends to separate from each other. It is favorable that the mean diameter of granular calcium silicate is to be 20- 100mum, its apparent volumetric specific gravity is to be 0.07-0.15, and its mixing ratio is to be 0.8-1.2 times in the volumetric ratio. With such an arrangement, sediments will not at all be formed apparently, when the heat accumulating material is dissolved.

Description

【発明の詳細な説明】 本発明は蓄熱材料、特に太陽エネルギーを効率的に蓄熱
し、これを熱源として効率よく吐き出し、再び効率よく
エネルギーを蓄熱し得る材料に係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat storage material, particularly a material that can efficiently store solar energy, efficiently discharge it as a heat source, and efficiently store energy again.

太陽エネルギーは、最近のエネルギー事情を反映してこ
れを積極的に利用する為の具現化した提案が各方面でな
されている。
Regarding solar energy, various proposals have been made in various fields to actively utilize solar energy, reflecting the recent energy situation.

太陽熱は供給の不安定な熱源であり、いつでも必要に応
じ所望t3−のエネルギーを得る為には蓄熱してお・く
ことが必要どなる。
Solar heat is a heat source whose supply is unstable, and it is necessary to store heat in order to obtain the desired amount of energy at any time as needed.

従来、太陽熱利用の為の蓄熱材としては、水や岩石類等
の顕熱を利用するものが主であった。
Conventionally, heat storage materials for solar heat utilization have mainly been those that utilize the sensible heat of water, rocks, etc.

この様な材料は、安価で取り扱いが容易である反面、蓄
熱容量が小さい欠点を有し、ている。
Although such materials are inexpensive and easy to handle, they have the drawback of having a small heat storage capacity.

更に、他の蓄熱材料としては、パラフィン類、CaCl
2−6T(20やNa2SO4・10H2O%の水和塩
、KC!1− KNOa等の共晶塩等の潜熱型蓄熱材も
提案されている。
Furthermore, other heat storage materials include paraffins, CaCl
Latent heat type heat storage materials such as eutectic salts such as 2-6T (20, Na2SO4.10H2O% hydrated salts, KC!1-KNOa, etc.) have also been proposed.

これら蓄熱制は物質の相変化に伴々う熱の出入りを利用
するものであり、一般に体積当りの蓄熱容量が大きく、
又一定温度の蓄熱が出来る等かなりの利点を崩している
が、冷却時に融点より著しく低い温度迄冷やさないと結
晶化が起らないと云う所謂過冷却現象や、融解時に無水
或は含水量の少ない塩と水又は濃度の薄い溶液とに分離
する所謂相分離が生じ、反復使用に剛えない欠点がある
These heat storage systems utilize the flow of heat in and out due to the phase change of substances, and generally have a large heat storage capacity per volume.
In addition, considerable advantages such as the ability to store heat at a constant temperature are lost, but the so-called supercooling phenomenon in which crystallization does not occur unless the temperature is significantly lower than the melting point during cooling, and the phenomenon of anhydrous or low water content during melting. A so-called phase separation occurs in which a small amount of salt is separated from water or a solution with a low concentration, which has the disadvantage that it cannot be used repeatedly.

これら欠点のうち、過冷却現象に対しては、例えばNa
zSO4・10H20に対して硼砂等の核生成剤を数チ
加えることによりこれを抑制防止する手段は種々知られ
ている。
Among these drawbacks, for example, Na
Various means are known for suppressing and preventing this by adding several quantities of a nucleating agent such as borax to zSO4.10H20.

他方、相分離の抑制防止法としては、例えば潜熱型蓄熱
材を小カプセルに入れるととにより、大幅な相分離を起
させない手段や、槽内において攪拌して分離を防ぐ方法
、粘土等の無機のケル化剤を加えて粘性を増大ゼしめ、
固体の沈降を防止する手段等が提案されている。
On the other hand, methods for suppressing and preventing phase separation include, for example, placing latent heat storage materials in small capsules to prevent significant phase separation, stirring in a tank to prevent separation, and inorganic materials such as clay. Add a kelizing agent to increase the viscosity and tighten it.
Measures to prevent solid sedimentation have been proposed.

