JPS6023645Y2 - heat storage device - Google Patents

heat storage device

Info

Publication number
JPS6023645Y2
JPS6023645Y2 JP1981008005U JP800581U JPS6023645Y2 JP S6023645 Y2 JPS6023645 Y2 JP S6023645Y2 JP 1981008005 U JP1981008005 U JP 1981008005U JP 800581 U JP800581 U JP 800581U JP S6023645 Y2 JPS6023645 Y2 JP S6023645Y2
Authority
JP
Japan
Prior art keywords
heat
heat storage
medium flow
heat medium
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981008005U
Other languages
Japanese (ja)
Other versions
JPS57121859U (en
Inventor
直道 村井
紘 笠置
洋海 有村
信夫 大塚
英雄 五十嵐
道夫 大坪
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP1981008005U priority Critical patent/JPS6023645Y2/en
Publication of JPS57121859U publication Critical patent/JPS57121859U/ja
Application granted granted Critical
Publication of JPS6023645Y2 publication Critical patent/JPS6023645Y2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

【考案の詳細な説明】 この考案は例えば太陽熱利用装置に用いられる蓄熱装置
に関するものである。
[Detailed Description of the Invention] This invention relates to a heat storage device used, for example, in a solar heat utilization device.

第1図は太陽熱利用暖房装置の概要を示す配管図で、図
においては1は太陽熱コレクタ、2は熱媒流体である水
の貯水槽、3は給熱側ポンプで、日照時には水を矢印の
方向に循環させ、槽2の給熱側熱媒路4a、4bを介し
て、コレクタ1で集熱された熱量を槽2内の水に給熱す
る。
Figure 1 is a piping diagram showing an overview of a solar heating system. In the figure, 1 is a solar collector, 2 is a water storage tank for heat medium fluid, and 3 is a heat supply pump. The amount of heat collected by the collector 1 is supplied to the water in the tank 2 via the heat supply side heat medium paths 4a and 4b of the tank 2.

5は二重管よりなる蒸発器で、外管は槽2内の温水(5
〜25℃程度が好ましい。
5 is an evaporator consisting of a double tube, and the outer tube is used to store hot water in tank 2 (5
The temperature is preferably about 25°C.

)が流通し、内管はフロン等の冷媒が流通する。) flows through the inner pipe, and a refrigerant such as fluorocarbon flows through the inner pipe.

6は熱利用側ポンプで、槽2内では給熱側の水と混合す
る水を矢印の方向に循環し、熱利用側熱媒路7a、7b
を介して、コレクタ1で集熱された熱を上記冷媒に与え
る。
Reference numeral 6 denotes a heat utilization side pump, which circulates water to be mixed with heat supply side water in the tank 2 in the direction of the arrow, and connects heat utilization side heat medium paths 7a and 7b.
The heat collected by the collector 1 is applied to the refrigerant through the collector 1.

8は冷媒圧縮機、9は凝縮器、10は減圧機構で、蒸発
器5とともに冷媒回路を形成している。
8 is a refrigerant compressor, 9 is a condenser, and 10 is a pressure reduction mechanism, which together with the evaporator 5 forms a refrigerant circuit.

11は凝縮機9に対設した送風機である。11 is a blower installed opposite to the condenser 9.

第2図は槽2内に配置される蓄熱体12を示す断面図及
び平面図で、13は例えば塩化カルシウムを主成分とす
る潜熱利用蓄熱材であり、所定温度例えば20℃で溶融
し、その顕熱及び潜熱により蓄熱するものである。
FIG. 2 is a cross-sectional view and a plan view showing a heat storage body 12 arranged in the tank 2. Reference numeral 13 is a latent heat storage material containing, for example, calcium chloride as a main component, which melts at a predetermined temperature, for example, 20°C. It stores heat through sensible heat and latent heat.

14は蓄熱材13内を内蔵する伝熱性容器で、円筒状の
筒部14a、筒部14aの両端を密封した端板14b、
14b及び14aに放射状に設けられた多数のフィン1
4cにより形成されている。
14 is a heat conductive container containing the inside of the heat storage material 13, which includes a cylindrical tube portion 14a, an end plate 14b with both ends of the tube portion 14a sealed,
A large number of fins 1 provided radially on 14b and 14a
4c.

15は蓄熱材13と容器14とよりなる蓄熱体で、槽2
内に蓄熱体15が多数配置されている。
15 is a heat storage body consisting of a heat storage material 13 and a container 14;
A large number of heat storage bodies 15 are arranged inside.

