JPS6152588A - Latent heat accumulator having substance melting without decomposing - Google Patents

Latent heat accumulator having substance melting without decomposing

Info

Publication number
JPS6152588A
JPS6152588A JP60172545A JP17254585A JPS6152588A JP S6152588 A JPS6152588 A JP S6152588A JP 60172545 A JP60172545 A JP 60172545A JP 17254585 A JP17254585 A JP 17254585A JP S6152588 A JPS6152588 A JP S6152588A
Authority
JP
Japan
Prior art keywords
heat
material system
storage
filling
active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60172545A
Other languages
Japanese (ja)
Other versions
JPH0438998B2 (en
Inventor
ウオルフガング・アーレンス
トーマス・ノアツク
リユーデイゲル・ナウマン
ハンス‐ハインツ・エモンス
ウオルフガング・フオイクト
ウド・ゼルトマン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bauakademie der DDR
Original Assignee
Bauakademie der DDR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bauakademie der DDR filed Critical Bauakademie der DDR
Publication of JPS6152588A publication Critical patent/JPS6152588A/en
Publication of JPH0438998B2 publication Critical patent/JPH0438998B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/025Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being in direct contact with a heat-exchange medium or with another heat storage material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Central Heating Systems (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 発明の使用分野 分解せずに溶融する物質を有する潜熱蓄積装置は、在来
のエネルギー発生方式の負荷の軽減または該エネルギー
発生方式の補足のためにそしてエネルギー蓄量とエネル
ギー蓄量との間の時間的変動の調整のために効力の大き
い方式従って、本発明による潜熱蓄積装置は、殊にエネ
ルギー源によって課された熱利用条件に熱消費系を適合
させることに、即ち熱の発生量と熱の需要とを時間的に
つシ合わせることに、そして熱を蓄積することに予定さ
れている。
DETAILED DESCRIPTION OF THE INVENTION Field of use of the invention Latent heat storage devices with substances that melt without decomposition are useful for relieving or supplementing conventional energy generation systems and for energy storage and storage. Therefore, the latent heat storage device according to the invention provides an advantageous method for adjusting the temporal fluctuations between the energy storage and the energy storage, in particular for adapting the heat consumption system to the heat utilization conditions imposed by the energy source. That is, it is planned to match the amount of heat generated and the demand for heat in time, and to accumulate heat.

既知の技術的解決策の特徴 在来の蓄熱装置は主として顕熱または感熱に基いて働く
Characteristics of known technical solutions Conventional heat storage devices work primarily on the basis of sensible or heat-sensitive heat.

そのために使用されるすべての蓄積材料例えば水、油、
石、鋳鉄、菱苦土石等の熱容量はほんのわずかなので、
このような蓄積方式を使用すると、特に大きな熱量を蓄
積する際に、蓄積体積が非常に大きくなり、不経済な経
夜の割合になる。実際的な視野からは、在来の蓄積方式
は次の重大な欠点をもつ: 蓄積装置に充てんすることまたは蓄積装置から出すこと
に伴なって蓄積温度が上昇または低下し、この上昇また
は低下によって、蓄積温度と熱伝達性能とが(蓄積装置
に充てんする際にも蓄積装置から出す際にも)常に一゛
実際に非常に不利に一変動することそして使用されるべ
き制御技術の費用が増加することが起る。
All accumulating materials used for this purpose e.g. water, oil,
Since the heat capacity of stones, cast iron, rhomboids, etc. is very small,
The use of such storage schemes results in very large storage volumes, especially when storing large quantities of heat, leading to uneconomical overnight rates. From a practical point of view, conventional storage methods have the following serious drawbacks: Filling or discharging the storage device results in an increase or decrease in the storage temperature; , that the storage temperature and the heat transfer performance (both when filling the storage device and when discharging it from the storage device) constantly fluctuate, which is actually very disadvantageous, and increases the cost of the control technology that has to be used. Something happens.

蓄積材料の比熱容量が一般に小さいので、物質/性能の
比が、後で記載する潜熱蓄積装置よシも非常に不利であ
る。
Since the specific heat capacity of the storage material is generally low, the material/performance ratio is also very unfavorable for the latent heat storage devices described below.