しかしながら、これらのうち小カプセルに入れる方法は
、容器の大きさに限界があり、大量の容器を要し、し〃
・も相分離を完全に防ぐことは困難であり、攪拌による
方法は、その動力等に費用がかかり、省エネルギーの為
に太陽エネルギーを用いると云う本来的な主旨に逆行す
るものである。又、坤機のゲル化剤を用いる方法は、こ
れらのうちでは比較的好捷しい方法であり、通常粘土や
微粉状のシリカを用いることが提案されているが、これ
らはそれ自体比重が犬きく、静置すれば長期には沈降か
生じ、相分離防止作用が失われてし捷う等、従来法にお
いては夫々欠点があった。
However, among these methods, the method of putting it into small capsules has a limit on the size of the container and requires a large amount of containers.
It is also difficult to completely prevent phase separation, and methods using stirring are expensive for power and go against the original purpose of using solar energy to save energy. Also, the method of using a gelling agent in a kettle is a relatively preferable method among these methods, and the use of clay or finely powdered silica has been proposed, but these themselves have a specific gravity of The conventional methods each have drawbacks, such as sedimentation occurring over a long period of time and loss of phase separation prevention effect if left undisturbed.

本発明者はかかる点に鑑み、潜熱型蓄熱材の相分離現象
を実質的に防止せしめる手段を見出すことを目的として
珈々研究、挾討した結果、成る特定性状を有する珪酸カ
ルシウムを用いることにより前記目的を達成し得ること
を見出した。
In view of the above, the inventors of the present invention have conducted extensive research and investigation with the aim of finding a means to substantially prevent the phase separation phenomenon of latent heat storage materials. It has been found that the above object can be achieved.

かくして本発明は、相分離を起す無機化合物から成る潜
熱型蓄熱材にゾノトライト系及び/又はl・バモンイト
糸珪飽′カルシウムを混入せしめて成る蓄熱材料を提供
するにある。
Thus, the present invention provides a heat storage material comprising a latent heat type heat storage material made of an inorganic compound that undergoes phase separation and mixed with xonotlite and/or l-bamonite silica saturated calcium.

本発明にお・いて用いられる潜熱型蓄熱材としては、例
えば硫酸ソーダ10水塩、チオ硫酸ソーダ5水塩、塩化
カルシウム6水塩、炭酸ソーダ10水塩、燐酸ソータ1
2水塩、硝酸カルシウム4水塩、炭酸カルシウム10水
塩、硼酸ソーダ10水塩、硝酸アルミニウム9水塩、水
酸化バリウム8水塩、水酸化ストロンチウム8水塩、硝
酸マグネシウム6水塩、アンモニウム明ばん】2水塩、
塩化亜鉛3水塩、燐酸カリウム6水塩、苛性ソーダ3.
5水塩、硫酸アルミニウム12水塩等の単一の無機化合
物含水塩やcao’l ・MgCl212H20、Mg
 (N03)26H20・A、1(NO3)、 9H2
0,CaCl2・Ca(NOg)210H20,0a(
NOs)24H20・Zn (NO3)26H20、O
a (NOg)24H20−Mg (NO3)、 6H
20。
Examples of the latent heat storage material used in the present invention include sodium sulfate decahydrate, sodium thiosulfate pentahydrate, calcium chloride hexahydrate, sodium carbonate decahydrate, and phosphoric acid sorta 1
Dihydrate, calcium nitrate tetrahydrate, calcium carbonate decahydrate, sodium borate decahydrate, aluminum nitrate nonahydrate, barium hydroxide octahydrate, strontium hydroxide octahydrate, magnesium nitrate hexahydrate, ammonium light Ban] dihydrate salt,
Zinc chloride trihydrate, potassium phosphate hexahydrate, caustic soda 3.
Single inorganic compound hydrate salts such as pentahydrate, aluminum sulfate dodecahydrate, cao'l ・MgCl212H20, Mg
(N03) 26H20・A, 1 (NO3), 9H2
0,CaCl2・Ca(NOg)210H20,0a(
NOs)24H20・Zn (NO3)26H20, O
a (NOg)24H20-Mg (NO3), 6H
20.