この上うな構成のものにおいては、コレクタ1で集熱さ
れた熱量は蒸発器5内で冷媒の蒸発熱として冷媒に与え
られ、圧縮機8により圧縮されることにより凝縮機9内
では高温液体となって空気と熱交換し、その緩められた
空気は送風機11により所定の位置に送られて暖房とし
て利用される。
In this configuration, the amount of heat collected by the collector 1 is given to the refrigerant as the heat of evaporation of the refrigerant in the evaporator 5, and is compressed by the compressor 8, so that it becomes a high-temperature liquid in the condenser 9. This exchanges heat with the air, and the loosened air is sent to a predetermined position by the blower 11 and used for heating.

一方蒸発器5内で冷媒に熱を与えた水は低温となり、熱
媒路7bを通って槽2内に戻る。
On the other hand, the water that has given heat to the refrigerant in the evaporator 5 has a low temperature and returns to the tank 2 through the heat medium path 7b.

日照時間が長いときには一般に上記のような動作を繰返
しながらも、槽2内の水温は次第に上昇し、蓄熱材13
が溶融状態となって槽2内には水の顕熱とともに大量の
熱量が蓄積される。
When the sunshine hours are long, the water temperature in the tank 2 gradually rises even though the above operation is repeated, and the heat storage material 13
is in a molten state, and a large amount of heat is accumulated in the tank 2 together with the sensible heat of the water.

しかし早期曇天で日照がなく、特に低温の日などにおい
ては急速に暖房したいにもかかわらず、上記構成のもの
では比較的短時間例えば3吋程度で急激に暖房能力が低
下するという欠点があった。
However, even though rapid heating is desired on early cloudy days with no sunlight and especially on low temperature days, the above configuration had the disadvantage that the heating capacity suddenly decreased after a relatively short period of time, for example, around 3 inches. .

この現象を詳細に調査した結果、蓄熱体15はまだ多量
の熱量を保有腰蓄熱材13の中心部はまだ溶融状態にあ
るにもかかわらず、槽2内の水温はO’C近くなって暖
房能力を急速に低下させることが判った。
As a result of a detailed investigation of this phenomenon, it was found that although the heat storage material 15 still has a large amount of heat and the center of the heat storage material 13 is still in a molten state, the water temperature in the tank 2 is close to O'C, resulting in heating. It was found that the performance deteriorated rapidly.

また槽2内の水温が5℃以下になると上記のような装置
においては局部的な水の凍結が起こる懸念があり、それ
以上運転を継続することは危険である。
Furthermore, if the water temperature in the tank 2 falls below 5° C., there is a risk that local water freezing will occur in the above-mentioned device, and it is dangerous to continue operation beyond that point.

上記現象は熱媒路7bから戻ってきた冷水が伝熱性容器
14を介して蓄熱材13の顕熱を奪い、更に蓄熱材13
は上記冷水に熱を与えて容器14内面に凝固するために
起こるものである。
The above phenomenon is caused by the cold water returning from the heat medium path 7b taking sensible heat from the heat storage material 13 through the heat conductive container 14, and further removing the sensible heat from the heat storage material 13.
This occurs because the cold water is heated and solidified on the inner surface of the container 14.

この凝固層は一般に熱伝導性が悪く、またその凝固潜熱
の一部は中心部にある溶融状態の蓄熱材13にも与えら
れるので、中心部から容器14に向って流れる熱量が減
少したこととなり、中心部は高温の溶融状態にあるにも
かかわらず、容器14を介して水に与える熱量が不足し
、凝縮器9から得られる熱量が急激に低下するものであ
る。
This solidified layer generally has poor thermal conductivity, and some of its latent heat of solidification is also given to the molten heat storage material 13 in the center, so the amount of heat flowing from the center toward the container 14 is reduced. Even though the center is in a high-temperature molten state, the amount of heat given to the water through the container 14 is insufficient, and the amount of heat obtained from the condenser 9 rapidly decreases.

また曇天で日照時間が短かい場合など、急速に槽2に蓄
熱したいときに、上記構成のものでは蓄熱材13の中心
部まで溶融状態にすることが困難であるという欠点があ
った。
Furthermore, when it is desired to rapidly store heat in the tank 2, such as when the weather is cloudy and the sunshine hours are short, the above configuration has the disadvantage that it is difficult to melt the heat storage material 13 to the center.