大きな熱量を蓄積することは大きな蓄積体積に拘束され
、大きな蓄積体積は工業的にしばしば実現可能でないか
又は多額の費用をかけてだけ実現することができる。(
追加の新しい建物の建設)または費用の割合が非常に不
利な影響を与える。
Storing large amounts of heat is constrained to large storage volumes, which are often not industrially feasible or can only be realized at great expense. (
construction of additional new buildings) or the proportion of costs has a very unfavorable impact.

蓄積体積を工業的に制御可能な程度の大きさに減らすた
めには、満たした状態と空にした状態との間の大きな温
度差を認めねばならず、熱消費系の必要な運転温度以上
に満載温度がそれによって必然的に上がること並びに熱
源のエネルギー特性(エネルギー蓄量)が台無しになる
ことを受入れなければならない。
In order to reduce the storage volume to an industrially controllable size, a large temperature difference between the filled and empty conditions must be allowed, which may exceed the required operating temperature of the heat dissipating system. It has to be accepted that the load temperature will necessarily rise thereby and that the energy properties of the heat source (energy storage) will be destroyed.

最もしばしば利用される蓄積材料である水を使用する際
には、特に工業的な利用に必要な蓄積温度が水の上限の
温度(常圧で約90℃)例えば暖房設備のために907
70℃に位置する場合に、多量の二ネμギーの蓄積がむ
ずかしい。水温を上げることによって蓄積能力を高くす
ることは、常圧では可能でなく、技術上及び装置上の支
出超過に通じ、この支出超過はそうでなくても不利な費
用の割合を更に追加的に悪化させる。
When using water, which is the most frequently used storage material, it is especially important that the storage temperature required for industrial applications is at the upper limit of water (approximately 90°C at normal pressure), e.g.
When the temperature is 70°C, it is difficult to accumulate a large amount of 2-μg. Increasing the storage capacity by increasing the water temperature is not possible at normal pressure and would lead to technical and equipment overexpenditures that would add to an otherwise unfavorable cost proportion. make worse.

これらの欠点を克服する可能性を、顕熱にはちまシ基づ
かずにむしろ潜熱例えば融解熱、凝固熱、蒸発熱、凝縮
熱、反応熱、水利熱、溶解熱、結晶化熱等に基づいて働
く蓄積装置が提供する。
The possibility of overcoming these drawbacks is based not on sensible heat, but rather on latent heat such as heat of fusion, heat of solidification, heat of vaporization, heat of condensation, heat of reaction, heat of water utilization, heat of solution, heat of crystallization, etc. Provided by a working storage device.

この種類の蓄積装置は文献で「潜熱蓄積装置」と呼ばれ
る。
This type of storage device is referred to in the literature as a "latent heat storage device".

この蓄積装置は、在来の蓄積装置と比べて次の欠点があ
る: 満たす場合にも空にする場合にも蓄積温度が吸熱または
放熱中に狭い範囲の中で常に不変である。
This storage device has the following disadvantages compared to conventional storage devices: The storage temperature, both when filling and when emptying, always remains constant within a narrow range during heat absorption or heat release.

熱伝達性能が一各場合の技術的解決策しだいで一同様に
狭い範囲の中で常に不変である。
The heat transfer performance always remains constant within narrow limits, depending on the technical solution in each case.

在来の蓄積装置と比べて熱吸収能力が、使用された蓄積
材料に応じてそして吸熱と放熱とが起る全温度範囲の幅
に応じて、2ないし40倍大きい。
Compared to conventional storage devices, the heat absorption capacity is between 2 and 40 times greater, depending on the storage material used and the width of the overall temperature range in which heat absorption and heat release occur.

