JPS58195786A - Heat accumulating apparatus of latent heat type - Google Patents

Heat accumulating apparatus of latent heat type

Info

Publication number
JPS58195786A
JPS58195786A JP57076843A JP7684382A JPS58195786A JP S58195786 A JPS58195786 A JP S58195786A JP 57076843 A JP57076843 A JP 57076843A JP 7684382 A JP7684382 A JP 7684382A JP S58195786 A JPS58195786 A JP S58195786A
Authority
JP
Japan
Prior art keywords
heat
heat storage
storage material
transfer medium
accumulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57076843A
Other languages
Japanese (ja)
Other versions
JPS6213600B2 (en
Inventor
Takahito Ishii
隆仁 石井
Kazuo Yamashita
山下 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57076843A priority Critical patent/JPS58195786A/en
Publication of JPS58195786A publication Critical patent/JPS58195786A/en
Publication of JPS6213600B2 publication Critical patent/JPS6213600B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/025Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being in direct contact with a heat-exchange medium or with another heat storage material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Abstract

PURPOSE:To prevent the interfacial temperature from decreasing, and to improve a heat transferring characteristic, by mixing metallic powder or metallic short fiber having thermal conductivity in a heat-accumulating material, in a solar heat or the like heat accumulating apparatus for supplying hot-water or for heating rooms utilizing a latent heat accumulating material and a phase transition heat-transferring medium. CONSTITUTION:Metallic powder or metallic short fiber 6, having heat conductivity, that is a phase transition heat-transferring medium 3 such as Al, of which specific gravity is larger than that of a latent heat accumulating material 2 or of heat accumulating material 2 in the vicinity of a phase transition point, is filled in a heat accumulating part B. At the time when the heat is accumulated, the heat from outside is first absorbed by the metallic powder interpositioned in the solid phase 100 of a heat accumulating material, and heats the heat-transferring medium 3. The heat-transferring medium 3 is repeatedly evaporated and is condensed, passing through the interpositioned space in the solid phase 100, and melts a heat-accumulating material 100 down to accumulate heat in it. At the time when the heat is radiated, the condensed liquid of heat-transferring medium 3 is deposited on the metallic powder 6 and is settled down. Accordingly, the condensed liquid 3 in the vicinity of an interface C is prevented from remaining, so that the heat dissipating speed can be increased. In such a manner, the interfacial temperature is prevented from lowering, and a heat transferring characteristic can be improved in the titled apparatus.

Description

【発明の詳細な説明】 本発明は、太陽熱などの熱エネルギーを蓄熱し、給湯・
暖房などに用いられる蓄熱装置に関するものである。
[Detailed Description of the Invention] The present invention stores thermal energy such as solar heat, and
This relates to heat storage devices used for heating, etc.

近年、不安定な太陽熱、深夜電力等のエネルギーの有効
利用及び高密度貯蔵の観点から無機・有機水利塩の潜熱
型蓄熱材利用に関する研究がさかんである。ところが、
実用に際しては蓄熱材固有の多くの解決すべき問題点が
あった(過冷却、相分離、固相の低い熱伝導率、等)。
In recent years, research has been actively conducted on the use of inorganic and organic water salts as latent heat storage materials from the viewpoint of effective use of energy such as unstable solar heat and late-night electricity, and high-density storage. However,
In practical use, there were many problems unique to heat storage materials that needed to be resolved (supercooling, phase separation, low thermal conductivity of the solid phase, etc.).

