JPH06159965A - Latent heat medium and heat collecting and accumulating system using the same - Google Patents

Latent heat medium and heat collecting and accumulating system using the same

Info

Publication number
JPH06159965A
JPH06159965A JP4313303A JP31330392A JPH06159965A JP H06159965 A JPH06159965 A JP H06159965A JP 4313303 A JP4313303 A JP 4313303A JP 31330392 A JP31330392 A JP 31330392A JP H06159965 A JPH06159965 A JP H06159965A
Authority
JP
Japan
Prior art keywords
heat
latent heat
latent
heat medium
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4313303A
Other languages
Japanese (ja)
Inventor
Yasuo Koseki
康雄 小関
Yoshio Naganuma
義男 永沼
Yasushi Sato
康司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4313303A priority Critical patent/JPH06159965A/en
Publication of JPH06159965A publication Critical patent/JPH06159965A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

PURPOSE:To effectively use an inorganic latent heat accumulating material low in cost and high in heat accumulation density, so far regarded as diffucult to use because of supercooling and phase separation problems, by a method in which a latent heat accumulating material is gelled to form a latent heat medium in which supercooling preventing agent and phase separation preventing agent are dispersed uniformly. CONSTITUTION:Preferably gelling agent is added to a heat accumulating material 10 which is sealed in a capsule 40 in order to gel the material 10, and core forming agent and phase separation preventing agent 30 are dispersed in the material 10 so that a capsule type latent heat medium 3 is finally formed. By this, effect to prevent supercooling and phase separation of the latent heat medium can be improved so much as to prevent degradation due to aging. Thus, an unused heat collecting and accumulating system using an inorganic latent heat accumulating material, which has been regarded unpractical, can be realized. According to this system, a direct contact heat exchange with unused heat by using a capsule type latent heat medium 3 can be realized, and further, staying time of the latent heat medium can be adjusted. As a result, as a difference of heat exchanging heat can be minimized, a heat exchanger 2 can be made compact.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種の熱エネルギーを
高密度に貯蔵できる潜熱蓄熱材を用いた潜熱媒体とそれ
を用いた熱回収蓄熱システムに関する。特に、未利用熱
利用等で熱交換温度差が少ないときに問題となる相変化
時の過冷却や相分離を解消できる潜熱蓄熱材と、その潜
熱媒体を用いた熱回収蓄熱システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a latent heat storage medium using a latent heat storage material capable of storing various kinds of heat energy at high density and a heat recovery heat storage system using the latent heat storage medium. In particular, the present invention relates to a latent heat storage material that can eliminate supercooling and phase separation at the time of phase change, which is a problem when the difference in heat exchange temperature is small due to unused heat utilization, and a heat recovery heat storage system using the latent heat medium.

【0002】[0002]

【従来の技術】これまで河川水や下水などの熱は環境温
度に近く熱回収しにくいために利用されることがなかっ
た。また近年、エネルギ−消費の増大と相まって、二酸
化炭素の放出量増大による地球の温暖化等が問題とな
り、その対策の一環として省エネルギ−策が求められて
いる。そのための具体的手段として、前述の河川水や下
水の熱を回収し、冷暖房や給湯用にヒートポンプ熱源等
として利用する熱回収システムが提案されている(例え
ば、空気調和・衛生工学第63巻第8号、最近の地域冷暖
房計画と排熱利用、p.651-656 など参照)。従来のシス
テムでは、河川水や下水等の熱を熱交換器を介して水で
回収し、その水の温度上昇(つまり顕熱)に換えて、そ
の温水を蓄熱水槽に溜めて蓄熱する。利用するときは、
その温水をヒ−トポンプ等を介して必要温度まで昇温し
て、ビルや住宅へ暖房用温水として供給する。
2. Description of the Related Art Up to now, the heat of river water and sewage has not been used because it is difficult to recover the heat because it is close to the ambient temperature. Further, in recent years, together with the increase in energy consumption, global warming due to an increase in the amount of released carbon dioxide has become a problem, and energy saving measures have been demanded as a part of measures against it. As a specific means for that purpose, a heat recovery system has been proposed that recovers the heat of the above-mentioned river water or sewage and uses it as a heat pump heat source for heating and cooling or hot water supply (for example, Air Conditioning and Sanitary Engineering Volume 63 No. 8, Recent District Heating and Cooling Plans and Waste Heat Utilization, p.651-656, etc.). In a conventional system, heat of river water, sewage, etc. is recovered by water through a heat exchanger, and the temperature of the water is increased (that is, sensible heat), and the hot water is stored in a heat storage water tank to store heat. When using
The hot water is heated to a required temperature via a heat pump or the like and supplied to a building or a house as hot water for heating.