極めて自明な改良装置は特に融解熱及び凝固    ′
熱に基いて働くような潜熱蓄積装置である。このような
蓄積装置のためにかなシの数の解決策がちり、それらは
主として、可融性材料によつて生じる既知の熱物理学的
及び物理化学的問題を取り除く。ドイツ特許第2.64
 &678号、ドイツ民主共和国特許第154.125
号、ドイツ特許出願公開第1.928.694号明細書
、ドイツ特許出願公開第2,523,234号明細会、
ドイツ特許出願公開第2.517.920号明細書及び
ドイツ特許出題公開i2,517,921号明m会並び
にドイツ民主共和国特許出願wp c09に/2436
19はその一部であシ、これらには蓄積材料の素材の迩
別、過令、層形成の阻止等の点についての改良が開示さ
れた。
A very obvious improvement device is especially the heat of fusion and solidification ′
It is a latent heat storage device that works based on heat. A number of solutions exist for such storage devices, which primarily eliminate the known thermophysical and physicochemical problems caused by fusible materials. German Patent No. 2.64
&678, German Democratic Republic Patent No. 154.125
German Patent Application No. 1.928.694, German Patent Application No. 2,523,234,
German Patent Application Publication No. 2.517.920 and German Patent Application Publication No. i2,517,921 and German Democratic Republic Patent Application Wp C09/2436
No. 19 is a part of this, and these disclose improvements in matters such as separation of materials for storage materials, over-aging, and prevention of layer formation.

次の問題はまだ解決されていない: 分解せずに溶融する例えば一致溶融及び共融する種々の
材料の一凝固の際に生じる結晶が接合して大量の集塊に
なる一傾向;該集塊は、熱の搬入の際にも熱の搬出の際
にも、著しく低下した熱伝達性能を生じ、魚皮を生じ、
融成物に対して不透過性になり、熱応力が生じて蓄積装
置内部の圧力を育める。
The following problems have not yet been solved: The tendency of crystals that occur during the solidification of various materials that melt without decomposition, e.g. coincident melting and eutectic melting, to join together and form large agglomerates; results in significantly reduced heat transfer performance, both during heat import and heat export, resulting in fish skin,
It becomes impermeable to the melt and thermal stresses can develop and build up pressure inside the storage device.

そのほかに文献から、フッ素を含有する表面活性物質の
添加によって、分解溶融するグララバー塩(Na25o
4・10H20)の凝固の際に生じる結晶の大きさを小
さくすることができるということが知られている。米国
特許第4267879号と対応特許とが存在する。
In addition, from the literature, it has been found that Glaraber salt (Na25O
It is known that the size of crystals generated during solidification of 4.10H20) can be reduced. There is US Pat. No. 4,267,879 and corresponding patents.

他方、分解せずに(例えば一致)溶融する潜在的蓄積材
料の結晶の大きさを小さくするだめの具体的解決策は知
られていない。一致溶融する材料例えばNa2S・5H
,Oに転用したが成果は上がらなかった。
On the other hand, no specific solution is known to reduce the crystal size of potential accumulation materials that melt without decomposition (e.g., congruency). Coincidentally melting materials such as Na2S/5H
, I diverted it to O, but no results were achieved.

発明の目的 本発明の目的は、機械的手段を使用することなく大量の
集塊、魚皮及び不浸透性の生じるのを阻止すると同時に
大きな熱搬入性能及び熱搬出性能を可能ならしめる、分
解せずに溶融する物質を有する潜熱蓄積装置を開発する
ことである。
OBJECTS OF THE INVENTION It is an object of the present invention to provide a decomposable material which, without the use of mechanical means, prevents the formation of large amounts of agglomerates, skins and impermeability, while at the same time allowing a large heat import and heat extraction performance. The objective is to develop a latent heat storage device with a substance that melts without melting.

発明の詳細な説明 分解せずに溶融する物質例えば一致溶融及び共融する物
質を有する潜熱蓄積装置は、凝固の際に結晶をつくる傾
向があシ、該結晶は連接して大量の集塊になる。この集
塊は、低い熱搬入性能及び熱搬出性能と蓄積装置内部の
熱応力との原因になる。本発明では、4種類の物質から
なる蓄積充てん物によってこの欠点が除去される。
DETAILED DESCRIPTION OF THE INVENTION Latent heat storage devices having materials that melt without decomposition, such as materials that undergo concordant melting and eutectic melting, tend to form crystals upon solidification, which intersect and form mass agglomerates. Become. This agglomeration causes poor heat import and heat export performance and thermal stress inside the storage device. In the present invention, this drawback is obviated by the storage fill consisting of four substances.

物質系I 一種類以上の物質から成シ、該物質は、該物質の融解熱
(または一般に転移熱)及び該物質の比熱容量に基いて
熱蓄積特性を示し、分解せずに溶融し、熱蓄積材料とし
て使用可能である。
Material system I consists of one or more substances, which exhibit heat storage properties based on the heat of fusion (or generally heat of transition) of the substance and the specific heat capacity of the substance, which melt without decomposition, and which Can be used as storage material.