この考案は上記事情に鑑み、上記蓄熱体の放熱または蓄
熱を有効におこなう蓄熱装置を得ることを目的とするも
のである。
In view of the above circumstances, the object of this invention is to obtain a heat storage device that effectively radiates or stores heat from the heat storage body.

第3図及び第4図はこの考案の一実施例を示す貯水槽2
の断面図及び装置の配管図で、前回と同一符号は同一ま
たは相当部分を示す。
Figures 3 and 4 show a water tank 2 showing an embodiment of this invention.
In the sectional view and piping diagram of the equipment, the same symbols as in the previous section indicate the same or equivalent parts.

図において16は直方形の槽2内に配置された蓄熱体で
、熱伝導度及び比熱の大きなアル、ミニラム製の、箱体
17a及びこの箱体17a外面に設けられた多数のフィ
ン17bとよりなる伝熱性容器17と、この容器17に
水密的に内蔵された従来品同様の潜熱利用蓄熱材13と
、蓄熱材13中に埋設された、伝熱材であるアルミニウ
ム製の蛇管状内部通路18と、容器17の底部に開口し
た通路18の両端開口部18a、18bへの水流を容易
にする支持脚16aとにより形成されている。
In the figure, reference numeral 16 denotes a heat storage body placed in the rectangular tank 2, which is made of a box 17a and a large number of fins 17b provided on the outer surface of the box 17a. A heat conductive container 17, a heat storage material 13 using latent heat similar to a conventional product built in this container 17 in a watertight manner, and a serpentine tubular inner passage 18 made of aluminum, which is a heat conductive material, embedded in the heat storage material 13. and support legs 16a that facilitate water flow to both end openings 18a, 18b of the passage 18 opened at the bottom of the container 17.

2aは槽2の断熱壁、19a、20aは上面の断熱壁2
aの左右端近傍から上方に延びる一対の断熱配管、19
b、20bは両側面の断熱壁2aの下部から夫々左右に
延びる一対の断熱配管で、配管19aは熱利用側熱媒路
7aに接続された三方弁21に、また配管20aは給熱
側配管4aに接続された三方弁22に夫々接続されてお
り、配管19a、19b及び20a、20bは槽2を介
して2箇の第1の熱媒流路19.20を形成している。
2a is the heat insulating wall of the tank 2, 19a and 20a are the heat insulating walls 2 on the top surface
A pair of insulated pipes extending upward from near the left and right ends of a, 19
b, 20b are a pair of insulating pipes extending left and right from the lower part of the heat insulating walls 2a on both sides, the pipe 19a is connected to the three-way valve 21 connected to the heat medium path 7a on the heat utilization side, and the pipe 20a is connected to the heat supply side pipe. The pipes 19a, 19b and 20a, 20b form two first heat medium flow paths 19, 20 via the tank 2.

23は三方弁21.22を連結する配管、24aは通路
18の中央部に連結され、槽2の上方に延びる断熱配管
で、槽2内に複数筒配置した蓄熱体16の各配管24a
が合流するように接続した配管25を介して配管23に
接続されている。
23 is a pipe connecting the three-way valves 21 and 22; 24a is an insulated pipe connected to the center of the passage 18 and extending above the tank 2;
It is connected to the piping 23 via a piping 25 which is connected so that the two converge.

この配管25と配管19b及び20bとの間には通路1
8を介した2箇の第2の熱媒流路24,24が形成され
る。
There is a passage 1 between this pipe 25 and pipes 19b and 20b.
Two second heat medium flow paths 24, 24 are formed via 8.

なお26,27.28は配管19a、20a、24a内
部に夫々配置された温度検知素子である。
Note that 26, 27, and 28 are temperature sensing elements arranged inside the pipes 19a, 20a, and 24a, respectively.

このような構成のものにおいて、先ず早朝日照のないと
きに暖房する場合につき説明する。
In the case of such a configuration, first, a case where heating is performed in the early morning when there is no sunlight will be explained.

いま槽2内温度は、前日の太陽熱を蓄積して23Cにな
っているものとする。
It is assumed that the temperature inside tank 2 is now 23C due to the accumulation of solar heat from the previous day.

従って蓄熱材13は溶融状態にある。Therefore, the heat storage material 13 is in a molten state.