従来の蓄熱装置としては第1図に示すようなものがある
。これは、蒸気空間Aと固相1液相用空間Bを含む閉鎖
装置1内で、蓄熱材2を前記蓄熱材に対してほとんど不
溶解性であると共に、前記蓄熱材の液相の密度と等しい
か、それより高い密度を有する伝熱媒体3とを直接接触
させ、前記蓄熱材より受熱して前記蒸気空間Aへ蒸発し
た前記伝熱媒体蒸気を前記閉鎖装置内で凝縮させて凝縮
液を蓄熱材に戻すようにしたものである。この方式は、
前述した蓄熱材固有の問題点を改善したすぐれたもので
ある。しかしながら、中間部放熱器で凝縮し滴下した伝
熱媒体凝縮液は蓄熱材融液中を沈降する途中で受熱して
気体となるため伝熱媒体はほとんど蓄熱材の上部すなわ
ち蓄熱材と蒸気空間の界面に位置するようになる。そし
て、伝熱媒体の一部が蒸気空間に蒸発するため前記界面
では温度低下をきたし、界面に蓄熱材固相が析出・固着
して伝熱媒体の蒸発を阻害するようになる。
As a conventional heat storage device, there is one shown in FIG. This makes the heat storage material 2 almost insoluble in the heat storage material and the density of the liquid phase of the heat storage material in the closed device 1 which includes a vapor space A, a space for a solid phase and a space B for a liquid phase. The heat transfer medium 3 having the same or higher density is directly contacted, and the heat transfer medium vapor that has received heat from the heat storage material and evaporated into the vapor space A is condensed in the closed device to form a condensate liquid. It is designed to be returned to the heat storage material. This method is
This is an excellent product that improves the problems inherent to the heat storage material mentioned above. However, since the heat transfer medium condensate that has condensed and dripped in the intermediate heat radiator receives heat while settling in the heat storage material melt and becomes a gas, the heat transfer medium is mostly concentrated in the upper part of the heat storage material, that is, between the heat storage material and the vapor space. It will be located at the interface. Then, a portion of the heat transfer medium evaporates into the vapor space, causing a temperature drop at the interface, and a solid phase of the heat storage material precipitates and adheres to the interface, inhibiting the evaporation of the heat transfer medium.

そのため、ポンプ又はコンプレッサー等ヲ用いて伝熱媒
体の対流を円滑にして界面での蓄熱材の固着を防止する
ことにより放熱特性を改善しているのが実情である。い
ずれにしても空間部数熱器管、− 壁への蓄熱材融液の飛散Φ付着が起りそこで蓄熱材融液
が固化して放熱特性の低下を引き起こす。
Therefore, the current situation is to improve the heat dissipation characteristics by using a pump, compressor, etc. to smooth the convection of the heat transfer medium and prevent the heat storage material from sticking at the interface. In any case, the heat storage material melt scatters and adheres to the walls of the space heater tube, and the heat storage material melt solidifies there, causing a reduction in heat dissipation characteristics.

それを回避するだめには前記界面と中間部放熱器との距
離を大きくする必要がありその結果デッドスペースが増
え蓄熱材利用のメリット(高蓄熱密度貯蔵)が失なわれ
る。また、蓄熱材中で間接熱交換をおこなう場合は、蓄
熱材融液と放熱器管壁との温度差のみが律速となり前記
管壁上に蓄熱材固相の付着・成長が起こり前記固相の低
い熱伝導率のため放熱特性は急激に低下するのである。
In order to avoid this, it is necessary to increase the distance between the interface and the intermediate heat radiator, and as a result, dead space increases and the advantage of using the heat storage material (high heat storage density storage) is lost. In addition, when indirect heat exchange is performed in the heat storage material, only the temperature difference between the heat storage material melt and the radiator tube wall determines the rate, and the solid phase of the heat storage material adheres and grows on the tube wall. Due to the low thermal conductivity, the heat dissipation properties deteriorate rapidly.

本発明の目的は、前記界面での温度低下を防止するとと
もに放熱器管壁への蓄熱材固相付着に伴う伝熱特性を大
幅に改善した蓄熱装置を提供することにある。
An object of the present invention is to provide a heat storage device that prevents a temperature drop at the interface and significantly improves the heat transfer characteristics associated with the solid phase adhesion of the heat storage material to the radiator tube wall.

本発明は上記目的を達成するために、蓄熱槽内に潜熱型
蓄熱材と、前記蓄熱材に対してほとんど不相溶性であり
熱吸収時に液体から気体に、熱放出時に気体から液体に
なり、かつ、その凝縮液の比重が少なくとも前記蓄熱材
の相転移点近傍における比重よりも大きい伝熱媒体、及
び、熱伝導性金属粉、又は、金属短繊維を上方に空間部
を残して封入し、少な1、七、とも前記空間部に熱交換
媒体が通過する放熱器゛、永設けたものである。
In order to achieve the above object, the present invention includes a latent heat type heat storage material in a heat storage tank, which is almost incompatible with the heat storage material and changes from liquid to gas when heat is absorbed, and from gas to liquid when heat is released. and enclosing a heat transfer medium whose condensed liquid has a specific gravity at least higher than the specific gravity near the phase transition point of the heat storage material, and thermally conductive metal powder or short metal fibers, leaving a space above; Both Nos. 1 and 7 are permanently provided with a radiator through which a heat exchange medium passes through the space.