活性な蓄積充てん物の全量に対する物質糸Iの割合は本
発明では50ないし95容量チになる。
According to the invention, the proportion of material thread I to the total amount of active storage fill amounts to between 50 and 95 volumes.

物質系■ 一つのまたはい(つかの成分から構成されている液状熱
媒体から成シ、該媒体には前記物質系■は可溶性でない
か又は条件つきでだけ可溶性である。その上さらに、物
質系Hの密度(ρ■)と物質系Iの溶融した相の密度(
ρN)とは本発明では ρ■≦ρ■、例えば0,8ρ1 、 なる条件を満たし、その際物質系■の蒸気圧(pH)と
物質系IIの蒸気圧CPDII)とは本発明では PDI  <<  PDII なる条件を満たす。物質系IIの割合は蓄積装置の活性
な蓄積充てん物の全体積に対して5ないし50 vo1
%になる。
The material system ■ is composed of a liquid heating medium composed of one or several components, in which said material system ■ is not soluble or is only conditionally soluble.Furthermore, the material system The density of H (ρ■) and the density of the molten phase of material system I (
In the present invention, ρN) satisfies the following condition: ρ■≦ρ■, for example, 0,8ρ1, and in this case, the vapor pressure (pH) of material system (2) and the vapor pressure of material system II (CPDII) satisfy the following condition: PDI << PDII satisfies the condition. The proportion of substance system II is between 5 and 50 vol relative to the total volume of the active storage filling of the storage device.
%become.

物質糸■ 一種類または数種類の表面活性物質から成る。material thread■ Consists of one or several surface-active substances.

潜熱蓄積装置の活性な蓄積充てん物の全体積に対する物
質系■の割合は、Q、01ないし5 volチになる。
The proportion of the material system 1 to the total volume of the active storage filling of the latent heat storage device amounts to Q, 01 to 5 vol.

物質系■は、物質系Iの凝固の際に結晶せず且つ接合及
び/又は魚皮生成を阻止するという使命をもつ。
Substance system (I) has the task of not crystallizing during solidification of substance system I and preventing bonding and/or skin formation.

物質系■ 一種類または数種類の核発生剤がら成シ、該核発生剤は
その格子構造のゆえに核発生現象をひき起すか又は不均
一の核発生を生せしめる。
Material system (1) Consisting of one or several types of nucleating agent, the nucleating agent causes a nucleation phenomenon or causes non-uniform nucleation due to its lattice structure.

本発明では、潜熱蓄積装置の活性は俗債充てん物の全体
積に対する物質系■の割合は口ないし20 vol係で
ある。
In the present invention, the activity of the latent heat accumulating device is such that the ratio of the material system (1) to the total volume of the bond filling is 1 to 20 vol.

物質系Iが過冷却されないか又はほんの少ししか過冷却
されない場合には、活性な蓄積充てん物に対する物質系
■の割合は消失する。
If material system I is not supercooled or is only slightly supercooled, the proportion of material system I to the active storage filling disappears.

実施例 本発明による潜熱蓄積装置を該装置の活性な蓄積充てん
物について図面(第1図)によって詳細に説明する: 物質系I : 70 vol ’lrの共融混合物とし
てのMg (NOり2 ・6H,+O及びMgC62・
H20 物質系II : 28 vo1%のクロルブロムメタン
CM2C!Br 物質系m : 1 vo1%のコルデンン・ダブリュー
(Cordesin W ) 物質系IV : 1 volチの活性炭この4物質系は
、気密な熱絶縁性容器1の中へ、活性な蓄積充てん物2
として混合物の形で詰込まれている。
EXAMPLE A latent heat storage device according to the invention is explained in detail with reference to the drawing (FIG. 1) with respect to the active storage filling of the device: Material system I: Mg (NO2 2 . 6H, +O and MgC62・
H20 Material system II: 28 vol1% chlorbromomethane CM2C! Br Material system m: 1 vol. 1% Cordesin W Material system IV: 1 vol. activated carbon These four material systems are placed in an airtight thermally insulating container 1 with an active storage fill 2
It is packed in the form of a mixture.