装置の起動スイッチをオンとする素子26が槽2内の水
温が23℃であることを検知し、三方弁21を配管?a
、19aを連通ずるようにセットしてからポンプ6及び
圧縮機8を起動させる。
The element 26 that turns on the start switch of the device detects that the water temperature in the tank 2 is 23°C, and the three-way valve 21 is connected to the piping. a
, 19a are set so that they are in communication with each other, and then the pump 6 and compressor 8 are started.

この場合三方弁22は全閉の状態にあり、ポンプ3は停
止している。
In this case, the three-way valve 22 is in a fully closed state, and the pump 3 is stopped.

従って配管19b1蓄熱材16の外部すなわち蓄熱材1
6の外面と断熱壁2a内面との間の空隙部、及び配管1
9aよりなる一方の第1の熱媒流路19を通って、蒸発
器5には23℃の温水が供給される。
Therefore, the outside of the pipe 19b1 heat storage material 16, that is, the heat storage material 1
The gap between the outer surface of 6 and the inner surface of the heat insulating wall 2a, and the piping 1
Hot water at 23° C. is supplied to the evaporator 5 through one of the first heat medium flow paths 19 made up of the heat medium flow path 9a.

この温水は蒸発器5中で冷媒を蒸発させて熱量を与え、
その熱量は凝縮器9から送風機11により取出されて暖
房を開始する。
This hot water evaporates the refrigerant in the evaporator 5 to give heat,
The amount of heat is extracted from the condenser 9 by the blower 11 to start heating.

一方熱量を失った水は、配管19bから槽2に戻る。On the other hand, the water that has lost its calorific value returns to the tank 2 through the pipe 19b.

上記のようにして槽2内の水は次第に温度が低下しなが
ら、蓄熱体16の顕熱を引出して暖房に利用される。
As described above, the temperature of the water in the tank 2 gradually decreases, and the sensible heat of the heat storage body 16 is extracted and used for heating.

箱体17aが20℃に達すると、蓄熱体13は凝固熱を
放出しながら箱体17a内面に凝固し始め、この凝固層
が成る程度以上厚くなると従来装置と同様に槽2内の水
温は急速に低下し始める。
When the temperature of the box body 17a reaches 20°C, the heat storage body 13 begins to solidify on the inner surface of the box body 17a while releasing solidification heat, and when this solidified layer becomes thick enough to form, the water temperature in the tank 2 rapidly decreases as in the conventional device. begins to decline.

この水温低下を素子26が検知して三方弁21が熱媒路
7aと配管23とを連通ずるように動作させる。
The element 26 detects this drop in water temperature and operates the three-way valve 21 to connect the heat medium path 7a and the pipe 23.

この場合素子26と、この素子26に接続された電気回
路(図示せず)及び三方弁21により、第1及び第2の
熱媒流路19,24の切換手段が形成されている。
In this case, the element 26, an electric circuit (not shown) connected to the element 26, and the three-way valve 21 form switching means for the first and second heat medium flow paths 19 and 24.

上記のように第1の熱媒流路19を介して蒸発器5に水
を供給する過程においては、第2の熱媒流路24には、
第1の熱媒流路19との共有部分を除いて水流は勿論、
蓄熱材13と水との熱の受授もほとんどないので、通路
18に接した蓄熱材13は溶融状態にある。
In the process of supplying water to the evaporator 5 through the first heat medium flow path 19 as described above, in the second heat medium flow path 24,
Of course, the water flow except for the part shared with the first heat medium flow path 19,
Since there is almost no exchange of heat between the heat storage material 13 and the water, the heat storage material 13 in contact with the passage 18 is in a molten state.

従って三方弁21が配管23側に切換えられるとき蒸発
器5には23℃近い水が供給され、従来装置のように3
粉程度で暖房能力が低下することなく、快適な暖房が継
続される。
Therefore, when the three-way valve 21 is switched to the piping 23 side, water close to 23°C is supplied to the evaporator 5, unlike the conventional device.
Comfortable heating can be continued without reducing the heating capacity even if the heating capacity is only powdery.

第2の熱媒流路24からの給水過程では、第3図のフィ
ン17bの下端より上の水はほとんど開口部18aから
吸入されることなく、その部分の水や、その水に接する
箱体17a内面に形成された蓄熱材13の凝固層の温度
は上昇してくる。
In the water supply process from the second heat medium flow path 24, almost no water above the lower end of the fin 17b in FIG. The temperature of the solidified layer of the heat storage material 13 formed on the inner surface of the heat storage material 17a increases.

