JPS5849850A - Water heater utilizing latent heat type heat accumulating material - Google Patents

Water heater utilizing latent heat type heat accumulating material

Info

Publication number
JPS5849850A
JPS5849850A JP56148556A JP14855681A JPS5849850A JP S5849850 A JPS5849850 A JP S5849850A JP 56148556 A JP56148556 A JP 56148556A JP 14855681 A JP14855681 A JP 14855681A JP S5849850 A JPS5849850 A JP S5849850A
Authority
JP
Japan
Prior art keywords
heat
storage material
heat storage
heater
accumulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56148556A
Other languages
Japanese (ja)
Inventor
Kazuo Yamashita
山下 和夫
Takahito Ishii
隆仁 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56148556A priority Critical patent/JPS5849850A/en
Publication of JPS5849850A publication Critical patent/JPS5849850A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/021Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material and the heat-exchanging means being enclosed in one container
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H7/00Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release
    • F24H7/02Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid
    • F24H7/04Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid with forced circulation of the transfer fluid
    • F24H7/0408Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid with forced circulation of the transfer fluid using electrical energy supply
    • F24H7/0433Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid with forced circulation of the transfer fluid using electrical energy supply the transfer medium being water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)

Abstract

PURPOSE:To enhance the heat exchange efficiency of the heater by a method wherein the heater comprises sealing the latent heat type heat accumulating material and working liquid, the specific gravity at the melting point of which is larger than that of the heat of the heat accumulating material within the heater. CONSTITUTION:The latent heat type heat accumulating material 2 and the working liquid 3, the specific gravity at the melting point of which is larger than that of the heat accumulating material in the molten state, are sealed within the case 1 of the water heater, at the lower part of which a heater 5 is provided and at the upper part of which a heat exchanger 4 is provided. As an example, sodium acetate trihydrate is employed as the heat accumulating material and Freon R-113, which is non-compatible and non-reactive with sodium acetate trihydrate, is used as the working liquid.

Description

【発明の詳細な説明】 本発明は潜熱型蓄熱材を用いた温水器に関する。[Detailed description of the invention] The present invention relates to a water heater using a latent heat type heat storage material.

従来、潜熱を利用した蓄熱材として無機塩類。Traditionally, inorganic salts have been used as heat storage materials that utilize latent heat.

有機物あるいはパラフィンが用いられているが、いづれ
の場合にも問題点の一つとして熱交換が迅速に行なわれ
ないということである。溶融状態では対流によシ蓄熱材
中の温度線はソ均一になっているが、いったん凝固し始
めると固体の熱伝達が悪いため周囲からの熱伝達が減少
し熱交換器近辺の蓄熱材温度は急激に低下する。すなわ
ち伝熱面のご〈近傍では蓄熱材はその潜熱を放出し固化
する。固化すると熱伝導度が悪いため固化した蓄熱材近
傍にある溶融蓄熱材の熱を伝熱面に伝えにくい。したが
って、蓄熱材は伝熱面近傍では固相であり、少し離れた
ところでは液相のま\である。
Organic or paraffin materials have been used, but one of the problems in either case is that heat exchange does not take place quickly. In the molten state, the temperature line in the heat storage material becomes uniform due to convection, but once it begins to solidify, the heat transfer from the surroundings decreases due to the poor heat transfer of the solid, and the temperature of the heat storage material near the heat exchanger decreases. decreases rapidly. That is, near the heat transfer surface, the heat storage material releases its latent heat and solidifies. When solidified, thermal conductivity is poor, making it difficult to transfer heat from the molten heat storage material near the solidified heat storage material to the heat transfer surface. Therefore, the heat storage material is in a solid phase near the heat transfer surface, and remains in a liquid phase a little further away.

この液相の潜熱を有効に利用するためには長時間を必要
とした。実際の使用にあたっては上記現象が生じないよ
うにするため種々の方法がとられている。例えば、伝熱
管にフィンをつけ伝熱面間の距離を短かくし伝熱面間に
液相が残存しにくいようにする等の方法であるが、上記
問題を実質的に解決するまでに至っていない。
It took a long time to effectively utilize the latent heat of the liquid phase. In actual use, various methods are taken to prevent the above phenomenon from occurring. For example, methods include adding fins to heat transfer tubes to shorten the distance between the heat transfer surfaces and making it difficult for liquid phase to remain between the heat transfer surfaces, but this has not actually solved the above problem. .