容器1の内部には熱伝達装置5が、前記の蓄積充てん物
2によって該熱伝達装置3が完全におおわれるように配
置されている。もう一つの熱伝達装置4が、物質系II
の蒸気によってだけ該熱伝達装置4が空所5の中で取囲
まれるように配置されている。
A heat transfer device 5 is arranged inside the container 1 in such a way that the heat transfer device 3 is completely covered by the storage filling 2 mentioned above. Another heat transfer device 4 is material system II.
The heat transfer device 4 is surrounded in the cavity 5 only by the steam of the steam.

熱の供給は、前記の蓄積充てん物2によって取巻かれた
熱伝達装置5によって行われ、熱の奪取は熱媒体の蒸気
で取囲まれた前記熱伝達装置4によって行われる。熱の
供給と熱の奪取とは三重の相転移によって起る。
The supply of heat takes place by the heat transfer device 5, which is surrounded by the storage filling 2, and the removal of heat takes place by the heat transfer device 4, which is surrounded by the vapor of the heating medium. Heat supply and heat removal occur through triple phase transitions.

溶融温度以上に熱が供給される場合、物質糸IIは蒸発
する。該物質系IIは、前記物質系■のまだ融解してい
ない素材と出会うと凝縮し、該物質系Iは溶融する。該
物質系■が放出した凝縮熱は、該物質系Iに融解熱とし
て吸収される。
If heat is supplied above the melting temperature, the material thread II evaporates. When the substance system II encounters the unmelted material of the substance system II, it condenses, and the substance system I melts. The heat of condensation released by the material system (1) is absorbed by the material system I as heat of fusion.

溶融温度以下に熱が奪取される場合、上記物質系IIの
材料は再び蒸発せしめられるが、この場合には熱を供給
する場合よシも低い圧力で蒸発せしめられる。それに必
要な蒸発熱は前記の蓄積材料(物質系X)から奪取され
、該材料はその際凝固する。
If heat is removed below the melting temperature, the material of system II is evaporated again, but in this case at a lower pressure than when the heat is supplied. The heat of vaporization required for this is taken away from the storage material (substance system X), which then solidifies.

物質系IIの蒸気は前記熱伝達装置4によって凝縮され
、発生した凝縮熱は該熱伝達液M4に吸収される。 。
The vapor of substance system II is condensed by the heat transfer device 4, and the generated heat of condensation is absorbed into the heat transfer liquid M4. .

両方の場合に熱の伝達は蓄積充てん物の倣しい混和によ
る著しい発泡のもとで行われ、それによって蓄積材料全
体にわたって一様に広がった吸熱ないし放熱が成り立つ
。この既知の過程は一物質系■がない場合の一分解せず
に溶融する物質では、大量の集塊、接合及び魚皮を生じ
て起る。これは物質系■の添加によって避けられる。発
泡の強度及び物質系■の量に応じて小量の結晶が生じ、
該結晶は海綿状の透過性の堆積物を蓄積装置内部につく
る。
In both cases, the heat transfer takes place with significant foaming due to the uniform mixing of the storage filler, so that an evenly distributed heat absorption or heat release occurs throughout the storage material. This known process occurs in the absence of a material system (1) in which the material melts without decomposition, resulting in large amounts of agglomeration, bonding, and skin. This can be avoided by adding substance system ①. Depending on the intensity of foaming and the amount of material system ■, a small amount of crystals will be generated,
The crystals create a spongy, permeable deposit inside the storage device.

物質系■は、熱の搬出の際に結晶化を生せしめて過冷却
を避けるために必要である。
Material system (2) is necessary to cause crystallization during heat transfer and to avoid supercooling.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明にょる一実施例の潜熱蓄積装置を示す
図である。 1・・・容器、2・・・四種類の物質系I、II、II
I及びIVを含む充てん物、5・・・熱を供給するだめ
の熱伝達装置、4・・・熱を奪取するだめの熱伝達装置
、5・・・空所
FIG. 1 is a diagram showing a latent heat storage device according to an embodiment of the present invention. 1... Container, 2... Four types of material systems I, II, II
Filling containing I and IV, 5... Heat transfer device for supplying heat, 4... Heat transfer device for removing heat, 5... Vacant space

Claims (1)