084NO3)、、 4H20−A、1.(No3)、
 9H20,Mg(NOa)、、 6H20−Zn (
NOs )26H20等の無機複合化合物含水塩等が挙
げられ、これらは得ようとする熱エネルギー411″や
温度によって適宜使い分けられる。
084NO3), 4H20-A, 1. (No.3),
9H20, Mg(NOa), 6H20-Zn (
Examples include hydrated salts of inorganic composite compounds such as NOs)26H20, and these can be used appropriately depending on the thermal energy 411'' and temperature to be obtained.

次に、本発明に用いられる珪酸カルシウムはゾノトライ
ト糸やトバモライト糸である必要がある。これらの珪酸
カルシウムは、顕微鏡的に見ると、珪酸カルシウムの外
殻を廟する中空体乃至中実体であり、丁度まりも状に見
え、かかる外殻表面は、多数の極く細かい繊毛様を呈す
る珪酸カルシウムで覆われている。そして中空部分は完
全に空にすることが難かしく、普通これの合成時に用い
られる媒体である水が犬なり小なり含まれ、この水量は
外殻を通していく分かの水の出入りが可能な性質を有し
ている。そして、ゾノトライト系の方が中空状且まりも
状であるので、本発明に用いる珪酸カルシウムとして特
に好ましい。
Next, the calcium silicate used in the present invention needs to be xonotrite thread or tobermorite thread. When viewed microscopically, these calcium silicates are hollow bodies or solid bodies with an outer shell of calcium silicate, and they look just like a ball. covered with calcium. It is difficult to completely empty the hollow part, and it usually contains a small amount of water, which is the medium used for synthesis, and this amount of water is such that some water can enter and exit through the outer shell. have. Since xonotrite type calcium silicate is more hollow and has a limp shape, it is particularly preferable as the calcium silicate used in the present invention.

本発明において潜熱型蓄熱材として用いられる相分離を
起す無機化合物は、含水塩であり、熱の出し入れの際、
一度かかる塩が融解したとき、それより低位の含水塩を
形成して水相と沈降物とに分離する現象を呈するもので
あり、かかる現象が生じると蓄熱容量等が著しく減退し
、殆んど蓄熱材として利用出来なくなる場合も生じる。
The inorganic compound that causes phase separation used as the latent heat type heat storage material in the present invention is a hydrated salt, and when heat is transferred in and out,
Once such a salt melts, it forms a lower hydrated salt and separates into an aqueous phase and a precipitate. When this phenomenon occurs, heat storage capacity etc. are significantly reduced, and most There may also be cases where it cannot be used as a heat storage material.

本発明においては、この様な含水塩に対して前述のゾノ
トライト系やトバモライト系珪酸カルシウム(以下珪酸
カルシウムと呼ぶ)を混入すると、含水塩が融解しても
それの沈降物は見掛は上全く生成しない。
In the present invention, when the above-mentioned xonotrite-based or tobermorite-based calcium silicate (hereinafter referred to as calcium silicate) is mixed into such a hydrated salt, even if the hydrated salt is melted, the precipitate does not appear at all. Not generated.

その理由は必ずしも明確ではないが、珪酸カルシウム外
殻が有する多数の繊毛間に沈降物が捕捉されたり、又何
らかの作用によって低位の含水塩の生成自体も抑制され
、これらの結果、相分離現象か認められないものと思わ
れる。
The reason for this is not necessarily clear, but sediments are trapped between the many cilia of the calcium silicate outer shell, and the formation of low-level hydrated salts itself is suppressed by some action, resulting in a phase separation phenomenon. This seems unacceptable.

本発明に用いられる珪酸カルシウムは既に提案されてい
る種々の公知の方法で得ることが出来る。用いられる該
珪酸カルシウムとしては、平均粒径が20〜100μ程
度を採用するのが好ましい。平均粒径が前記範囲に満た
ないと、含水塩の相分離現象を十分効果的に抑制出来ず
、逆に前記範囲を超える場合には、これ自体の沈降か生
じたり、含水塩の有する蓄熱効率を低下はせる虞れがあ
るので好捷しくない。
Calcium silicate used in the present invention can be obtained by various known methods that have already been proposed. The calcium silicate used preferably has an average particle size of about 20 to 100 microns. If the average particle size is less than the above range, the phase separation phenomenon of the hydrated salt cannot be suppressed sufficiently effectively, whereas if it exceeds the above range, sedimentation may occur or the heat storage efficiency of the hydrated salt may be reduced. This is not a good idea as it may cause a decrease in

又、見掛は上の嵩比重も前記とほぼ同様な理由ニヨリ0
.07〜015程度を採用するのが適当である。
Also, the apparent bulk specific gravity is also 0 for almost the same reason as above.
.. It is appropriate to adopt approximately 07 to 015.

