JPS58168893A - Heat accumulator - Google Patents

Heat accumulator

Info

Publication number
JPS58168893A
JPS58168893A JP57184410A JP18441082A JPS58168893A JP S58168893 A JPS58168893 A JP S58168893A JP 57184410 A JP57184410 A JP 57184410A JP 18441082 A JP18441082 A JP 18441082A JP S58168893 A JPS58168893 A JP S58168893A
Authority
JP
Japan
Prior art keywords
heat storage
liquid
heat
storage device
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57184410A
Other languages
Japanese (ja)
Inventor
ジエラルド・エヴエル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soletanche SA
Original Assignee
Soletanche SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soletanche SA filed Critical Soletanche SA
Publication of JPS58168893A publication Critical patent/JPS58168893A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/025Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being in direct contact with a heat-exchange medium or with another heat storage material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 膚る熱ポンプ用低熱源に関する。[Detailed description of the invention] Regarding low heat sources for heat pumps.

成る物質が液体の状態から一定の温度で固体の状態に移
行する際に放出される潜熱を利用した、種々の蓄熱装置
が知られている。
Various heat storage devices are known that make use of the latent heat released when a substance is transferred from a liquid state to a solid state at a certain temperature.

一例として、0℃においての水の融解潜熱を利用するこ
とができる。
As an example, the latent heat of fusion of water at 0° C. can be used.

しかしこうした蓄熱装置には、固体の状態の蓄熱体が熱
交換管の回りに付着し、熱交換効率を相当に低下させる
という欠点がある。特に空冷交換器に氷が形成すること
による着霜の問題が起こることが知られている。
However, such heat storage devices have the disadvantage that the solid state heat storage body adheres around the heat exchange tubes, which considerably reduces the heat exchange efficiency. In particular, frosting problems are known to occur due to the formation of ice on air-cooled exchangers.

本発明は、この不つごうを解消し、熱ポンプの低熱源と
して特に使用可能とした蓄熱装置を提供することを目的
としている。
An object of the present invention is to eliminate this disadvantage and provide a heat storage device that can be used particularly as a low heat source for a heat pump.

この目的のために、本発明により、搬熱液の下層と、固
相の密度が液相の密度よりも低い蓄熱体の上層とを少く
とも収容した槽を有し、該下層と上層とは、上記蓄熱体
がそれに付着して凝固することができない分離面により
互に分離し、そのほかに、上記搬熱液を上記槽の下部に
循環させる循環手段を有する蓄熱装置が提供される。
For this purpose, the invention provides a tank containing at least a lower layer of a heat transfer liquid and an upper layer of a heat storage body in which the density of the solid phase is lower than that of the liquid phase, the lower layer and the upper layer being , there is provided a heat storage device which is separated from each other by a separation surface on which the heat storage bodies cannot adhere and solidify, and further has circulation means for circulating the heat transfer liquid to the lower part of the tank.

従って、搬熱液と蓄熱体とは同一の槽中に、重ね合せた
一つの層として収容される。
Therefore, the heat transfer liquid and the heat storage body are accommodated in the same tank as one overlapping layer.

蓄熱体から搬熱体に熱が移行する時、蓄熱体は液状から
同体状になるが、蓄熱体の固相の密度が液相の密度より
も低いため、固相は、搬熱液と蓄熱体の液相との間の熱
交換域に固定できずに、檜の上面の方に浮上する。
When heat transfers from the heat storage body to the heat transfer body, the heat storage body changes from a liquid state to a solid state, but since the density of the solid phase of the heat storage body is lower than the density of the liquid phase, the solid phase is mixed with the heat transfer liquid and heat storage body. It cannot be fixed in the heat exchange zone between the liquid phase of the body and floats toward the upper surface of the cypress.

搬熱液の密度は蓄熱体の液相の密度よりも高くすること
が望ましい。
It is desirable that the density of the heat transfer liquid be higher than the density of the liquid phase of the heat storage body.

従って、同相がその上に付着し得る固体層を利用するこ
となく、蓄熱体の液相から搬熱液を分離できる。
Therefore, the heat transfer liquid can be separated from the liquid phase of the heat storage body without the use of a solid layer on which the same phase can adhere.

本発明の好ましい実施態様によれば、上記分離面は、搬
熱液の密度と蓄熱体の密度との中間の密丁 度をもち搬熱液とも蓄熱体とも混和しない液の層により
形成される。
According to a preferred embodiment of the invention, the separating surface is formed by a layer of a liquid having a density exactly intermediate between the density of the heat transfer liquid and the density of the heat storage body and which is immiscible with neither the heat transfer liquid nor the heat storage body.