また、ヒーターによシ蓄熱する場合、熱を放出した後の
蓄熱材は固体であり、これがヒーターに付着している状
態にある。ヒーターに通電すると蓄熱材は溶融していく
が、溶融する速度、よりもヒーター近辺の温度が上昇す
る速度の方がはやいため、異常高温が発生し蓄熱材が熱
分解したシする危険がある。従って、ヒーターは温水器
ケースの外側に取り付は上記問題が発生しないようにし
てその熱利用効率が低下し、また、蓄熱時間がか\ると
いう問題が新たに発生した。
Further, when heat is stored in the heater, the heat storage material after releasing the heat is solid and remains attached to the heater. When the heater is energized, the heat storage material melts, but because the temperature near the heater increases faster than the melting speed, there is a risk that abnormally high temperatures will occur and the heat storage material will thermally decompose. Therefore, installing the heater on the outside of the water heater case is necessary to prevent the above-mentioned problems from occurring, but new problems have arisen in that the heat utilization efficiency is lowered and the heat storage time is increased.

本発明は上記問題点を解決し、熱交換を迅速かつ効率よ
く行なうことができ、しかも容積を小形にすることがで
きる温水器を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and provide a water heater that can perform heat exchange quickly and efficiently, and can also be made small in volume.

本発明は、潜熱型蓄熱材と、その溶融温度にお部に熱を
取シ出すための熱交換器を設け、蓄熱材中に熱を供給す
るためのヒーターを設けたことを基本的構成とし、この
構成により、熱を取り出す、 際に熱交換器の伝熱面周
囲に熱伝達の悪い固相部分を生ずるとと門<熱交換を迅
速かつ効率よく行なえるようにしたものであ不。
The basic structure of the present invention includes a latent heat type heat storage material, a heat exchanger for extracting heat to the melting temperature of the material, and a heater for supplying heat into the heat storage material. This configuration allows heat to be exchanged quickly and efficiently without creating a solid phase with poor heat transfer around the heat transfer surface of the heat exchanger when extracting heat.

明すると、門水器ケース1内に蓄熱材2および溶融状態
における蓄熱材の比重よシ比重が大きい作−゛ 動液3
が封入されておシ、さらに熱を取シ出すため蓄熱材上層
の気相部分に熱交換器4が設けられ、かつ熱を供給する
ため蓄熱材中に電気ヒーター6が設けられている。6,
7は熱交換器の配管である。ただし、熱交換器4の一部
は蓄熱材中に浸漬していてもかまわない。こ\において
蓄熱材と作動液とは非反応性でかつ非相溶性であること
が好蓄熱材が溶融状態にある時、槽内は主として蓄熱材
よりなる液相と蓄熱材の溶融温度に等しい作動液の蒸気
圧で平衡状態にある気相よりなってお  。
Specifically, in the gate case 1 there is a heat storage material 2 and a working fluid 3 whose specific gravity is greater than that of the heat storage material in the molten state.
Further, a heat exchanger 4 is provided in the gas phase portion of the upper layer of the heat storage material to extract heat, and an electric heater 6 is provided in the heat storage material to supply heat. 6,
7 is the piping of the heat exchanger. However, a part of the heat exchanger 4 may be immersed in the heat storage material. In this case, the heat storage material and the working fluid are non-reactive and immiscible. When the heat storage material is in a molten state, the temperature inside the tank is equal to the melting temperature of the heat storage material and the liquid phase mainly composed of the heat storage material. It consists of a gas phase that is in equilibrium with the vapor pressure of the working fluid.

す、この気相の中に熱交換器4が設けられている。A heat exchanger 4 is provided in this gas phase.

