JPH0210358B2 - - Google Patents

Info

Publication number
JPH0210358B2
JPH0210358B2 JP56148591A JP14859181A JPH0210358B2 JP H0210358 B2 JPH0210358 B2 JP H0210358B2 JP 56148591 A JP56148591 A JP 56148591A JP 14859181 A JP14859181 A JP 14859181A JP H0210358 B2 JPH0210358 B2 JP H0210358B2
Authority
JP
Japan
Prior art keywords
heat
storage material
heat storage
working fluid
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56148591A
Other languages
Japanese (ja)
Other versions
JPS5849894A (en
Inventor
Kazuo Yamashita
Takahito Ishii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56148591A priority Critical patent/JPS5849894A/en
Publication of JPS5849894A publication Critical patent/JPS5849894A/en
Publication of JPH0210358B2 publication Critical patent/JPH0210358B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/025Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being in direct contact with a heat-exchange medium or with another heat storage material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Description

【発明の詳細な説明】 本発明は潜熱型蓄熱材を用いた蓄熱装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat storage device using a latent heat type heat storage material.

従来、潜熱を利用した蓄熱材として無機塩類、
有機物あるいはパラフインが用いられているが、
いずれの場合ににも問題点の一つとして固相にお
ける熱伝達が悪いため、一定温度の熱を短時間に
取り出せないということである。すなわち溶融状
態では対流により蓄熱材中の温度はほゞ均一にな
つているが、いつたん凝固し始めると固体の熱伝
達が悪いため熱交換器近辺の蓄熱材温度は急激に
低下する。これは伝達面から離れた部分の蓄熱材
から熱の伝わつてくる速度よりも、熱交換器伝熱
面から熱を取る速度の方が速いからである。熱が
伝わつてこなければ伝熱面付近の蓄熱材の温度降
下により熱を補給するしかないためである。すな
わち伝熱面のごく近傍では蓄熱材はその潜熱を放
出し固化する。固化すると熱伝導度が悪いため、
固化した蓄熱材近傍にある溶融蓄熱材の熱を伝熱
面に伝えにくい。したがつて蓄熱材は伝達面近傍
では固相であり、少し離れたところでは液相の
まゝである。この液相の潜熱も有効に利用するた
めには長時間を必要とした。
Conventionally, inorganic salts and
Organic substances or paraffin are used,
One of the problems in either case is that heat transfer at a constant temperature cannot be extracted in a short period of time due to poor heat transfer in the solid phase. That is, in a molten state, the temperature in the heat storage material is almost uniform due to convection, but once it begins to solidify, the temperature of the heat storage material near the heat exchanger drops rapidly due to poor heat transfer in the solid. This is because the rate at which heat is removed from the heat transfer surface of the heat exchanger is faster than the rate at which heat is transferred from the heat storage material in the portion away from the transfer surface. This is because if heat is not transferred, the only way to replenish the heat is by reducing the temperature of the heat storage material near the heat transfer surface. That is, in the close vicinity of the heat transfer surface, the heat storage material releases its latent heat and solidifies. Because thermal conductivity is poor when solidified,
It is difficult to transfer the heat of the molten heat storage material near the solidified heat storage material to the heat transfer surface. Therefore, the heat storage material is in a solid phase near the transfer surface, and remains in a liquid phase a little further away. It took a long time to effectively utilize the latent heat of the liquid phase.

実際の使用にあたつては上記現象が生じないよ
うにするため種々の工夫がなされている。例えば
伝熱管にフインをつけ伝熱面間の距離を短かくし
伝熱面間に液相が残存しにくいようにしている。
しかし、この場合熱交換面積が広くなるため集熱
特性は加善されるが、反面熱交換体積が増加した
りコスト高になつたりするため潜熱利用の効果が
なくなる等の問題が生じる。このような問題は実
質的に解決するまでに至つていない。
In actual use, various measures have been taken to prevent the above phenomenon from occurring. For example, fins are attached to heat transfer tubes to shorten the distance between the heat transfer surfaces, making it difficult for liquid phase to remain between the heat transfer surfaces.
However, in this case, since the heat exchange area becomes larger, the heat collection characteristics are improved, but on the other hand, the heat exchange volume increases and the cost increases, which causes problems such as the effect of latent heat utilization being lost. Such problems have not yet been substantially resolved.