本発明の別の好ましい実施態様によれば、蓄熱体の液相
と搬熱液とは互に混和せず、搬熱液の上面は上層の蓄熱
体と直接に接触する。
According to another preferred embodiment of the invention, the liquid phase of the heat storage body and the heat transfer liquid are immiscible with each other, and the upper surface of the heat transfer liquid is in direct contact with the upper layer of the heat storage body.

上述したλつの実施態様によれば、蓄熱体は固化に際し
て接触面に付着できなくなる。
According to the embodiments described above, the heat storage body cannot adhere to the contact surface upon solidification.

搬熱液は一例として塩水とし、上層の蓄熱体は水とする
ことができる。
For example, the heat transfer liquid may be salt water, and the upper heat storage body may be water.

この場合、搬送液と液相の蓄熱体とは混和するので、フ
タル酸ジブチルのような分離液を用いることが必要にな
る。
In this case, since the carrier liquid and the liquid phase heat storage body are miscible, it is necessary to use a separation liquid such as dibutyl phthalate.

搬熱液と液相の蓄熱体とが混和性のない例えばそれぞれ
フルオロカーボンと水である場合には、分離液は不可欠
ではない。
If the heat transfer liquid and the liquid phase heat storage body are immiscible, for example a fluorocarbon and water, respectively, a separating liquid is not essential.

槽の下部に搬熱液を循環させるための上記循環手段は、
少くとも7つの供給管、少くとも7つの返送管及び該返
送管に配したポンプを備えていてもよい0 本発明は、上述した蓄熱装置から成ることを特徴とする
熱ポンプ用低熱源にも適用される。
The above circulation means for circulating the heat transfer liquid in the lower part of the tank is
It may include at least seven supply pipes, at least seven return pipes, and a pump disposed on the return pipes. The present invention also relates to a low heat source for a heat pump characterized by comprising the above-mentioned heat storage device. Applicable.

次に添付図面に示した実施例を参照して更に説明する。The present invention will now be further described with reference to embodiments shown in the accompanying drawings.

図示した既知の形式の熱ポンプ1中には流体例えばフル
オロカーがンが、圧縮機2と膨張弁3との間の閉回路を
矢印F1の方向に流れる。この閉回路は、2個の熱交換
器即ち圧縮機2と膨張弁3との間の凝縮器4と、膨張弁
3と圧縮機2との間の蒸発器5とを備えている。
In the illustrated heat pump 1 of the known type, a fluid, for example fluorocarbon, flows in a closed circuit between a compressor 2 and an expansion valve 3 in the direction of arrow F1. This closed circuit comprises two heat exchangers: a condenser 4 between the compressor 2 and the expansion valve 3, and an evaporator 5 between the expansion valve 3 and the compressor 2.

加熱流体は回路6中において凝縮器4を通過し、搬熱液
は低熱源に閉回路状に接続された回w47中におし・て
蒸発器5を通禍する。
The heating fluid passes through the condenser 4 in the circuit 6, and the heat transfer liquid passes through the evaporator 5 in the circuit w47 connected in a closed circuit to a low heat source.

この構成はよく知られているため、ここでは説明しない
This configuration is well known and will not be described here.

本発明による低熱源は、図に符号8により示されている
A low heat source according to the invention is indicated by 8 in the figure.

低熱源8は、地中に形成した檜を有し、この槽は一例と
して、断熱材のない円形壁9を有し、必要に応じて、硬
質グラウト裂の底体10により完全化されている。
The low heat source 8 has a cypress formed in the ground, which tank has, by way of example, a circular wall 9 without insulation, optionally completed by a bottom body 10 of hard grout cracks. .

低熱源8の槽の内部には、搬熱液の下層11があり、搬
熱液はこの例では、凝縮温度がー/θ℃程度で密度が/
./程度の塩水としてもよい。下層11の上部には、凝
縮温度がほぼθ℃で密度が約/の水の上層12がある。
Inside the tank of the low heat source 8, there is a lower layer 11 of heat transfer liquid, and in this example, the heat transfer liquid has a condensation temperature of about -/θ℃ and a density of /
.. / of salt water may be used. Above the lower layer 11 is an upper layer 12 of water with a condensation temperature of approximately θ° C. and a density of approximately /.