一方上記給水が継続されるにつれ、通路18の外面には
蓄熱材13の凝固層が成長してきて給水温度を次第に低
下させるが、通路18に沿って蓄熱材13が凝固する際
の凝固熱は、通路18中の水に熱量を与えるとともに、
箱体17aに向って流れる熱流を促進する。
On the other hand, as the water supply continues, a solidified layer of the heat storage material 13 grows on the outer surface of the passage 18, gradually lowering the temperature of the supplied water, but the heat of solidification when the heat storage material 13 solidifies along the passage 18 is While giving heat to the water in the passage 18,
This promotes heat flow toward the box body 17a.

上記のような給水過程が継続するうちに素子28で検知
される水温より素子26で検知される水温の方が高くな
ってくる。
As the water supply process as described above continues, the water temperature detected by the element 26 becomes higher than the water temperature detected by the element 28.

その水温差が例えば5℃に達すると三方弁21が再び配
管7a、19aを連通ずるように動作し、蒸発器5には
再度第1の熱媒流路19を介して給水される。
When the water temperature difference reaches, for example, 5° C., the three-way valve 21 operates to connect the pipes 7a and 19a again, and water is again supplied to the evaporator 5 via the first heat medium flow path 19.

この給水期間中、蓄熱体16内では前記のようにして熱
分布の変化が起こり、素子28で検知される水温の方が
素子26で検知される水温より高くなる。
During this water supply period, the heat distribution changes in the heat storage body 16 as described above, and the water temperature detected by the element 28 becomes higher than the water temperature detected by the element 26.

この水温差が例えば3℃に達すると再び三方弁21が配
管?a、23を連通ずるように動作する。
When this water temperature difference reaches, for example, 3°C, the three-way valve 21 is turned off again. It operates so as to connect a and 23.

このような動作を繰返すことにより、蒸発器5に供給す
る水温を例えば5℃以下にすることなく、槽2中に蓄積
された熱量を有効に暖房熱量として利用することができ
る。
By repeating such an operation, the amount of heat accumulated in the tank 2 can be effectively used as the amount of heating heat without reducing the temperature of the water supplied to the evaporator 5 to, for example, 5° C. or lower.

なお蓄熱材13中の熱量が減するに従って三方弁21を
頻繁に切換える必要があるが、そのような制御は素子2
6.28を入力トスるマイクロコンピュータを用いるこ
とにより容易におこなうことができる。
Note that it is necessary to frequently switch the three-way valve 21 as the amount of heat in the heat storage material 13 decreases, but such control is performed by the element 2.
This can be easily done by using a microcomputer that inputs 6.28.

第5図は従来装置に比し、槽2内に同一熱量を有する上
記実施例のものが槽2内の熱量を有効に利用しているこ
とを給水温度の時間的変化で示したもので、図イは従来
装置、凶日は実施例装置に関するものである。
FIG. 5 shows the temporal change in the temperature of the water supply, showing that the device of the above embodiment, which has the same amount of heat in the tank 2, utilizes the amount of heat in the tank 2 more effectively than the conventional device. Figure A relates to the conventional device, and the bad days relate to the example device.

なお凶日の実線は素子26の検知温度、点線は素子28
の検知温度、図イは素子26に相当する素子を設けた場
合の検知温度で、実線は暖房運転時 一点鎖線は運転停
止時のものである。
The solid line on bad days is the detected temperature of element 26, and the dotted line is the temperature detected by element 28.
Figure A shows the detected temperature when an element corresponding to element 26 is installed, where the solid line is during heating operation and the dashed-dotted line is when operation is stopped.

図に見られるように従来装置においては約m分程度の運
転停止時間を数回置くことによって何とか2時間程度の
暖房が可能であるのに比し、実施例のものでは連続暖房
が可能なうえ、暖房温度のリップルも少くできるという
効果がある。
As can be seen in the figure, in contrast to the conventional device, which is able to provide heating for about 2 hours by stopping the operation several times for approximately m minutes, the device in the example is capable of continuous heating. This has the effect of reducing heating temperature ripple.

実施例のもので上記のように槽2の熱量のみで暖房をお
ぎなう間に日照が強まり、コレクタ1が利用できるよう
になったこと、例えば羽照計(図示せず)が検知すると
、三方弁21が配管7a。
In the embodiment, as mentioned above, when the sunlight increases and the collector 1 becomes available for use while heating is performed only by the heat amount of the tank 2, for example, when the vane meter (not shown) detects, the three-way valve is activated. 21 is the pipe 7a.