本発明は上記従来の問題点を解消するもので、
迅速かつ効率良く潜熱を取り出すようにすること
を目的とする。
The present invention solves the above conventional problems,
The purpose is to extract latent heat quickly and efficiently.

本発明は、上記目的を達成するために、潜熱利
用蓄熱材と、この蓄熱材の液相状態における比重
より大きい比重を有する作動液とを蓄熱槽の上部
に空間部を残して密封し、かつ空間部に熱を取出
すための熱交換器を、熱材中に熱を供給するため
の熱交換器をそれぞれ設け、熱を取出すための熱
交換を空間部に蒸気圧により平衡状態にある作動
液の気相で行なうことにより、熱伝達の悪い蓄熱
材固相部分が熱伝達を妨げないようにして熱交換
を容易かつ迅速に行なえるようにしたものであ
る。
In order to achieve the above object, the present invention seals a latent heat storage material and a working fluid having a specific gravity greater than the specific gravity of the heat storage material in its liquid phase, leaving a space in the upper part of the heat storage tank, and A heat exchanger for extracting heat into the space and a heat exchanger for supplying heat into the heating material are installed, respectively, and a working fluid in an equilibrium state due to vapor pressure is provided in the space for heat exchange to extract heat. By performing the heat exchange in the gas phase, the solid phase portion of the heat storage material, which has poor heat transfer, does not interfere with heat transfer, and heat exchange can be performed easily and quickly.

以下、本発明の一実施例について図面に基いて
説明すると、蓄熱槽1に蓄熱材2および液相状態
における蓄熱材の比重より比重が大きい作動液3
が封入されており、さらに熱を取り出すための熱
交換器4を蓄熱槽1の上部にある空間部に設け、
熱を入れるための熱交換器5を蓄熱材2中に設け
ている。6,7および8,9はそれぞれ熱交換器
4,5の配管である。こゝにおいて蓄熱材2と作
動液3とは非反応性でかつ非相溶性であることが
好ましい。
Hereinafter, one embodiment of the present invention will be described based on the drawings. A heat storage tank 1 includes a heat storage material 2 and a working fluid 3 having a specific gravity greater than the specific gravity of the heat storage material in a liquid phase state.
is enclosed, and a heat exchanger 4 for extracting heat is provided in the space above the heat storage tank 1.
A heat exchanger 5 for inputting heat is provided in the heat storage material 2. 6, 7 and 8, 9 are pipes of heat exchangers 4, 5, respectively. Here, it is preferable that the heat storage material 2 and the working fluid 3 are non-reactive and immiscible.

蓄熱材2が溶融(液相)状態にある時、蓄熱槽
1内は主として蓄熱材2よりなる液相と蓄熱材2
の温度に等しい作動液3の蒸気圧で平衡状態にあ
る気相よりなつており、この気相は蓄熱槽1の上
部にある空間部を満たし、この中に熱交換器4が
設けられている。
When the heat storage material 2 is in a molten (liquid phase) state, the inside of the heat storage tank 1 mainly contains a liquid phase consisting of the heat storage material 2 and a heat storage material 2.
It consists of a gas phase that is in equilibrium with the vapor pressure of the working fluid 3, which is equal to the temperature of .