下層11と上層12との液は混和性であるため、凝縮温
度が下層11の塩水に比べて低く、密度が下層11と上
層11の液の中間の値(例えばこの例では/、O3とす
ることができる)を有する、水とも塩水とも混和しない
別の液の分離層13によって、層11.12を互に分離
する。
Since the liquids in the lower layer 11 and the upper layer 12 are miscible, the condensation temperature is lower than that of the salt water in the lower layer 11, and the density is an intermediate value between the liquids in the lower layer 11 and the upper layer 11 (for example, /, O3 in this example). The layers 11,12 are separated from each other by a separating layer 13 of another liquid, immiscible with water and with salt water, having an aqueous solution (which can be used).

−例として、層13の液に、フタル酸ジゾチルを用いて
もよい。
- As an example, dizotyl phthalate may be used in the liquid of layer 13.

浸漬管14は、蒸発器5の出口側の回路7を低熱源8の
槽の底部に連結しており、別の浸漬管15は槽の底部を
回路7の蒸発器5の入口に連結している。
A dip tube 14 connects the circuit 7 on the outlet side of the evaporator 5 to the bottom of the tank of the low heat source 8, and another dip tube 15 connects the bottom of the tank to the inlet of the evaporator 5 of the circuit 7. There is.

微熱液を矢印12の方向に管14.15及び槽の底部に
循環させるために、浸漬管15中にポンプ16が配設さ
れている。
A pump 16 is arranged in the dip tube 15 in order to circulate the slightly hot liquid in the direction of the arrow 12 to the tube 14.15 and to the bottom of the tank.

浸漬管14により給送された微熱液は、槽底部の下層1
2を通過する際に、下層12の水から熱を奪い、その熱
を熱ポンプの蒸発器5に与える。
The slightly hot liquid fed by the dipping pipe 14 is placed in the lower layer 1 at the bottom of the tank.
2, it removes heat from the water in the lower layer 12 and supplies the heat to the evaporator 5 of the heat pump.

次に冬期の局地暖房に使用する場合について、例えば/
年間に亘る蓄熱装置の作動サイクルを説明する。
Next, regarding the case where it is used for local heating in winter, for example, /
The operating cycle of the heat storage device over a year will be explained.

この例では冬期の作動サイクル開始時に、上層12の水
の温度が約θ℃であると、蓄熱装置の作動を開始した時
、分離層13に接触して氷17が形成し始めるが、氷の
密度は水の密度より低いため、氷17は表面に浮いて、
氷層18を形成する。
In this example, when the temperature of the water in the upper layer 12 is approximately θ°C at the start of the winter operating cycle, when the heat storage device starts operating, it contacts the separation layer 13 and begins to form ice 17; Since its density is lower than that of water, ice 17 floats on the surface,
An ice layer 18 is formed.

冬期を通じてこの過程が続けられ、槽はやがてほぼ完全
に氷で満たされ、分離層13を通る微熱液の近傍では、
水の温度はいつもθ℃に近くなっている。そのため蓄熱
液(この場合は上層12の水)と微熱液(下層11の塩
水)との間の完全な熱交換が確保される。
This process continues throughout the winter, until the tank is almost completely filled with ice, and in the vicinity of the slightly hot liquid passing through the separation layer 13,
The temperature of water is always close to θ℃. Therefore, complete heat exchange between the heat storage liquid (in this case, the water in the upper layer 12) and the slightly hot liquid (the salt water in the lower layer 11) is ensured.

そのため熱ポンプ1の効率が高くなる。Therefore, the efficiency of the heat pump 1 becomes high.

冬期の終りに槽がほぼ完全に氷結した場合、夏季の間に
、太陽光線、外気の温度の上昇、又は蓄熱装置1を取付
けた場所の周囲温度の上昇により■ て融氷させる。、この融氷も、表面の温度がθ℃程度で
あり、外気からの熱を奪い易いため、良好な条件の下に
行なわれる。
If the tank is almost completely frozen at the end of winter, the ice is melted during summer by sunlight, an increase in the temperature of the outside air, or an increase in the ambient temperature at the location where the heat storage device 1 is installed. This ice melting is also carried out under favorable conditions because the surface temperature is around θ°C and heat is easily absorbed from the outside air.

低熱源8の槽の深さは、熱ポンプの成る利用サイクルの
間、即ちこの例では冬期に、対応の氷柱が氷結時に所要
の熱を放出するように定めるべきである。
The depth of the bath of the low heat source 8 should be such that during the utilization cycle of the heat pump, ie in the winter season in this example, the corresponding icicle releases the required heat when it freezes.

槽中の氷は次の夏季に融解するが、約θ℃に保たれてい
る。
The ice in the tank will melt during the next summer, but it is maintained at approximately θ℃.