また、潜熱型蓄熱材として無機、又は、有機水利塩を用
いて蓄熱材融液との間接熱交換を行なう場合には、その
だめの放熱器の壁面、及び、前記熱伝導性金属粉、又は
、金属短繊維の表面に撥水性皮膜を形成するとともに上
記伝熱媒体としてフッ素化炭化水素、前記熱伝導性金属
粉・繊維としてアルミニウムを用いるものである。
In addition, when performing indirect heat exchange with the heat storage material melt using an inorganic or organic water salt as a latent heat type heat storage material, the wall surface of the radiator and the thermally conductive metal powder or In this method, a water-repellent film is formed on the surface of short metal fibers, a fluorinated hydrocarbon is used as the heat transfer medium, and aluminum is used as the thermally conductive metal powder/fiber.

上記構成によって、蓄・放熱時の熱交換器による入・出
力速度を大幅に向上させることができる。
With the above configuration, the input/output speed of the heat exchanger during heat storage/radiation can be significantly improved.

以下、本発明の一実施例を第2図を用いて説明する。蓄
熱槽容器1の内部には水和塩型蓄熱材(融液を2、固相
を100とする)として、例えば、酢酸ナトリウム・3
水塩(給湯用:融点58℃、比重(固体) 1. a、
ay/cJ (液体) 1.28)/CJ)と伝熱媒体
3として、例えば、フロン−113(沸点47.6℃、
比重26℃1.57p、kJ )、熱伝導性金属粉6と
してAfi粉末(100mesh )が封入されている
。空間部A1蓄熱材充填部Bが封入されている。空間部
A1蓄熱材充填部Bに、各々、放熱器4,6を設け、そ
れらを連結して用いている。なお、第2図において第1
図と同一物については同一番号で示す。また、放熱器5
、及び、金属粉6の撥水処理は、シリコーン系の撥水剤
(メヂルハイドロジエンポリシロキサン)を塗布、又は
、浸漬後加熱キュアーにより行なった。
An embodiment of the present invention will be described below with reference to FIG. Inside the heat storage tank container 1, a hydrated salt type heat storage material (melt liquid is 2, solid phase is 100), for example, sodium acetate.
Water salt (for hot water supply: melting point 58℃, specific gravity (solid) 1. a,
ay/cJ (liquid) 1.28)/CJ) and as the heat transfer medium 3, for example, Freon-113 (boiling point 47.6°C,
Specific gravity: 26° C. 1.57 p, kJ), Afi powder (100 mesh) is enclosed as thermally conductive metal powder 6. The space A1 is filled with a heat storage material filling part B. Heat radiators 4 and 6 are provided in the space A1 and the heat storage material filling part B, respectively, and these are used in a connected manner. In addition, in Figure 2, the first
Items that are the same as those in the figures are indicated by the same numbers. In addition, the heat sink 5
The water repellent treatment of , and the metal powder 6 was carried out by applying a silicone water repellent (medylhydrodiene polysiloxane) or by heating and curing after immersion.

なお、上記実施例に用いた伝熱媒体3、及び、金属粉6
の量は蓄熱材2に対して各々、約2%、0.1チである
(重量比)。
Note that the heat transfer medium 3 and metal powder 6 used in the above example
The amounts of these are approximately 2% and 0.1% of the heat storage material 2, respectively (weight ratio).

次に、蓄・放熱過程について説明する。蓄熱材固相10
oの内部には通常、放熱に伴う結晶化の際の体積変化に
より生じた空隙が巣状に存在し、しかもその内部には伝
熱媒体凝縮液3と金属粉6が介在している。この状態か
ら外部、又は、内部の加熱器(図中、省略)より熱を供
給し蓄熱を開始する。この蓄熱過程において、一般に蓄
熱材固相10o単独の熱伝導率は低いのであるが、金属
粉6の介在により熱伝導率は向上し、すばやく伝熱媒体
3に熱を搬送する。受熱した伝熱媒体3は前記空隙を通
って蒸発と凝縮をくり返しながら蓄熱材固相100に熱
を伝達する。その結果、供給された熱エネルギーを速や
かに蓄熱し蓄熱槽容器1の内部は蓄熱材融液2と気・液
体から成る伝熱媒体3の飽和蒸気で満たされる。実験の
結果、金属粉6の存在により加熱時の入熱速度を約3倍
に向上させることができた。
Next, the heat storage/radiation process will be explained. Heat storage material solid phase 10
Usually, there are nest-like voids inside the voids caused by volume changes during crystallization due to heat dissipation, and the heat transfer medium condensate 3 and metal powder 6 are interposed inside the voids. From this state, heat is supplied from an external or internal heater (not shown in the figure) to start storing heat. In this heat storage process, although the thermal conductivity of the heat storage material solid phase 10o alone is generally low, the presence of the metal powder 6 improves the thermal conductivity and quickly transfers heat to the heat transfer medium 3. The heat transfer medium 3 that has received heat passes through the gap and transfers heat to the heat storage material solid phase 100 while repeating evaporation and condensation. As a result, the supplied thermal energy is quickly stored, and the inside of the heat storage tank container 1 is filled with the heat storage material melt 2 and the saturated vapor of the heat transfer medium 3 made of gas and liquid. As a result of the experiment, the presence of the metal powder 6 made it possible to improve the heat input rate during heating by about three times.