いま、熱を外部に取り出す場合、配管6に低温
の熱媒体を送入する。すると作動液の蒸気は熱交
換器4を介してその熱を放出し凝縮液化する。凝
縮液化すると気相部の蒸気圧は低下する。これは
蓄熱材2中を気泡10として上昇してくる作動液
3の蒸気により補なわれる。この時、気泡は蓄熱
材2を撹拌するのを同一効果を発揮し、その温度
分布を均一なものとする。また、凝縮した作動液
3は溶融(液相)状態における蓄熱材2の比重よ
りも大きいため沈降する。この時一部は蓄熱材2
より熱を奪い再び気化し、その蒸気は気泡となつ
て上昇する。他の一部は蓄熱槽1の底面に沈降し
作動液3溜りを形成する。この作動液3は周囲よ
り熱を奪い再び気化し気泡10となつて上昇し熱
交換器4に至る。一方、配管6より流入した低温
熱媒体は熱交換器4で熱を受け高温熱媒体となつ
て配管7より流出する。このように作動液3の蒸
発と凝縮とのサイクルにより蓄熱材2の熱を有効
に熱交換器4を流れる熱媒体に伝達することがで
きる。
Now, when heat is extracted to the outside, a low-temperature heat medium is introduced into the pipe 6. Then, the vapor of the working fluid releases its heat through the heat exchanger 4 and is condensed and liquefied. When condensed and liquefied, the vapor pressure of the gas phase decreases. This is compensated for by the vapor of the working fluid 3 rising in the form of bubbles 10 in the heat storage material 2. At this time, the bubbles have the same effect of stirring the heat storage material 2 and make the temperature distribution uniform. Further, the condensed working fluid 3 is larger than the specific gravity of the heat storage material 2 in a molten (liquid phase) state, so it settles. At this time, some heat storage material 2
It absorbs more heat and vaporizes again, and the vapor rises in the form of bubbles. The other part settles on the bottom surface of the heat storage tank 1 and forms the working fluid 3 pool. The working fluid 3 absorbs heat from its surroundings and vaporizes again, forming bubbles 10 and rising up to the heat exchanger 4. On the other hand, the low-temperature heat medium flowing in through the pipe 6 receives heat in the heat exchanger 4 and becomes a high-temperature heat medium and flows out through the pipe 7. In this way, the cycle of evaporation and condensation of the working fluid 3 allows the heat of the heat storage material 2 to be effectively transferred to the heat medium flowing through the heat exchanger 4.

また、蓄熱する場合は主として高温熱媒体を配
管8より送入し熱交換器5にて熱交換する。熱を
放出した媒体は配管9より流出する。加熱される
ことにより熱交換器5の周辺の蓄熱材2はその融
点で溶解する。順次周辺の蓄熱材2が溶解し全体
が溶解するわけであるが、本実施例においては蓄
熱材2の比重よりも大きい比重の作動液3を使用
しているため、作動液3は熱交換器5の近媒にあ
る。そのため、作動液3が熱交換器5の近辺の熱
を奪い気化し、気泡となり溶融した蓄熱材2中を
移動し、未溶解の蓄熱材2に熱を与え、それを溶
解し作動液3自体は凝縮液化する。この過過程に
おいて、熱交換器5の近辺の熱はすばやく遠方に
運ばれると共に気泡により撹拌され、溶融した蓄
熱材2の温度分布はほとんどなるなる。このよう
に熱の移動が簡単に行なわれるため、熱媒体から
の熱を取り出しやすくなり、熱交換効率を著しく
高めることができる。なお、本発明で述べている
作動液とは、融点が低く他から熱を奪い容易に気
化し、また他に熱を与え容易に凝縮(液化)する
液のごとであり、フロン類、アルコール類、ケト
ン類等がある。
In addition, when storing heat, a high temperature heat medium is mainly fed through the pipe 8 and heat exchanged with the heat exchanger 5. The medium that has released heat flows out from the pipe 9. By being heated, the heat storage material 2 around the heat exchanger 5 melts at its melting point. The surrounding heat storage material 2 is sequentially melted and the whole is melted, but in this example, since the working fluid 3 having a specific gravity larger than that of the heat storage material 2 is used, the working fluid 3 is used in the heat exchanger. It is a close medium of 5. Therefore, the working fluid 3 absorbs heat near the heat exchanger 5, vaporizes, becomes bubbles, moves through the molten heat storage material 2, gives heat to the unmelted heat storage material 2, melts it, and the working fluid 3 itself is condensed and liquefied. In this process, the heat near the heat exchanger 5 is quickly transported to a distant place and is stirred by the bubbles, so that the temperature distribution of the molten heat storage material 2 becomes almost uniform. Since heat is easily transferred in this way, it becomes easier to extract heat from the heat medium, and the heat exchange efficiency can be significantly increased. The working fluid mentioned in the present invention is a liquid that has a low melting point and easily vaporizes by taking heat from others, and easily condenses (liquefies) by giving heat to others, such as fluorocarbons, alcohols, etc. , ketones, etc.