【0003】一方小規模ビル等では蓄熱水槽の小型化の
ため、水の替わりに相(固液)変化を利用する潜熱蓄熱
材塩化カルシウム6水塩等が利用することが提案され
(例えば特公平3-54151 号公報参照)、一部実用化され
ている。
On the other hand, in a small-scale building or the like, in order to miniaturize the heat storage water tank, it has been proposed to use a latent heat storage material such as calcium chloride hexahydrate which utilizes a phase (solid-liquid) change instead of water (for example, Japanese Patent Publication No. 3-54151), which has been partially commercialized.

【0004】[0004]

【発明が解決しようとする課題】前記した熱回収蓄熱シ
ステムでは、特に河川水や下水等の未利用熱の回収にお
いては、例えば冬季では10℃程度と温度が低いため、以
下に示す多くの根本課題がある。即ち、小さな温度差
(例えば1℃の場合、これは通常の熱交換器の1/3)で
熱交換し、且つ回収できる水側の温度上昇も小さく(例
えば3℃の場合、これは通常の1/2 )なる。そのため、
熱交換温度差に比例して熱交換器がまず大型化(3倍)
する。また、回収水の温度上昇に反比例して熱輸送水の
流量が増すために熱輸送配管が大口径化(1.4 倍)し、
送水動力も増大(2倍)する。さらに回収水の温度上昇
(温度差)が小さいので蓄熱に大量の水を貯蔵するため
に、蓄熱水槽も大型化(2倍)する。
In the heat recovery heat storage system described above, particularly in the recovery of unused heat of river water, sewage, etc., the temperature is as low as about 10 ° C. in winter, for example, and many There are challenges. That is, a small temperature difference (for example, 1 ° C, this is 1/3 of a normal heat exchanger), and the temperature rise on the water side that can be recovered and recovered is also small (for example, 3 ° C, this is the normal temperature). 1/2). for that reason,
First, the heat exchanger becomes larger in proportion to the heat exchange temperature difference (3 times)
To do. Also, since the flow rate of the heat transport water increases in inverse proportion to the rise in the temperature of the recovered water, the heat transport pipe has a larger diameter (1.4 times),
Water supply power will also increase (double). Furthermore, since the temperature rise (temperature difference) of the recovered water is small, the heat storage water tank is also enlarged (doubled) in order to store a large amount of water in the heat storage.

【0005】これらの課題の根本原因は、熱交換や蓄熱
の熱媒体として水を用いるためであり、用いる熱媒体の
改善が重要な解決策になる。しかし、従来の潜熱蓄熱材
をそのまま熱媒体に用いると以下の問題がある。例え
ば、塩化カルシウム6水塩や硫酸ナトリウム10水塩、塩
素酸リチウム3水塩等の無機塩の潜熱蓄熱材は、ポリエ
チレングリコールやパラフィンのような有機系に比べ、
安価で且つ相変化時の融解潜熱が大きい等の利点がある
一方、過冷却や相分離の問題を有している。即ち、過冷
却とは融点よりかなり低い温度まで冷却しないと凝固発
熱しない現象であり、例えば前記の特公平3-54151 号公
報に開示の塩化カルシウム6水塩はその過冷却温度差は
20℃にもなる。そのため、河川水や下水からの熱回収に
おいては温度差が小さいので、過冷却のために蓄熱槽で
は凝固せずに熱を取り出せない。また相分離は、凝固時
に最初に凝固した固体は未凝固の液体より高密度である
ため沈殿し、液と固体が分離してしまう現象である。こ
れにより繰り返す毎に未凝固の割合が増大し実質的に取
り出せる相変化潜熱が減少してしまう欠点がある。
The root cause of these problems is that water is used as the heat medium for heat exchange and heat storage, and improvement of the heat medium used is an important solution. However, if the conventional latent heat storage material is used as a heat medium as it is, the following problems occur. For example, the latent heat storage material of inorganic salts such as calcium chloride hexahydrate, sodium sulfate decahydrate, lithium chlorate trihydrate, etc., compared to organic systems such as polyethylene glycol and paraffin,
While it has the advantages of being inexpensive and having a large latent heat of fusion during phase change, it has problems of supercooling and phase separation. That is, supercooling is a phenomenon in which solidification heat does not occur unless it is cooled to a temperature significantly lower than the melting point. For example, the calcium chloride hexahydrate disclosed in Japanese Patent Publication No. 3-54151 has a difference in supercooling temperature.
It can reach 20 ℃. Therefore, since the temperature difference is small in the heat recovery from river water or sewage, it cannot be taken out without solidifying in the heat storage tank due to supercooling. In addition, phase separation is a phenomenon in which a solid that is first solidified during solidification has a higher density than an unsolidified liquid and thus precipitates, and the liquid and the solid are separated. As a result, the rate of unsolidification increases with each repetition, and the latent heat of phase change that can be taken out substantially decreases.