次に、放熱は、放熱器4,6に冷水が流入することによ
り行なわれる。すると、空間部Aに存在する伝熱媒体蒸
気3が冷却され、放熱器4の管壁で凝縮・滴下する。そ
の時、放出される蒸発潜熱により冷水は加温される。そ
して、蓄熱材融液2中に戻った伝熱媒体凝縮液3は、金
属粉6を周囲に付着して沈降してゆく。その結果、界面
C近傍での伝熱媒体3の滞溜はなくなり放熱速度は大幅
に増加した(約60係)。その状態を第3図a及び、第
3図すに示す(図中、口・・・・・・伝熱媒体蒸気、・
・・・・・伝熱媒体凝縮液、 ・・・・・・金属粉、 
・・・・・・蓄熱材結晶を示す。)。そして、伝熱媒体
3は再び受熱して気体となり空間部Aに蒸発する。その
時、蓄熱材融液2は伝熱媒体3にjり激しく攪拌される
。引き続いて、水は蓄熱材融液2中での間接熱交換によ
り加温されるので5鼠が、放熱器6の管壁には撥水処理
層を形成しているので蓄熱材固相1oOは付着しにくく
なる。第3図すに付着しだ状態を示す。放熱器6の管壁
には内部に伝熱媒体凝縮液3、及び、金属粉6を含んだ
蓄熱材固相100が付着する。伝熱媒体凝縮液3、及び
、金属粉6はお互いにそれぞれ近接しており、その結果
、間接熱交換の熱伝達率は大幅に向上した(約30〜6
0%)。
Next, heat radiation is performed by flowing cold water into the radiators 4 and 6. Then, the heat transfer medium vapor 3 existing in the space A is cooled, and condenses and drips on the tube wall of the radiator 4. At that time, the cold water is heated by the latent heat of vaporization released. Then, the heat transfer medium condensate 3 that has returned to the heat storage material melt 2 adheres to the metal powder 6 around it and settles down. As a result, the heat transfer medium 3 no longer stagnates near the interface C, and the heat radiation rate increases significantly (approximately 60 times). The state is shown in Figure 3a and Figure 3S.
...Heat transfer medium condensate, ...Metal powder,
...Indicates a heat storage material crystal. ). Then, the heat transfer medium 3 receives heat again, becomes a gas, and evaporates into the space A. At this time, the heat storage material melt 2 is poured into the heat transfer medium 3 and is vigorously stirred. Subsequently, since the water is heated by indirect heat exchange in the heat storage material melt 2, the water repellent layer is formed on the tube wall of the radiator 6, so the heat storage material solid phase 1oO is It becomes difficult to adhere. Figure 3 shows the state where it has started to adhere. A heat transfer medium condensate 3 and a heat storage material solid phase 100 containing metal powder 6 adhere to the tube wall of the radiator 6 . The heat transfer medium condensate 3 and the metal powder 6 are close to each other, and as a result, the heat transfer coefficient of indirect heat exchange is significantly improved (approximately 30 to 6
0%).

上記の過程で金属粉は蓄・放熱時蓄熱材融液中を伝熱媒
体に付着して挙動するのであるが、このことは金属粉の
蓄熱材、又は、伝熱媒体に対するぬれ性に大きく関与し
ている。一般に、熱伝導性金属は蓄熱材、及び、伝熱媒
体より比重は大きいため金属粒(10mesh以下)で
は低部に沈降する( AQ−= 2.7f/crll 
5Cu−・・−8,96f/cr/l 。
During the above process, the metal powder behaves by adhering to the heat transfer medium in the heat storage material melt during heat storage and heat dissipation, and this greatly affects the wettability of the metal powder to the heat storage material or heat transfer medium. are doing. In general, thermally conductive metals have a higher specific gravity than heat storage materials and heat transfer media, so metal particles (10 mesh or less) settle at the bottom (AQ-=2.7f/crll)
5Cu-...-8,96f/cr/l.