次に、本実施例の詳細につき説明する。蓄熱材
2として酢酸ナトリウム3水塩(NaCH3COO、
3H2O)と、作動液3として酢酸ナトリウム3水
塩と非相溶性で非反応性のフロンR−113とを蓄
熱槽1に封入し、空気等の非凝縮性ガスを排出す
る。この蓄熱槽1の上部には主として熱を取り出
すための熱交換器4と、蓄熱材中に主として熱を
貯えるための熱交換器5とがもうけられている。
蓄熱材2に蓄熱された状態で上部の熱交換器4に
冷水を送るとフロンR−113の蒸気が熱交換器4
の伝熱面で凝縮しその熱を冷水に与え凝縮液とな
り滴下する。酢酸ナトリウム3水塩の融点(58
℃)においてはフロンR−113の液体の密度は
1.48g/cm3であり酢酸ナトリウム3水塩の液相に
おける密度1.28g/cm3より大きいため、フロンR
−113凝縮液は酢酸ナトリウム溶液中を沈降して
いく。沈降しながら酢酸ナトリウム溶液より熱を
奪い一部は蒸発し一部は沈降し底面に達し、ここ
で熱を奪い再蒸発していく。この蒸発の過程で作
動液3は気泡10となつて蓄熱材2中を上昇して
いくため蓄熱材2全体を混合撹拌する。一方酢酸
ナトリウム3水塩溶液はフロンR−113に潜熱を
放出し凝固する。この過程で、上記説明したごと
く、蓄熱材2は作動液3の気泡10で激しく撹拌
されているため特定の一部より凝固するのではな
く、酢酸ナトリウム3水塩の微結晶が溶液中に分
散する形となる。この酢酸ナトリウム3水塩の微
結晶の密度(1.45g/cm3)はその溶液の密度より
大きいため沈降し順次蓄熱槽の底面に堆積されて
いく。
Next, details of this embodiment will be explained. Sodium acetate trihydrate (NaCH 3 COO,
3H 2 O) and Freon R-113, which is incompatible and non-reactive with sodium acetate trihydrate as a working fluid 3, are sealed in a heat storage tank 1, and non-condensable gases such as air are discharged. A heat exchanger 4 for mainly extracting heat and a heat exchanger 5 for mainly storing heat in a heat storage material are provided in the upper part of this heat storage tank 1.
When cold water is sent to the upper heat exchanger 4 with heat stored in the heat storage material 2, the vapor of Freon R-113 flows into the heat exchanger 4.
It condenses on the heat transfer surface and gives the heat to the cold water, forming a condensate and dripping. Melting point of sodium acetate trihydrate (58
℃), the density of the liquid Freon R-113 is
Since the density is 1.48 g/cm 3 and higher than the density of sodium acetate trihydrate in the liquid phase, which is 1.28 g/cm 3 , Freon R
-113 The condensate settles in the sodium acetate solution. As it settles, it absorbs heat from the sodium acetate solution, and some of it evaporates, and some of it settles and reaches the bottom, where it absorbs heat and evaporates again. During this evaporation process, the working fluid 3 becomes bubbles 10 and rises in the heat storage material 2, thereby mixing and stirring the entire heat storage material 2. On the other hand, the sodium acetate trihydrate solution emits latent heat to Freon R-113 and solidifies. In this process, as explained above, the heat storage material 2 is vigorously stirred by the bubbles 10 of the working fluid 3, so instead of solidifying from a specific part, microcrystals of sodium acetate trihydrate are dispersed in the solution. It will take the form of Since the density of the microcrystals of sodium acetate trihydrate (1.45 g/cm 3 ) is greater than the density of the solution, they settle and are successively deposited on the bottom of the heat storage tank.