19aを、また三方弁22が配管4a、20aを夫々連
通ずるようにセットし、ポンプ3が運転を開始する。
19a and the three-way valve 22 are set so that they communicate with the pipes 4a and 20a, respectively, and the pump 3 starts operating.

その状態ではコレクタ1で集熱した温水と、蒸発器5で
放熱した冷水とが槽2内で混合し、蒸発器5には適温の
水が供給され、快適な暖房がおこなわれる。
In this state, the hot water collected by the collector 1 and the cold water released by the evaporator 5 are mixed in the tank 2, and water at an appropriate temperature is supplied to the evaporator 5, providing comfortable heating.

日照が更に強まり、蒸発器5の給水温度が冷媒回路の危
険温度、例えば30℃に近付いたことを素子26が検知
すると、例えば前記マイクロコンピュータの指令により
、三方弁22を配管4a、23が連通するように切換え
る。
When the element 26 detects that the sunlight is getting stronger and the water supply temperature of the evaporator 5 approaches the dangerous temperature of the refrigerant circuit, for example 30°C, the three-way valve 22 is connected to the pipes 4a and 23 in response to a command from the microcomputer, for example. Switch to

すなわち給熱側の第1の熱媒流路20が第2の熱媒流路
24に切換えられたことになる。
That is, the first heat medium flow path 20 on the heat supply side has been switched to the second heat medium flow path 24.

この状態でも素子26の検知温度が30°Cであればポ
ンプ3を停止させて冷媒回路を保護するが、素子26の
検知温度が低下するようであれば、通路18近傍の蓄熱
体13は20°C以下で凝固状態にあるので、ポンプ3
は運転を続ける。
Even in this state, if the temperature detected by the element 26 is 30°C, the pump 3 is stopped to protect the refrigerant circuit, but if the temperature detected by the element 26 decreases, the heat storage body 13 near the passage 18 is heated to 20°C. Since it is in a solidified state below °C, pump 3
continues driving.

この場合コレクタ1で集熱した比較的高温の水は通路1
8中で上記蓄熱材13により冷却され、更に配管19b
から流入する比較的低温の水と混合されて配管19aか
ら流出するので、蒸発器5には再び適温の水が供給され
るようになる。
In this case, the relatively high temperature water collected in collector 1 is transferred to passage 1.
8, the heat storage material 13 cools the pipe 19b.
Since the water is mixed with relatively low temperature water flowing in from the pipe 19a and flows out from the pipe 19a, the evaporator 5 is again supplied with water at an appropriate temperature.

この状態は通路18近傍の蓄熱材13が水から融解熱を
奪って溶融し、その溶融体温度が30℃に近付くまで継
続する。
This state continues until the heat storage material 13 near the passage 18 absorbs heat of fusion from the water and melts, and the temperature of the molten material approaches 30°C.

素子26の検知温度が30℃に達すると、例えば素子2
7の検知温度と比較し、その差が所定値より大きければ
三方弁22を配管4a、20aが連通ずるように切換え
、上記差が所定値より小さければポンプ3を停止し、三
方弁22を全閉の状態とする。
When the detected temperature of element 26 reaches 30°C, for example, element 2
7, and if the difference is larger than a predetermined value, the three-way valve 22 is switched so that the pipes 4a and 20a communicate with each other, and if the difference is smaller than the predetermined value, the pump 3 is stopped and the three-way valve 22 is completely closed. Closed.

上記は日照が強く、日照時間も長い場合の動作であるが
、昼間の日照が少く、夕方の日照でできるだけ槽2内に
多量の熱量を蓄積する場合にはポンプ6及び圧縮機8を
停止し、例えば一定時間間隔で、三方弁22が配管20
aと23と交互に熱媒路4aと連通するように、前記コ
ンピュータで制御すれば、短時間で蓄熱材13全体を溶
融状態にして多量の熱量を槽2内に蓄積することができ
る。
The above is the operation when the sunlight is strong and the sunlight hours are long, but if there is little sunlight in the daytime and you want to accumulate as much heat as possible in the tank 2 during the evening sunlight, the pump 6 and compressor 8 should be stopped. , for example, at regular time intervals, the three-way valve 22 closes the pipe 20.
By controlling the heat storage material 13 by the computer so that the heat storage material 13 is alternately communicated with the heat medium path 4a, the entire heat storage material 13 can be melted and a large amount of heat can be stored in the tank 2 in a short time.