ate)。ところが、・金属粉(実施例に用いたのは1
00 mesh)では1面積が大きいこととぬれ性の効
果により上記の挙町を示すのである。一般に、蓄熱材に
ぬれにくく伝熱媒体にぬれやすければ伝熱媒体の回りに
付註″起こる。AQ粉の場合は、未撥水処理物でもうま
く挙動した。また、蓄熱材・伝熱媒体にともにぬれ易い
場合は、用いる金属粉を撥水処理するとともに蓄熱材、
もしくは、伝熱媒体よりも比重が小さく、かつ、伝熱媒
体に相溶する媒体(例えば、流動パラフィン)を用いれ
ばよい。なお、金属繊維を用いても同様である。
ate). However, metal powder (1 was used in the example)
00 mesh) exhibits the above-mentioned characteristics due to its large area and wettability. In general, if the heat storage material is difficult to wet and the heat transfer medium is easy to wet, an annotation will occur around the heat transfer medium.In the case of AQ powder, it behaved well even with non-water repellent treated materials. If both are easily wetted, treat the metal powder used to make it water repellent, and use a heat storage material,
Alternatively, a medium (for example, liquid paraffin) that has a smaller specific gravity than the heat transfer medium and is compatible with the heat transfer medium may be used. Note that the same applies when metal fibers are used.

以上、述べたように本発明の蓄熱装置によれば蓄・放熱
時の熱交換器人・出熱速度を大幅に改善することができ
るとともに伝熱媒体の比重を熱伝導性金属粉、又は、金
属繊維の付着により見掛は上増加させることにより伝熱
媒体に汎用性をもたすことができる。
As described above, according to the heat storage device of the present invention, the speed of heat exchanger and heat output during heat storage and heat dissipation can be significantly improved, and the specific gravity of the heat transfer medium can be changed to thermally conductive metal powder or By increasing the appearance by attaching metal fibers, it is possible to provide versatility to the heat transfer medium.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の蓄熱装置の断面図、第2図は、本発明
による実施例の蓄熱装置の断面図、第3図は、本発明に
よる蓄熱装置の放熱時の状態図で、aは界面近傍、bは
蓄熱材中放熱器近傍を示している。 1・・・・・・蓄熱槽容器、2・・・・・・蓄熱材融液
(但し、固相は1ooで示す)、3・・・・・・伝熱媒
体、4,5・・・・・・放熱器、6・・・・・・熱伝導
性金属粉、又は、金属繊維、A・・・・・・空間部、B
−、・・・・蓄熱材充填部、C・・・・・・界面 第1図 #j25i 113図
FIG. 1 is a cross-sectional view of a conventional heat storage device, FIG. 2 is a cross-sectional view of a heat storage device according to an embodiment of the present invention, and FIG. 3 is a state diagram of the heat storage device according to the present invention during heat dissipation. Near the interface, b indicates the vicinity of the radiator in the heat storage material. 1... Heat storage tank container, 2... Heat storage material melt (however, the solid phase is indicated by 1oo), 3... Heat transfer medium, 4, 5... ...Radiator, 6...Thermally conductive metal powder or metal fiber, A...Space, B
-,... Heat storage material filling part, C... Interface Figure 1 #j25i Figure 113

Claims (3)