したがつて蓄熱材2の液相と作動液3の気相と
が常に接している状態になつているため、蓄熱材
2の液相の熱を容易に作動液3の気相に伝熱する
ことができる。このようにして酢酸ナトリウム3
水塩の潜熱を完全に利用することができる。酢酸
ナトリウム3水塩が完全に固化した後も、その固
化の過程で作動液3蒸気が通過する経路が形成さ
れるため、この経路を通して固化後の顕熱をも有
効に利用することができる。熱を蓄積する場合は
蓄熱材2中にある熱交換器5に温水を流入する
と、その熱は酢酸ナトリウム3水塩に伝達され、
酢酸ナトリウム3水塩を溶解する。また、同時に
作動液3の蒸発により熱交換器の熱はすばやく未
溶解の蓄熱材に伝達されそれを溶解すると同時に
上記説明のごとく酢酸ナトリウム3水塩溶液を撹
拌し温度分布はほゞ一様にするため熱交換器近辺
のみが温度が高くなることがないため、熱交換効
率が改善され、短時間で効率よく熱を蓄積するこ
とができる。
Therefore, the liquid phase of the heat storage material 2 and the gas phase of the working fluid 3 are always in contact with each other, so that the heat in the liquid phase of the heat storage material 2 is easily transferred to the gas phase of the working fluid 3. be able to. In this way, sodium acetate 3
The latent heat of water salt can be fully utilized. Even after the sodium acetate trihydrate is completely solidified, a path is formed through which the working fluid 3 vapor passes during the solidification process, so that the sensible heat after solidification can also be effectively utilized through this path. When storing heat, hot water flows into the heat exchanger 5 in the heat storage material 2, and the heat is transferred to sodium acetate trihydrate.
Dissolve sodium acetate trihydrate. At the same time, due to the evaporation of the working fluid 3, the heat of the heat exchanger is quickly transferred to the unmelted heat storage material, melting it, and at the same time stirring the sodium acetate trihydrate solution as explained above, making the temperature distribution almost uniform. Therefore, the temperature does not become high only in the vicinity of the heat exchanger, so heat exchange efficiency is improved and heat can be stored efficiently in a short time.

以上述べたごとく本発明の潜熱利用蓄熱装置に
よれば下記のごとき効果がある。
As described above, the latent heat utilization heat storage device of the present invention has the following effects.

(1) 熱交換が作動液の気相で行なわれているた
め、熱交換器の伝熱面周囲に熱伝達の悪い蓄熱
材の固相部分を生じないため、熱交換が容易に
かつ迅速に行なわれる。
(1) Since heat exchange is performed in the gas phase of the working fluid, there is no solid phase part of the heat storage material with poor heat transfer around the heat transfer surface of the heat exchanger, making heat exchange easy and quick. It is done.

(2) 蓄熱材中を作動液の蒸気が気泡となつて通過
するため、蓄熱材がこの気泡により撹拌され、
蓄熱材の温度分布はほゞ一様となり、また、凝
固した蓄熱材はその溶融状態にある時より比重
が大きいため沈降するが、この場合、蓄熱材中
の気泡により撹拌されているので細かい結晶と
なり蓄熱槽の下部に堆積していく。すなわち、
潜熱を放出した蓄熱材は順次下部に沈降する。
したがつて蓄熱材全体の潜熱を有効に利用する
ことができる。
(2) As the vapor of the working fluid passes through the heat storage material in the form of bubbles, the heat storage material is agitated by the bubbles,
The temperature distribution of the heat storage material is almost uniform, and the solidified heat storage material has a higher specific gravity than its molten state, so it settles, but in this case, it is stirred by air bubbles in the heat storage material, so fine crystals form. and accumulates at the bottom of the heat storage tank. That is,
The heat storage material that has released latent heat gradually settles to the bottom.
Therefore, the latent heat of the entire heat storage material can be effectively utilized.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明による潜熱利用蓄熱装置の一実施
例を示す断面図である。 1……蓄熱槽、2……蓄熱材、3……作動液、
4,5……熱交換器。
The drawing is a sectional view showing an embodiment of the latent heat utilization heat storage device according to the present invention. 1... Heat storage tank, 2... Heat storage material, 3... Working fluid,
4, 5... Heat exchanger.