熱を外部に取り出すため−に、配管6より低温の熱媒体
を送入−すると作動液の蒸気は熱交換器を介してその熱
を放出し凝縮液化する。凝縮液化すると気相部の蒸気圧
は低下する。これは蓄熱材中を気泡8として上昇してく
る作動液蒸気により補なわれる。この時、気泡は暑熱材
を攪拌するのと同一効果を発揮しその温度分布を均一な
ものとする。
In order to extract heat to the outside, a low-temperature heat medium is introduced through the pipe 6, and the vapor of the working fluid releases its heat through the heat exchanger and is condensed and liquefied. When condensed and liquefied, the vapor pressure of the gas phase decreases. This is compensated for by the working fluid vapor rising in the form of bubbles 8 in the heat storage material. At this time, the bubbles exhibit the same effect as stirring the heating material and make the temperature distribution uniform.

また、凝縮した作動液は溶融状態における蓄熱材の比重
よシ大きいため沈降する。この時一部は蓄熱材より熱を
奪い再び気化し、その蒸気は気泡となって上昇する。他
の一部は蓄熱槽底面に沈降し作動液3溜シを形成する。
Further, the condensed working fluid has a higher specific gravity than the heat storage material in the molten state, so it settles. At this time, some of it absorbs heat from the heat storage material and vaporizes again, and the vapor rises in the form of bubbles. The other part settles to the bottom of the heat storage tank and forms three reservoirs of working fluid.

この作動液は周囲より熱を奪い再び気化し気泡10とな
って上昇し熱交換器に至る。一方配管6よシ流木した低
温熱媒体は熱交換器で熱を受は高温熱媒体となって配管
7より流出する。このように作動液の蒸発と凝縮と達す
ることができる。
This working fluid absorbs heat from its surroundings and vaporizes again, forming bubbles 10 and rising up to the heat exchanger. On the other hand, the low-temperature heat medium in the form of driftwood from the pipe 6 receives heat in the heat exchanger, becomes a high-temperature heat medium, and flows out from the pipe 7. In this way evaporation and condensation of the working fluid can be achieved.

また、ヒーターに通電し蓄熱する場合、ヒーターの周辺
には固体の蓄熱材があり、ヒーターの熱により溶解して
いく。本発明においては蓄熱材の比重よシ大きい比重の
作動液を使用しているため作動液が熱交換器近辺の熱を
奪い気化し、気泡となり溶融した蓄熱材中を移動し未溶
解の蓄熱材に熱を与え、それを溶解し作動液自体は凝縮
する。
Furthermore, when electricity is applied to the heater to store heat, there is a solid heat storage material around the heater, which is melted by the heat of the heater. In the present invention, since a working fluid with a specific gravity larger than that of the heat storage material is used, the working fluid absorbs heat near the heat exchanger and vaporizes, forming bubbles and moving through the molten heat storage material. heat is applied to dissolve it and the working fluid itself condenses.

この作動液蒸気の移動は蓄熱材が固化する時作動液の気
泡によりつくられた微細な径路を通しても行なわれるた
め、この移動はヒーターより相当離れたところまで行な
われる。上記過程において、に気泡により攪拌されるた
めヒ゛:ター近辺に異常高温が生じ蓄熱材が分解され\
ることはなくなる。
This movement of the working liquid vapor is also carried out through minute paths created by bubbles of the working liquid when the heat storage material solidifies, so this movement is carried out to a considerable distance from the heater. In the above process, as the heat storage material is agitated by air bubbles, an abnormally high temperature is generated near the heater and the heat storage material is decomposed.
There will be no more.

媒体よシ熱を取り出しやすくなシ臓交換効率を著しく高
めることができる。なお、本発明で述べている作動液と
は、融点が低く他から熱を奪い容量する液のことであシ
、フロン類、アルコール類。
It is possible to significantly increase the efficiency of visceral exchange, which makes it easier to remove heat from the medium. The working fluid mentioned in the present invention is a fluid that has a low melting point and absorbs heat from others, such as fluorocarbons and alcohols.

ケトン類等がある。There are ketones, etc.

本発明の一実施例の詳細につき説明する。The details of one embodiment of the present invention will be explained.