上記実施例では槽2は1箇であったが、例えば第2図と
同形の2箇の槽A、 Bを設け、熱媒路7aに、槽Aの
第1の熱媒流路19、槽Bの第1の熱媒流路19、槽A
の第2の熱媒流路24、槽Bの第2の熱媒流路24、槽
Aの第1の熱媒流路19・・・・・・のようなサイクル
で温水を取出せば、利用温水温度のリップルを非常に小
さくすることも可能である。
In the above embodiment, there was only one tank 2, but for example, two tanks A and B having the same shape as in FIG. B's first heat medium flow path 19, tank A
If hot water is taken out in a cycle such as the second heat medium flow path 24 in tank B, the second heat medium flow path 24 in tank B, the first heat medium flow path 19 in tank A, etc., the hot water can be used. It is also possible to make the ripple in hot water temperature very small.

なお上記実施例においては第1及び第2の熱媒流路19
,24を交互に切換えて利用したが、急激な放熱や蓄熱
の場合には流路20または19と流路24とを同時に並
列に利用してもよい。
Note that in the above embodiment, the first and second heat medium flow paths 19
, 24 are used by switching them alternately, but in the case of rapid heat radiation or heat storage, the flow path 20 or 19 and the flow path 24 may be used simultaneously in parallel.

また上記実施例は正の蓄熱すなわち温水の蓄熱であった
が、負の蓄熱すなわち冷水利用の場合でもこの考案は同
様の効果を奏する。
Further, although the above embodiment deals with positive heat storage, that is, heat storage of hot water, this invention produces the same effect even in the case of negative heat storage, that is, use of cold water.

また槽2は必ずしも必要ではない。Further, tank 2 is not necessarily required.

なお上記実施例は太陽熱利用装置に関するものであった
が、深夜電力や工場排水の利用等、種々の蓄熱装置にお
いて同様な効果が得られる。
Although the above-mentioned embodiments relate to solar heat utilization devices, similar effects can be obtained in various heat storage devices, such as those utilizing late-night electricity or factory wastewater.

また熱媒流路は水塩外の不凍液や空気のようなものに対
しても同様の効果が得られる。
Further, the heat medium flow path can provide the same effect on substances other than water salt, such as antifreeze and air.

この考案は以上説明したとおり、潜熱利用蓄熱材を内蔵
した伝熱性容器の外部を通る第1の熱媒流路と、上記蓄
熱材中を通る伝熱製内部通路を通る第2の熱媒流路と、
上記両流路の切換手段とを設けることにより、上記蓄熱
材の熱量を有効に利用できるという効果が得られる。
As explained above, this device has a first heat medium flow path passing through the outside of a heat conductive container containing a heat storage material utilizing latent heat, and a second heat medium flow path passing through a heat transfer internal passageway passing through the heat storage material. road and
By providing the switching means for both the flow paths, it is possible to effectively utilize the amount of heat of the heat storage material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来装置の配管図、第2図は従来の蓄熱体の断
面図及び平面図、第3図及び第4図はこの考案の一実施
例を示す蓄熱槽の断面図及び装置の配管図、第5図は従
来装置及び上記実施例の特性図である。 図において1は太陽熱コレクタ、2は貯水槽、4a、4
bは給熱側熱媒路、5. 8.9. 10は冷媒回路、
7a、7bは熱利用側熱媒路、13は潜熱利用蓄熱材、
16は蓄熱体、17は伝熱性容器、18は内部通路、1
9,19a、19b及び20、20 a、 20 bは
第1の熱媒流路、21゜22.26,27,28は切換
手段、24,24a第2の熱媒流路である。 なお各図中同一符号は同一または相当部分を示す。
Fig. 1 is a piping diagram of a conventional device, Fig. 2 is a sectional view and a plan view of a conventional heat storage body, and Figs. 3 and 4 are a sectional view of a heat storage tank and piping of the device showing an embodiment of this invention. 5 are characteristic diagrams of the conventional device and the above embodiment. In the figure, 1 is a solar collector, 2 is a water tank, 4a, 4
b is a heat medium path on the heat supply side; 5. 8.9. 10 is a refrigerant circuit;
7a and 7b are heat medium paths on the heat utilization side; 13 is a heat storage material utilizing latent heat;
16 is a heat storage body, 17 is a heat conductive container, 18 is an internal passage, 1
9, 19a, 19b and 20, 20a, 20b are first heat medium flow paths, 21.degree. 22.26, 27, 28 are switching means, and 24, 24a are second heat medium flow paths. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (3)