更に、かかる珪酸カルシウムの使用量は、融解した含水
塩の全容積に対し、08〜1.2倍量程度、好ましくは
1.0倍程度を採用するのが適当である。
Further, the amount of calcium silicate to be used is approximately 0.8 to 1.2 times, preferably approximately 1.0 times, the total volume of the molten hydrated salt.

使用量が前記範囲に満たない場合には、含水増の相分離
を効果的に抑制出来ず、逆に前記範囲を超える場合には
、液全体の粘性が高くなり、含水塩の融解時でも流動性
が低下し、熱効率が低下したり、取り扱いが不便となる
虞れがヤ〕るので好捷しくない。
If the amount used is less than the above range, phase separation due to increase in water content cannot be effectively suppressed, whereas if it exceeds the above range, the viscosity of the entire liquid will increase and it will not flow even when the hydrated salt is melted. This is not preferable because there is a risk that the thermal performance will decrease, the thermal efficiency will decrease, and handling will become inconvenient.

次に本発明を実施例により説明する。Next, the present invention will be explained by examples.

実施例】。Example】.

硫酸ソーダ】0水塩結晶I K9を攪拌槽に入れ、核種
を50℃の温湯に浸して該結晶を完全に融解せしめた。
Sodium sulfate 0 hydrate crystal I K9 was placed in a stirring tank, and the nuclide was immersed in warm water at 50°C to completely melt the crystal.

次いで核種に平均粒径5oμ、嵩比重O】を有するゾノ
トライト系珪酸カルシウム粉末0.1 K9を導入1.
/ 、十分攪拌してスラリー状物を得た。
Next, xonotrite calcium silicate powder 0.1 K9 having an average particle size of 5 μm and a bulk specific gravity of O was introduced as a nuclide.1.
/ , a slurry-like material was obtained by thorough stirring.

次にこのスラリー状物を観察を容易にする為、透明なプ
ラスチック容器に封入し、該容器を10℃の水を5を入
れた容器に浸して熱交換を行なわせだ処、容器中の水温
は20°C迄上昇し、透明容器中に封入されたスラリー
状物は一つの塊状固体を呈し、遊離水や微粉等の存在は
認められず、これから相分離現象が生じていないこと認
められた。
Next, in order to facilitate observation of this slurry, the container was sealed in a transparent plastic container, and the container was immersed in a container containing 10°C water to perform heat exchange. The temperature rose to 20°C, and the slurry sealed in the transparent container appeared as a lumpy solid, and no free water or fine powder was observed, indicating that no phase separation phenomenon occurred. .

次にこの塊状固体を呈1〜でいるプラスチック容器を太
陽光に曝し、該固体をスラリー状にした後、前記と同様
に冷水に浸漬した処、該冷水は前記とほぼ同様の温度上
昇をし、透明容器中のスラリー状物は前記と同様に一つ
の塊状固体を呈した。
Next, the plastic container containing this lumpy solid was exposed to sunlight to make the solid into a slurry, and then immersed in cold water in the same manner as above, and the temperature of the cold water rose almost in the same way as above. , the slurry in the transparent container appeared as one lumpy solid as before.

実施例2゜ チオ硫酸ソーダ5水塩結晶I K9を攪拌槽に入れ、核
種を70℃の温湯に浸して該結晶を完全に融解せしめた
Example 2 Sodium thiosulfate pentahydrate crystals IK9 were placed in a stirring tank, and the nuclide was immersed in hot water at 70°C to completely melt the crystals.