本発明は上述した特定の実施例に限定されず、本発明の
範囲内において種々の異なる構成とすることができる。
The present invention is not limited to the specific embodiments described above, but can be made in various different configurations within the scope of the invention.

例えば槽の融氷を太陽光線によらずに、槽の表面とその
上方に張ったキャップとの間に空気を強制循環させて行
なってもよく、この場合には、熱ポンプにより冬期に暖
房される空間を夏季には冷房することができる。
For example, the ice in the tank may be melted by forced circulation of air between the surface of the tank and a cap placed above it, instead of using sunlight. In this case, a heat pump is used to heat the tank in winter. The space can be cooled during the summer.

図示したように槽の底部の代りに、槽の表面の少し下方
に、浸漬管14.15の間の微熱液の分路な配してもよ
い。
Instead of the bottom of the tank as shown, a shunt for the slightly hot liquid between the dip tubes 14, 15 may be arranged slightly below the surface of the tank.

このように、熱ポンプ1の使用期間の始まりに、例えば
スケートリンクを形成するために槽の表面を氷結させ始
め、次に槽の底部に上述した利点を活用するために微熱
液を循環させることもできる。
Thus, at the beginning of the period of use of the heat pump 1, one begins to freeze the surface of the tank, for example to form a skating rink, and then circulates a slightly hot liquid in the bottom of the tank in order to take advantage of the advantages mentioned above. You can also do it.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明による蓄熱装置を低熱源として利用する熱ポ
ン′ゾを示す略配列図である。 符号の説明 11・・・・・・下層、  12・・・・・・上層、 
 14.15・・・・・・浸漬管(循環手段)、 16
・・・・・・ポンプ(循環手段)。
The figure is a schematic arrangement diagram showing a heat pump utilizing the heat storage device according to the present invention as a low heat source. Explanation of symbols 11...Lower layer, 12...Upper layer,
14.15...Immersion tube (circulation means), 16
...Pump (circulation means).

Claims (1)

【特許請求の範囲】 /)微熱液の下層11と、固相の密度が液相の密度より
も低い蓄熱体の上層12とを少くとも収容した槽を有し
、下層11と上層12とは、上記蓄熱体がそれに付着し
て凝固することができない分離面により互に分離し、そ
のほかに1上配搬熱液を上記槽の下部に循環手段14.
15.16を有する蓄熱装置。 、2)微熱液の密度を蓄熱体の液相の密度よりも大きく
することを特徴とする特許請求の範囲第1項記載の蓄熱
装置。 3)微熱液の密度と蓄熱体の密度との中間の密度をもち
微熱液とも蓄熱体とも混和しない液の層13により上記
分離面を形成したことを特徴とする特許請求の範囲第2
項記載の蓄熱装置。 グ)蓄熱体の液相と微熱液とが混和せず、微熱液の上面
は上層12の蓄熱体に直接に接触することを特徴とする
特許請求の範囲第一項記載の蓄熱装置。 S)微熱液を塩水又はフルオロカーデンとしたことを特
徴とする特許請求の範囲第1〜q項のいずれか/項記蒙
の蓄熱装置。 乙)上層12の蓄熱体を水としたことを特徴とする特許
請求の範囲第1〜s項のいずれが7項記載の蓄熱装置。 7)分離面の層13の液をフタル酸ノブチルとしたこと
を特徴とする特許請求の範囲第3項記載の蓄熱装置。 ざ)檜の下部に微熱液を循環させる上記循環手段が、少
くとも7つの供給管14、少くとも7つの返送管15及
び該返送管15に配したポンプ16を備えていることを
特徴とする特許請求の範囲第1〜7項のいずれか7項記
載の蓄熱装置。 9)%許請求の範囲第1〜g項のいずれか7項記載の蓄
熱装置から成ることを特徴とする熱ポンプ用の低熱源。
[Claims] /) It has a tank containing at least a lower layer 11 of a slightly hot liquid and an upper layer 12 of a heat storage material in which the density of the solid phase is lower than that of the liquid phase, and the lower layer 11 and the upper layer 12 are different from each other. , the heat storage bodies are separated from each other by separation surfaces that cannot solidify upon adhesion thereto; in addition, means 14 for circulating the hot liquid distributed above the tank;
15.16. 2) The heat storage device according to claim 1, characterized in that the density of the slightly heated liquid is greater than the density of the liquid phase of the heat storage body. 3) The separation surface is formed by a layer 13 of a liquid having a density intermediate between the density of the slightly heated liquid and the density of the heat storage body and which is immiscible with neither the slightly heated liquid nor the heat storage body.
Thermal storage device described in section. g) The heat storage device according to claim 1, wherein the liquid phase of the heat storage body and the slightly hot liquid do not mix, and the upper surface of the slightly hot liquid directly contacts the heat storage body of the upper layer 12. S) The heat storage device according to any one of claims 1 to q, characterized in that the slightly hot liquid is salt water or fluorocarbon. B) The heat storage device according to any one of claims 1 to s, characterized in that the heat storage body of the upper layer 12 is water. 7) The heat storage device according to claim 3, wherein the liquid of the separation surface layer 13 is butyl phthalate. Z) The circulation means for circulating the slightly hot liquid in the lower part of the cypress is characterized by comprising at least seven supply pipes 14, at least seven return pipes 15, and a pump 16 disposed in the return pipes 15. A heat storage device according to any one of claims 1 to 7. 9) A low heat source for a heat pump, comprising the heat storage device according to any one of claims 1 to g.
JP57184410A 1982-03-25 1982-10-19 Heat accumulator Pending JPS58168893A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8205093A FR2524126A1 (en) 1982-03-25 1982-03-25 Heat storage reservoir for heat pump - where latent heat of solidification of water provides heat for evaporator in heat pump circuit
FR8205093 1982-03-25