【特許請求の範囲】[Claims] (1)容器内部に潜熱型蓄熱材と前記蓄熱材に対してほ
とんど不相溶性であり熱吸収時に液体から気体に、熱放
出時に気体から液体になり、かつ、その凝縮液の比重が
少なくとも前記蓄熱材の相転移点近傍における比重より
も大きい伝熱媒体、及び熱伝導性金属粉、又は、金属短
繊維を上方に空間部を残して前記容器内に封入し、少な
くとも前記空間部に熱交換媒体が通過する放熱器を設け
た潜熱型蓄熱装置。
(1) The latent heat type heat storage material inside the container is almost incompatible with the heat storage material, and it changes from liquid to gas when heat is absorbed, and from gas to liquid when heat is released, and the specific gravity of the condensed liquid is at least A heat transfer medium having a specific gravity greater than the specific gravity near the phase transition point of the heat storage material, and thermally conductive metal powder or short metal fibers are sealed in the container with a space left above, and at least the space is used for heat exchange. A latent heat type heat storage device equipped with a radiator through which a medium passes.
(2)潜熱型蓄熱材として無機、又は、有機水和塩を用
いた場合には撥水性皮膜を有する放熱器、及び熱伝導性
金属粉、又は、金属繊維を用いた特許請求の範囲第1項
記載の潜熱型蓄熱装置。
(2) A radiator having a water-repellent film when an inorganic or organic hydrated salt is used as the latent heat type heat storage material, and Claim 1 using a thermally conductive metal powder or metal fiber. The latent heat type heat storage device described in .
(3)上記伝熱媒体としてフッ素化炭化水素、上記熱伝
導性金属粉、又は、金属繊維としてアルミニウムを用い
た特許請求の範囲第1項、又は第2項記載の潜熱型蓄熱
装置。
(3) The latent heat type heat storage device according to claim 1 or 2, wherein a fluorinated hydrocarbon is used as the heat transfer medium, the thermally conductive metal powder is used, or aluminum is used as the metal fiber.
JP57076843A 1982-05-08 1982-05-08 Heat accumulating apparatus of latent heat type Granted JPS58195786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57076843A JPS58195786A (en) 1982-05-08 1982-05-08 Heat accumulating apparatus of latent heat type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57076843A JPS58195786A (en) 1982-05-08 1982-05-08 Heat accumulating apparatus of latent heat type

Publications (2)

Publication Number Publication Date
JPS58195786A true JPS58195786A (en) 1983-11-15
JPS6213600B2 JPS6213600B2 (en) 1987-03-27

Family

ID=13616938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57076843A Granted JPS58195786A (en) 1982-05-08 1982-05-08 Heat accumulating apparatus of latent heat type

Country Status (1)

Country Link
JP (1) JPS58195786A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6152588A (en) * 1984-08-09 1986-03-15 バウアカデミー・デル・ドイツチエン・デモクラテイツシエン・レプブリツク Latent heat accumulator having substance melting without decomposing
JP2010249412A (en) * 2009-04-15 2010-11-04 Denso Corp Heat storage device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184008A (en) * 1988-01-19 1989-07-21 Nissen Corp Filter drier

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5411012A (en) * 1977-06-27 1979-01-26 Kobe Steel Ltd Method and equipment for heat treating titanium pipe
JPS5592889A (en) * 1979-01-08 1980-07-14 Hitachi Ltd Heat accumulator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5411012A (en) * 1977-06-27 1979-01-26 Kobe Steel Ltd Method and equipment for heat treating titanium pipe
JPS5592889A (en) * 1979-01-08 1980-07-14 Hitachi Ltd Heat accumulator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6152588A (en) * 1984-08-09 1986-03-15 バウアカデミー・デル・ドイツチエン・デモクラテイツシエン・レプブリツク Latent heat accumulator having substance melting without decomposing
JPH0438998B2 (en) * 1984-08-09 1992-06-26
JP2010249412A (en) * 2009-04-15 2010-11-04 Denso Corp Heat storage device

Also Published As

Publication number Publication date
JPS6213600B2 (en) 1987-03-27

Similar Documents

Publication Publication Date Title
US4329407A (en) Electrochemical storage battery
JPS58195786A (en) Heat accumulating apparatus of latent heat type
JPS628716B2 (en)
JPS5849894A (en) Heat accumulating device utilizing latent heat
JPS58102097A (en) Heat accumulator
JPS58142193A (en) Heat accumulating device
JPS59129389A (en) Latent heat type heat accumulator
JPS61173085A (en) Latent heat storage device
JPS59134488A (en) Latent heat type heat accumulator
JPS6152398B2 (en)
JPS58106391A (en) Heat accumulator
JPS58221388A (en) Latent heat type heat accumulating device
JPS5845494A (en) Method of heat exchange in latent heat type heat accumulating tank
JPS58106393A (en) Heat accumulator
JPS59137789A (en) Latent-heat type heat accumulator
WO2008009047A1 (en) Heat storage device
JPS628717B2 (en)
JPS58168893A (en) Heat accumulator
JPS5843394A (en) Heat exchange method of latent heat type heat accumulator
JPS58142195A (en) Heat accumulating device
JPS58106392A (en) Heat-accumulating element
JPS5849850A (en) Water heater utilizing latent heat type heat accumulating material
JPS6251398B2 (en)
JPS6057194A (en) Heat accumulating tank
Kim et al. Experimental study on thermal energy storage and collector system for black-ice removal on the road