【特許請求の範囲】 1、分解せずに溶融する物質と活性な混合されるべき蓄
積充てん物とを蓄積容器中に有する潜熱蓄積装置にして
、前記の活性な蓄積充てん物が四つの物質系 I 、II、
III及びIVを含み、物質系 I は一種類または数種類の物
質から成り、該物質は該物質の転移熱と該物質の比熱容
量とに基いて熱を蓄積する特性をもち、溶融の際に分解
現象を示さず、例えば共融または一致溶融し、均一な融
成物例えば前記の活性な蓄積充てん物の全体積に対して
50ないし95vol%の割合のMg(NO_3)_2
・6H_2OとMgCl_2・6H_2Oとから成る共
融混合物をつくり、物質系IIは一種類または数種類の成
分を含む熱媒体としての液体から成り、該液体は物質系
I を溶解させる能力をもつていないか又は条件つきで
だけ溶解させる能力をもつており、物質系IIの密度(ρ
_II)と物質系 I の溶融した相の密度(ρ_ I )とは ρ_ I ≦ρ_II なる条件を満たし、物質系 I の蒸気圧(P_D_ I )
と物質系IIの蒸気圧(P_D_II)とは P_D_ I <<P_D_II2 なる条件を満たし、前記の活性な蓄積充てん物の全体積
に対する物質系IIの割合は3ないし50vol%であり
、 物質系IIIは一種類または数種類の表面活性物質から成
り、前記の活性な蓄積充てん物の全体積に対する物質系
IIIの割合は0.01ないし5vol%であり、 物質系IVは一種類または数種類の核発生剤から成り、前
記の活性な蓄積充てん物の全体積に対する物質系IVの割
合は0ないし20vol%であることを特徴とする潜熱
蓄積装置。
[Claims] 1. A latent heat storage device having a substance that melts without decomposition and an active storage filling to be mixed in the storage container, wherein the active storage filling is a four-material system. I, II,
III and IV, the material system I consists of one or several materials, which have the property of accumulating heat based on the heat of transition of the materials and the specific heat capacity of the materials, and decompose upon melting. Mg(NO_3)_2 in a proportion of 50 to 95 vol. %, based on the total volume of the active accumulation filling, without exhibiting any phenomenon, e.g. eutectic or concordant, homogeneous melt.
・Create a eutectic mixture consisting of 6H_2O and MgCl_2.6H_2O, and material system II consists of a liquid as a heating medium containing one or several types of components, and the liquid is a material system II.
It does not have the ability to dissolve I or has the ability to dissolve it only conditionally, and the density of the material system II (ρ
_II) and the density of the molten phase of material system I (ρ_ I ) satisfy the condition ρ_ I ≦ρ_II, and the vapor pressure of material system I (P_D_ I )
The vapor pressure (P_D_II) of material system II satisfies the following condition: P_D_ I <<P_D_II2, the ratio of material system II to the total volume of the active accumulation filling is 3 to 50 vol%, and material system III is a material system consisting of one or several surface-active substances and for the total volume of said active storage filling;
The proportion of III is from 0.01 to 5 vol%, the substance system IV consists of one or several nucleating agents, and the proportion of substance system IV to the total volume of the active storage filling is from 0 to 20 vol%. A latent heat storage device characterized by:
JP60172545A 1984-08-09 1985-08-07 Latent heat accumulator having substance melting without decomposing Granted JPS6152588A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DD28D/266128-6 1984-08-09
DD84266128A DD236862A3 (en) 1984-08-09 1984-08-09 LATE SWAN MEMORY WITH NON-CRUSHING FABRICS

Publications (2)

Publication Number Publication Date
JPS6152588A true JPS6152588A (en) 1986-03-15
JPH0438998B2 JPH0438998B2 (en) 1992-06-26

Family

ID=5559521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60172545A Granted JPS6152588A (en) 1984-08-09 1985-08-07 Latent heat accumulator having substance melting without decomposing

Country Status (9)