Publications (1)

Publication Number Publication Date
JPS58168893A true JPS58168893A (en) 1983-10-05

Family

ID=9272387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57184410A Pending JPS58168893A (en) 1982-03-25 1982-10-19 Heat accumulator

Country Status (3)

Country Link
JP (1) JPS58168893A (en)
FR (1) FR2524126A1 (en)
IT (1) IT1161034B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438578A (en) * 1987-08-05 1989-02-08 Toyohiko Okabe Ice machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2512852B2 (en) * 1992-07-16 1996-07-03 鹿島建設株式会社 Refrigerant for ice making
CN106765449A (en) * 2016-12-31 2017-05-31 青岛科创蓝新能源股份有限公司 A kind of latent heat of solidification harvester and system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2996894A (en) * 1956-12-13 1961-08-22 Gen Electric Method and apparatus for the recovery of latent heat of fusion
US3937209A (en) * 1974-07-12 1976-02-10 Bell Telephone Laboratories, Incorporated Heat storage device
FR2360332A1 (en) * 1976-08-03 1978-03-03 Ici Ltd Sepg. sludge from clarified liq. in waste water purificn. - using rotating suction blade to return sludge to aerator
SE408955B (en) * 1977-11-14 1979-07-16 Teknoterm Systems Ab PROCEDURE AND DEVICE FOR STORING HEAT ENERGY
DE2826405C2 (en) * 1978-06-16 1984-09-20 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5300 Bonn Method for loading or unloading a heat storage system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438578A (en) * 1987-08-05 1989-02-08 Toyohiko Okabe Ice machine

Also Published As

Publication number Publication date
FR2524126A1 (en) 1983-09-30
IT1161034B (en) 1987-03-11
IT8320275A0 (en) 1983-03-24

Similar Documents

Publication Publication Date Title
US4355522A (en) Passive ice freezing-releasing heat pipe
US4461153A (en) Method and apparatus for inoculating crystallization seeds into a liquid latent heat storage substance
US4466478A (en) Method and apparatus in storing heat
JPS58168893A (en) Heat accumulator
US1945975A (en) Refrigeration
JP2000205775A (en) Manufacture of clathrate hydrate slurry
US3079087A (en) Method and apparatus for storing and recovering heat
CN106016786B (en) Water tank free solar phase-change heat accumulation water heater
JPS62294897A (en) Heat accumulation type heat exchanger
JPS61173085A (en) Latent heat storage device
JPS5849894A (en) Heat accumulating device utilizing latent heat
JPH0318869Y2 (en)
JPH0457934B2 (en)
JPH04174229A (en) Ice heat storage device
JP3723051B2 (en) Manufacturing method of heat storage material
JPS58221388A (en) Latent heat type heat accumulating device
JPS6023645Y2 (en) heat storage device
JP2883168B2 (en) Heat storage device
JPS58106393A (en) Heat accumulator
JPS5920943B2 (en) Air conditioning equipment
JPS58221386A (en) Latent heat accumulating device
JPS6230432Y2 (en)
JPS6144496Y2 (en)
JPS58102097A (en) Heat accumulator
JPH01137134A (en) Heat accumulation device