次いで核種に平均粒径50μ、嵩比重01を有するゾノ
トライト系珪酸カルシウム粉末01Kgを導入し、十分
攪拌してスラリー状物を得た。
Next, 01 kg of xonotrite-based calcium silicate powder having an average particle size of 50 μm and a bulk specific gravity of 01 was introduced into the nuclide and sufficiently stirred to obtain a slurry.

次にこのスラリー状物を透明プラスチック容器に刺入1
−1該容器を10°Cの水5tを入れた容器に浸して熱
交換を行々わせだ処、容器中の水温は20℃迄上昇し、
透明容器中に封入されたスラリー状物は一つの塊状固体
を呈し、遊離水や微粉等の存在は認められず、これから
相分離現象が生じていないことが認められた。
Next, pour this slurry into a transparent plastic container.
-1 When the container was immersed in a container containing 5 tons of water at 10°C for heat exchange, the water temperature in the container rose to 20°C.
The slurry-like material sealed in the transparent container exhibited a single lumpy solid, and the presence of free water, fine powder, etc. was not observed, and it was confirmed that no phase separation phenomenon occurred.

実施例3゜ 水酸化バリウム8水塩結晶I K7を攪拌槽に入れ、核
種を90°Cの温湯に浸して該結晶を完全に融解せしめ
た。
Example 3 Barium hydroxide octahydrate crystal I K7 was placed in a stirring tank, and the nuclide was immersed in hot water at 90°C to completely melt the crystal.

次いで核種に平均粒径50μ、嵩比重O1を有するゾノ
トライト系珪酸カルシウム粉末01Kgを導入し、十分
攪拌してスラリー状物を得た。
Next, 01 kg of xonotrite calcium silicate powder having an average particle size of 50 μm and a bulk specific gravity of O1 was introduced into the nuclide and thoroughly stirred to obtain a slurry.

次にこのスラリー状物を透明プラスチック容器に刺入し
、該容器を10℃の水5tを入れた容器に浸して熱交換
を行なわせた処、透明容器中に刺入されたスラリー状物
は一つの塊状固体を呈し、相分離は全く認められなかっ
た。
Next, this slurry-like material was inserted into a transparent plastic container, and the container was immersed in a container containing 5 tons of water at 10°C to perform heat exchange. It appeared as one lumpy solid, and no phase separation was observed.

尚、水酸化バリウム8水j含に代えて炭酸ソーダ】0水
塩、(ill11酸ソーダ10水塩についても夫々同様
な実験を行なったが何れも良好な結果が得られた。
Similar experiments were conducted using sodium carbonate 0 hydrate and sodium 11 acid decahydrate instead of barium hydroxide octahydrate, and good results were obtained in both cases.

実施例4゜ Mg(NOa)26H20・A]、(NO3)、 9H
20結晶I K9を攪拌槽に入れ、核種を50℃の温湯
に浸して該結晶を完全に溶解せしめた。
Example 4゜Mg(NOa)26H20・A], (NO3), 9H
20 crystal I K9 was placed in a stirring tank, and the nuclide was immersed in warm water at 50°C to completely dissolve the crystal.

次いで核種に平均粒径50μ、嵩比重0】を有するゾノ
トライト系珪酸カルシウム粉末01Kgを導入し、十分
攪拌してスラリー状物を得た。
Next, 01 kg of xonotrite calcium silicate powder having an average particle size of 50 μm and a bulk specific gravity of 0 was introduced into the nuclide and sufficiently stirred to obtain a slurry.

次にこのスラリー状物を透明プラスチック容器に封入し
、該容器を10℃の水5tを入れた容器に浸して熱交換
を行カわせだ処、透明容器中に封入されたスラリー状物
は一つの塊状固体を呈し、相分離は全く認められなかっ
た。
Next, this slurry-like material is sealed in a transparent plastic container, and the container is immersed in a container containing 5 tons of water at 10°C for heat exchange. It appeared as a lumpy solid, and no phase separation was observed.