Country Link
JP (1) JPS6152588A (en)
AT (1) AT391555B (en)
BG (1) BG48415A1 (en)
CH (1) CH669206A5 (en)
CS (1) CS497385A1 (en)
DD (1) DD236862A3 (en)
DE (1) DE3521548A1 (en)
HU (1) HU204299B (en)
SE (1) SE463623B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4042268A1 (en) * 1990-12-31 1992-07-02 Gerd Hoermansdoerfer STORAGE SALT MIXTURES
JP2943609B2 (en) * 1994-06-21 1999-08-30 トヨタ自動車株式会社 Heat storage device
AU7510600A (en) 1999-08-28 2001-03-26 Schumann Sasol Gmbh Latent heat accumulator material
WO2001038453A1 (en) 1999-11-23 2001-05-31 SCHÜMANN SASOL GmbH Dynamic latent heat accumulator
DE102008029972A1 (en) 2008-06-26 2009-12-31 Bayerisches Zentrum für Angewandte Energieforschung e.V. Method for intermixing partially fluid latent heat storage materials in a storage container, comprises introducing gas or gas mixture, which is oxygen free, into the partially fluid latent heat storage materials
DE102010028676A1 (en) 2010-05-06 2011-11-10 Deutsches Zentrum für Luft- und Raumfahrt e.V. Heat receiving, delivering and storing method for latent heat storage, involves transferring energy on fluid to be heated, and conveying solid heat storage medium into solid memory for closing circuit of latent heat storage

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58195786A (en) * 1982-05-08 1983-11-15 Matsushita Electric Ind Co Ltd Heat accumulating apparatus of latent heat type
JPS58219395A (en) * 1982-06-15 1983-12-20 Matsushita Electric Ind Co Ltd Heat accumulating apparatus of latent heat type

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2917192A1 (en) * 1979-04-26 1980-11-06 Kay Laboratories Inc Heat-releasing supercooled melt compsns. - contg. crystallisable material and exsolving liq. additive
US4272392A (en) * 1979-11-02 1981-06-09 The Dow Chemical Company Hydrated Mg(NO3)2 /MgCl2 reversible phase change compositions
CA1160443A (en) * 1980-12-22 1984-01-17 George A. Lane Hydrated mgc1.sub.2 reversible phase change compositions hydrated mg(no.sub.3).sub.2 reversible phase change compositions
DD225857A3 (en) * 1982-09-30 1985-08-07 Bauakademie D Ddr Inst Fuer He HOCHLEISTUNGSWAERMESPEICHER

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58195786A (en) * 1982-05-08 1983-11-15 Matsushita Electric Ind Co Ltd Heat accumulating apparatus of latent heat type
JPS58219395A (en) * 1982-06-15 1983-12-20 Matsushita Electric Ind Co Ltd Heat accumulating apparatus of latent heat type

Also Published As

Publication number Publication date
SE463623B (en) 1990-12-17
HUT42174A (en) 1987-06-29
SE8503748D0 (en) 1985-08-08
BG48415A1 (en) 1991-02-15
DD236862A3 (en) 1986-06-25
JPH0438998B2 (en) 1992-06-26
DE3521548A1 (en) 1986-02-20
CS497385A1 (en) 1987-09-17
SE8503748L (en) 1986-02-10
ATA180885A (en) 1990-04-15
AT391555B (en) 1990-10-25
HU204299B (en) 1991-12-30
CH669206A5 (en) 1989-02-28

Similar Documents

Publication Publication Date Title
EP0103450B1 (en) Latent heat storage and supply system and method
CA2125687C (en) Salt mixtures for storing thermal energy in the form of heat of phase transformation
JPS6152588A (en) Latent heat accumulator having substance melting without decomposing
CA1130675A (en) System and process for storing energy
US4342661A (en) Heat storage medium
JPS59109578A (en) Heat storage material
JPH0292987A (en) Cold-storing material composition
JPS63137982A (en) Heat storage material composition
JPS58219399A (en) Heat accumulating material
JPH0680956A (en) Heat storage composition and its production
JPS63273787A (en) Capsule for heat accumulating material
JPH0215598B2 (en)
JP2538635B2 (en) Heat storage material
JPH0788503B2 (en) Heat storage material composition
JPH0562158B2 (en)
JPH0372675B2 (en)
JPH04222894A (en) Medium for heat-transfer system
JPS6224033B2 (en)
JPS5942034B2 (en) heat storage material
JPS6351478B2 (en)
JPS6111276B2 (en)
JPS60196558A (en) Air-cooling and refrigerating device
JPS5845499A (en) Heat accumulating material
JPS6151080A (en) Latent heat storage material
JPH11166176A (en) Latent-heat storage composition