蓄熱材として酢酸ナトリウム3水塩( NaCH3Coo−sH20)と作動?L!:I、−c
酢酸ナトリウム3水塩と非相溶性で非反応性のフロンR
−113とを蓄熱槽に封入し、空気等の非スを排出する
。酢酸ナトリウム3水塩の融点(6B ”C)における
密度は1.34 P/cyll、フロy R−′ 11
3の同温度における密度は1.46f/ulである。
Does it work with sodium acetate trihydrate (NaCH3Coo-sH20) as a heat storage material? L! :I, -c
Freon R is incompatible and non-reactive with sodium acetate trihydrate
-113 is sealed in a heat storage tank, and non-sulfur such as air is discharged. The density of sodium acetate trihydrate at its melting point (6B ''C) is 1.34 P/cyll, Furoy R-' 11
The density of No. 3 at the same temperature is 1.46 f/ul.

、したがらて上′記で説明したごとく冷水を流すと、R
−113は熱交換器で凝縮し滴下し蓄熱材中を沈降し、
酢酸ナトリウム3水塩溶液より熱を誓い再蒸発する。こ
の蒸発−凝縮サイクルを繰り返え水塩は潜熱を放出し微
結晶化し温水器下部より堆積していく。このため、酢酸
ナトリウム3水塩が有している潜熱をすべて有効利用す
ることができる。また、蓄熱時に蓄熱材をヒーターによ
り直接加熱してもフロンR−113の伝熱作用によシ蓄
熱材が異常に加熱されることがないことが確認できた。
, Therefore, if you run cold water as explained above, R
-113 condenses in the heat exchanger, drips, and settles in the heat storage material.
Re-evaporate under heat from sodium acetate trihydrate solution. By repeating this evaporation-condensation cycle, the water salt releases latent heat, becomes microcrystalline, and accumulates from the bottom of the water heater. Therefore, all the latent heat that sodium acetate trihydrate has can be effectively utilized. Furthermore, it was confirmed that even if the heat storage material was directly heated by a heater during heat storage, the heat storage material was not abnormally heated due to the heat transfer action of Freon R-113.

以上述べたごとく本発明の温水器によれば下記°丁−:
::二74,8□、5゜2.、。7われているため、熱
交換器の伝熱面周囲に熱伝達の悪い固相部分を生じない
ため、熱交換が容易にかつ蓮速に行なわれる。
As described above, according to the water heater of the present invention, the following:
::274,8□,5゜2. ,. 7, no solid phase portion with poor heat transfer is generated around the heat transfer surface of the heat exchanger, so heat exchange can be performed easily and quickly.

2 蓄熱材中を作動液の蒸気が気泡となって通過するた
め、蓄熱材がこの気泡により攪杯され、蓄熱材の温厚分
布がはソ一様となシ、ある特定の箇所より凝固がおこら
ない。また、凝固した 4、蓄熱材はその溶融状態にあ
る時より比重が大きいため沈降するが、この場合、蓄熱
材中の気泡によシ攪拌されているので細かい結晶となり
蓄熱槽の下部に堆積していく。すなわち、潜熱を放出し
た蓄熱材は順次下部に沈降する。したがって蓄熱材全体
の潜熱を有効に利用することができる。
2 As the vapor of the working fluid passes through the heat storage material in the form of bubbles, the heat storage material is stirred by the bubbles, the temperature distribution of the heat storage material is uniform, and solidification occurs from a certain point. do not have. In addition, the solidified heat storage material has a higher specific gravity than when it is in a molten state, so it settles, but in this case, because it is stirred by the air bubbles in the heat storage material, it becomes fine crystals and is deposited at the bottom of the heat storage tank. To go. That is, the heat storage material that has released latent heat gradually sinks to the bottom. Therefore, the latent heat of the entire heat storage material can be effectively utilized.

3 蓄熱材が凝固しても作動液は凝固しない。3 Even if the heat storage material solidifies, the working fluid does not solidify.

また、作動液の気化による径路が凝固した蓄熱材中に連
続気泡の形で存在するので、この気泡を通過する作動液
の蒸気により蓄熱材の顕熱をも利用できる。
Furthermore, since the path created by the vaporization of the working fluid exists in the form of open bubbles in the solidified heat storage material, the sensible heat of the heat storage material can also be utilized by the vapor of the working fluid passing through the bubbles.