470−470-

Claims (1)

【特許請求の範囲】 (1)  融解時に相分*gIt起す無機化合物から成
る潜熱型蓄熱材にゾノトライト系及び/又はトバモライ
ト系珪酸カルシウムを混入せしめて成る蓄熱材料。 (2)潜熱型蓄熱材は、単一の無機化合物言水塩、無機
複合化合物含水塩である請求の範囲(1)の蓄熱材料。 (8)  ゾノトライト系珪酸カルシウムは、平均粒径
20μ〜100μである請求の範囲(1)の蓄熱材料。 (4)  ゾノトライト系珪酸カルシウムの見掛は上の
嵩比重は0.07〜0.15である請求の範囲(1)の
蓄熱材料。 (5)  潜熱型蓄熱材とゾノトライト系珪酸カルシウ
ムとの混入比率は、後者が前者に対し、容積比で08〜
12、特許請求の範囲(1)の蓄熱材料。
[Scope of Claims] (1) A heat storage material comprising a latent heat type heat storage material made of an inorganic compound that generates a phase fraction *gIt when melted and mixed with xonotrite-based and/or tobermorite-based calcium silicate. (2) The heat storage material according to claim (1), wherein the latent heat type heat storage material is a single inorganic compound hydrate salt or an inorganic composite compound hydrate salt. (8) The heat storage material according to claim (1), wherein the xonotrite calcium silicate has an average particle size of 20 μm to 100 μm. (4) The heat storage material according to claim (1), wherein the apparent bulk specific gravity of the xonotrite-based calcium silicate is 0.07 to 0.15. (5) The mixing ratio of the latent heat type heat storage material and the xonotrite calcium silicate is such that the latter has a volume ratio of 0.8 to 0.8 to the former.
12. The heat storage material according to claim (1).
JP10137282A 1982-06-15 1982-06-15 Heat accumulating material Pending JPS58219399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10137282A JPS58219399A (en) 1982-06-15 1982-06-15 Heat accumulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10137282A JPS58219399A (en) 1982-06-15 1982-06-15 Heat accumulating material

Publications (1)

Publication Number Publication Date
JPS58219399A true JPS58219399A (en) 1983-12-20

Family

ID=14298977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10137282A Pending JPS58219399A (en) 1982-06-15 1982-06-15 Heat accumulating material

Country Status (1)

Country Link
JP (1) JPS58219399A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002114553A (en) * 2000-10-05 2002-04-16 Asahi Kasei Corp Latent heat storage cement-based building material
JP2011213750A (en) * 2010-03-31 2011-10-27 Niigata Univ Coated porous inorganic particle containing heat storage substance and heat storage material including the same
WO2012104060A1 (en) * 2011-01-31 2012-08-09 Promat Gmbh Latent heat storage device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002114553A (en) * 2000-10-05 2002-04-16 Asahi Kasei Corp Latent heat storage cement-based building material
JP4632507B2 (en) * 2000-10-05 2011-02-16 旭化成建材株式会社 Latent heat storage cement building material
JP2011213750A (en) * 2010-03-31 2011-10-27 Niigata Univ Coated porous inorganic particle containing heat storage substance and heat storage material including the same
WO2012104060A1 (en) * 2011-01-31 2012-08-09 Promat Gmbh Latent heat storage device

Similar Documents

Publication Publication Date Title
US4903493A (en) Heat sink protective packaging for thermolabile goods
US4561493A (en) Heat-storing apparatus
JPS6324555B2 (en)
US4360442A (en) Ethylene carbonate as a phase-change heat storage medium
JPS58219399A (en) Heat accumulating material
US4288338A (en) Static solar heat storage composition
JPS6152588A (en) Latent heat accumulator having substance melting without decomposing
JPH0413394B2 (en)
JPS6351478B2 (en)
JPS58180579A (en) Heat storage material
JPH0141672B2 (en)
JPS58120093A (en) Composition of heat accumulating agent
KR940005189B1 (en) Heat sink material for using carboxymethyl celluolose
JPS5845499A (en) Heat accumulating material
JPS58117277A (en) Thermal energy storage material
JPS59115381A (en) Heat storage material
JPH0216950B2 (en)
JPH0134475B2 (en)
JP3440700B2 (en) Latent heat storage material
JPH0562158B2 (en)
JPS6151079A (en) Thermal energy storage material
JPS60181185A (en) Thermal energy storage agent composition
JPH06159965A (en) Latent heat medium and heat collecting and accumulating system using the same
JPH0315119B2 (en)
JPS581714B2 (en) Heat storage agent composition