【実用新案登録請求の範囲】[Scope of utility model registration request] (1)給熱側および熱利用側に接続された蓄熱槽この蓄
熱槽内に配置された、伝熱性容器に潜熱利用蓄熱材を内
蔵し、この潜熱利用蓄熱材の内部に伝熱材製の内部通路
を設けた蓄熱材、この蓄熱体の外周壁と上記蓄熱槽内壁
の間を熱媒体流が流れるように形成した第1の熱媒流路
、上記内部通路を介して形成した第2の熱媒流路、及び
両熱媒流路の温度により上記第1の熱媒流路と上記第2
の熱媒流路とを切換える切換手段を備えた蓄熱装置。
(1) A heat storage tank connected to the heat supply side and the heat utilization side. A heat storage material using latent heat is built into a heat conductive container placed in this heat storage tank. A heat storage material provided with an internal passage, a first heat medium flow path formed so that a heat medium flow flows between the outer circumferential wall of the heat storage body and the inner wall of the heat storage tank, and a second heat medium flow path formed through the internal passage. The first heat medium flow path and the second heat medium flow path depend on the temperatures of the heat medium flow path and both heat medium flow paths.
A heat storage device equipped with a switching means for switching between a heat medium flow path and a heat medium flow path.
(2)切換手段を介して第1及び第2の熱媒流路が熱利
用側熱媒路に連結されたことを特徴とする実用新案登録
請求の範囲第1項記載の蓄熱装置。
(2) The heat storage device according to claim 1, wherein the first and second heat medium passages are connected to the heat utilization side heat medium passage through a switching means.
(3)切換手段を介して第1及び第2の熱媒流路が給熱
側熱媒路に連結されたことを特徴とする実用新案登録請
求の範囲第1項または第2項記載の蓄熱装置。
(3) The heat storage according to claim 1 or 2 of the utility model registration claim, characterized in that the first and second heat medium flow paths are connected to the heat supply side heat medium path through a switching means. Device.
JP1981008005U 1981-01-23 1981-01-23 heat storage device Expired JPS6023645Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981008005U JPS6023645Y2 (en) 1981-01-23 1981-01-23 heat storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981008005U JPS6023645Y2 (en) 1981-01-23 1981-01-23 heat storage device

Publications (2)

Publication Number Publication Date
JPS57121859U JPS57121859U (en) 1982-07-29
JPS6023645Y2 true JPS6023645Y2 (en) 1985-07-15

Family

ID=29806172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981008005U Expired JPS6023645Y2 (en) 1981-01-23 1981-01-23 heat storage device

Country Status (1)

Country Link
JP (1) JPS6023645Y2 (en)

Also Published As

Publication number Publication date
JPS57121859U (en) 1982-07-29

Similar Documents

Publication Publication Date Title
US4294078A (en) Method and system for the compact storage of heat and coolness by phase change materials
US4403645A (en) Compact storage of seat and coolness by phase change materials while preventing stratification
US3968833A (en) Method for heat recovery in ventilation installations
US20180283709A1 (en) A system and method for cooling a space utilizing thermal energy storage
US4192146A (en) Process for the recovery of energy and in particular for the recovery of heat on the heat pump principle
US4082143A (en) Solar energy
CN109084394B (en) Fresh air preheating device
CN110388684A (en) Inorganic-phase variable thermal storage type electric heating furnace and heating method
JPS6023645Y2 (en) heat storage device
JPH11148728A (en) Solar heat hot-water supplier and operating method thereof
JPS6145159B2 (en)
KR101578635B1 (en) Heat pump system provided with a thermal energy storage tank and heating system using the same
CN115076757B (en) Solar heating system and controller thereof
JPH0117016Y2 (en)
JPH11201559A (en) Hot water supply apparatus utilizing solar heat
JPH0228799B2 (en)
JPH10238828A (en) Ice heat reserve system and ice heat reserve cooling method using the system
SU1753214A1 (en) Cooling system of installations with autonomous type of operation
JPH11294803A (en) Method and device for cooling and heating using heat pump
KR19990075021A (en) Heat pump device
CA1115264A (en) Method and system for the compact storage of heat and coolness by phase change materials
JP2000074425A (en) Capsule-type ice heat storage device
JPH07248135A (en) Device for ice-based heat storage and melting
JPS58168893A (en) Heat accumulator
JPH0112130Y2 (en)