4 ヒーターを蓄熱材中に挿入しているので、ヒーター
熱すべてを有効に蓄熱材に伝熱することができる。また
、作動韮がヒーターよりすばやく熱を奪い、溶融蓄熱材
を攪拌しながら未溶解蓄熱材に熱を与えるため、ヒータ
ー近辺が異常に高温になり蓄熱材を熱分解したりするこ
とがない。
4. Since the heater is inserted into the heat storage material, all of the heat from the heater can be effectively transferred to the heat storage material. In addition, since the actuating rod removes heat more quickly than the heater and gives heat to the unmelted heat storage material while stirring the molten heat storage material, the area around the heater does not become abnormally high temperature and thermally decompose the heat storage material.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明による温水器の一実施例を示す断面図であ
る。 1・・・・・・温水器ケース、2・・・・・・蓄熱材、
3・・・・・・・・作動液、4・・・・・・熱交換器、
6・・・・・・電気ヒーター。
The drawing is a sectional view showing an embodiment of the water heater according to the present invention. 1... Water heater case, 2... Heat storage material,
3... Working fluid, 4... Heat exchanger,
6... Electric heater.

Claims (1)

【特許請求の範囲】[Claims] 潜熱゛型蓄熱材と、蓄熱材の溶融温度における比重が、
その温度における蓄熱材の比重より大きい作動液とをケ
ース内に封入し、前記蓄熱材の上層の気相部に熱を取り
出すための熱交換器を設け、かつ前記蓄熱材中に熱を供
給するためのヒーターを設けた潜熱蓄熱材を用いた温水
器。
The specific gravity of the latent heat type heat storage material and the heat storage material at their melting temperature is
A working fluid having a specific gravity greater than that of the heat storage material at that temperature is sealed in a case, and a heat exchanger is provided for extracting heat to the gas phase in the upper layer of the heat storage material, and the heat is supplied to the heat storage material. A water heater using a latent heat storage material and equipped with a heater.
JP56148556A 1981-09-18 1981-09-18 Water heater utilizing latent heat type heat accumulating material Pending JPS5849850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56148556A JPS5849850A (en) 1981-09-18 1981-09-18 Water heater utilizing latent heat type heat accumulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56148556A JPS5849850A (en) 1981-09-18 1981-09-18 Water heater utilizing latent heat type heat accumulating material

Publications (1)

Publication Number Publication Date
JPS5849850A true JPS5849850A (en) 1983-03-24

Family

ID=15455391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56148556A Pending JPS5849850A (en) 1981-09-18 1981-09-18 Water heater utilizing latent heat type heat accumulating material

Country Status (1)

Country Link
JP (1) JPS5849850A (en)

Similar Documents

Publication Publication Date Title
Velraj et al. Heat transfer enhancement in a latent heat storage system
Hasan Phase change material energy storage system employing palmitic acid
JP4714923B2 (en) Heat storage device
JPS5849850A (en) Water heater utilizing latent heat type heat accumulating material
JPH0210358B2 (en)
Kumar et al. Studies on transport phenomena during directional solidification of a noneutectic binary solution cooled from the top
CN106796072A (en) Method and apparatus for solidifying polar substances
Tayeb Organic-inorganic mixtures for solar energy storage systems
CN113154923B (en) Molten salt heat storage tank and manufacturing method thereof
JP5594752B2 (en) Heat storage device
CN106016786A (en) Water tank-free type solar phase change heat storage water heater
JPS5845494A (en) Method of heat exchange in latent heat type heat accumulating tank
JPH0450955B2 (en)
JPS58106393A (en) Heat accumulator
JPH0215598B2 (en)
JPS6018805B2 (en) Lubricating oil heat retention device
US4993486A (en) Heat transfer loop with cold trap
JP2000111282A (en) Heat storage device and heat control in heat storage device
JPS5843394A (en) Heat exchange method of latent heat type heat accumulator
Saitoh et al. Experimental investigation on combined close-contact and natural convection melting in horizontal cylindrical and spherical capsules
JPS59232165A (en) Thermal energy storage element
JPS628716B2 (en)
JPS6213600B2 (en)
JPS58168893A (en) Heat accumulator
JPH0151517B2 (en)