Claims (1)

【特許請求の範囲】[Claims] 1 潜熱利用蓄熱材2と、この蓄熱材2の液相状
態における比重より大きい比重を有する作動液3
とを蓄熱槽1の上部に空間部を残して密封し、か
つ前記空間部に熱を取出すための熱交換器4を、
蓄熱材2中に熱を供給するための熱交換器5をそ
れぞれ設け、前記作動液3は少なくとも蓄熱材2
の融点において一部は蒸気圧により気相状態で空
間部を満たすとともに、他は液相状態で蓄熱槽1
底部に存在することを特徴とする潜熱利用蓄熱装
置。
1 A latent heat-utilizing heat storage material 2 and a working fluid 3 having a specific gravity greater than the specific gravity of this heat storage material 2 in its liquid phase state.
The heat storage tank 1 is sealed with a space left in the upper part, and a heat exchanger 4 for extracting heat into the space is provided.
A heat exchanger 5 for supplying heat to the heat storage material 2 is provided, and the working fluid 3 is supplied to at least the heat storage material 2.
At the melting point of
A heat storage device using latent heat that is located at the bottom.
JP56148591A 1981-09-18 1981-09-18 Heat accumulating device utilizing latent heat Granted JPS5849894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56148591A JPS5849894A (en) 1981-09-18 1981-09-18 Heat accumulating device utilizing latent heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56148591A JPS5849894A (en) 1981-09-18 1981-09-18 Heat accumulating device utilizing latent heat

Publications (2)

Publication Number Publication Date
JPS5849894A JPS5849894A (en) 1983-03-24
JPH0210358B2 true JPH0210358B2 (en) 1990-03-07

Family

ID=15456170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56148591A Granted JPS5849894A (en) 1981-09-18 1981-09-18 Heat accumulating device utilizing latent heat

Country Status (1)

Country Link
JP (1) JPS5849894A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086386A (en) * 1983-10-14 1985-05-15 Matsushita Electric Ind Co Ltd Heat accumulating device
JPS6089689A (en) * 1983-10-20 1985-05-20 Matsushita Electric Ind Co Ltd Regenerator
JPS6346392A (en) * 1986-08-13 1988-02-27 Yoshiro Uko Method and device for performing natural circulation type rapid storing heat and coolness
CN114719654B (en) * 2022-05-17 2024-02-13 苏州惟新传热科技有限公司 Phase change energy storage device for strengthening phase change process by utilizing natural convection

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5514426A (en) * 1978-07-17 1980-01-31 Hitachi Ltd Heat accumulator
JPS5592889A (en) * 1979-01-08 1980-07-14 Hitachi Ltd Heat accumulator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5514426A (en) * 1978-07-17 1980-01-31 Hitachi Ltd Heat accumulator
JPS5592889A (en) * 1979-01-08 1980-07-14 Hitachi Ltd Heat accumulator

Also Published As

Publication number Publication date
JPS5849894A (en) 1983-03-24

Similar Documents

Publication Publication Date Title
Hasan Phase change material energy storage system employing palmitic acid
US4696338A (en) Latent heat storage and transfer system and method
Velraj et al. Heat transfer enhancement in a latent heat storage system
US4329407A (en) Electrochemical storage battery
JPH0210358B2 (en)
JP5594752B2 (en) Heat storage device
JPS5845494A (en) Method of heat exchange in latent heat type heat accumulating tank
JPS5849850A (en) Water heater utilizing latent heat type heat accumulating material
JPS5843394A (en) Heat exchange method of latent heat type heat accumulator
JP2000111282A (en) Heat storage device and heat control in heat storage device
JPS6040799B2 (en) Direct heat exchange type latent heat storage device
JPS58106393A (en) Heat accumulator
HU188494B (en) High-capacity heat accumulator
JPS628716B2 (en)
JPH0238116B2 (en)
JPS61173085A (en) Latent heat storage device
JPH0215598B2 (en)
JPH0236880B2 (en)
JPS58104495A (en) Latent heat type heat accumulating device
JPH0311399B2 (en)
JPH0117079B2 (en)
JPS6213600B2 (en)
JPS58168893A (en) Heat accumulator
JPH0151517B2 (en)
JPS6238398B2 (en)