【0006】過冷却や相分離の対策として、潜熱蓄熱材
に各種の過冷却防止剤や相分離防止剤を添加する方法が
ある。しかし、繰返し使用すると、それらの防止効果が
減少する経時劣化が起こり、特にカプセル等に充填した
ときは、媒体の寿命を短縮させるため大きな問題とな
る。本発明の目的は、上記の問題を解消して、過冷却や
相分離が生じるのを防止した安価な無機系潜熱蓄熱材を
提供することにある。
As a countermeasure against supercooling and phase separation, there is a method of adding various supercooling inhibitors and phase separation inhibitors to the latent heat storage material. However, repeated use causes deterioration over time in which their preventive effects are reduced, and when filled in capsules or the like, the life of the medium is shortened, which is a serious problem. An object of the present invention is to solve the above problems and provide an inexpensive inorganic latent heat storage material that prevents supercooling and phase separation from occurring.

【0007】本発明のさらに他の目的は、そのような無
機系潜熱蓄熱材を用いて比較的低温度差で熱回収、熱輸
送、蓄熱が可能な未利用熱の熱回収蓄熱システムを提供
することにある。
Still another object of the present invention is to provide an unused heat recovery heat storage system capable of heat recovery, heat transportation and heat storage with a relatively low temperature difference using such an inorganic latent heat storage material. Especially.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく、過冷却防止剤や相変化防止剤の持つ効
果の経時劣化の原因を種々の実験とデ−タ解析より検討
した。その結果、それらの効果の経時劣化の原因は、蓄
熱材とそれらの防止剤との密度差等により、凝固と融解
の繰返しで、防止剤が凝集、沈降し、蓄熱材と分離する
ためであることを明らかにした。また、特にカプセルに
充填していると流動が制限されるために、分離しやすく
経時劣化が大きいことがわかった。
In order to solve the above-mentioned problems, the present inventors have conducted various experiments and data analysis to determine the cause of the deterioration with time of the effects of the supercooling inhibitor and the phase change inhibitor. investigated. As a result, the cause of deterioration of these effects over time is that the inhibitor coagulates and precipitates due to the difference in density between the heat storage material and the inhibitor, etc. due to repeated solidification and melting, and separates from the heat storage material. It revealed that. Further, it was found that, especially when the capsules were filled, the flow was restricted, so that the capsules were easily separated and deteriorated with time.

【0009】そこで、発明者らは、蓄熱材をゲル状にし
て、その中に過冷却防止剤や相分離防止剤を、均一に分
散させることにより、それら防止剤の凝集や沈降を防止
させ得ることを知見した。本願発明はその知見した事実
に基づくものであり、基本的に、固液変化時の潜熱を利
用する無機系潜熱蓄熱材を、カンテン状にゲル化して、
その中に過冷却防止用の核生成剤を分散させたことを特
徴とする熱交換により固液変化する潜熱媒体を開示す
る。それにより、河川水や下水等の熱を潜熱蓄熱材を介
して回収し、蓄熱する熱回収蓄熱システムが有していた
上記した過冷却や相分離の防止効果を解消することがで
き、かつ潜熱媒体の効果の経時劣化を解消した。
Therefore, the present inventors can prevent the aggregation and sedimentation of the heat storage material by gelling the heat storage material and uniformly dispersing the supercooling prevention agent and the phase separation prevention agent therein. I found out that. The invention of the present application is based on the findings, and basically, an inorganic latent heat storage material that utilizes latent heat at the time of solid-liquid change is gelated in an agar form,
Disclosed is a latent heat medium in which a solid-liquid change occurs due to heat exchange, in which a nucleating agent for preventing supercooling is dispersed. As a result, the heat recovery heat storage system that recovers the heat of the river water or sewage through the latent heat storage material and stores the heat can eliminate the above-described effect of preventing supercooling and phase separation, and also the latent heat. The deterioration of the effect of the medium with time was eliminated.

【0010】前記無機系潜熱蓄熱材をゲル状にしてその
中に核生成剤や相分離防止剤を分散させカプセルに封入
したカプセル型潜熱媒体とすることは好ましい態様であ
る。本発明はさらに、熱回収手段として、上記のカプセ
ル型潜熱媒体と下水や河川水等の未利用熱と直接接触さ
せ、その潜熱媒体を蓄熱槽に輸送し貯蔵させたシステム
をも開示する。それにより、熱交換器の小型化と熱輸送
動力の低減又は配管の小口径化と蓄熱槽の小型化を可能
とした。
It is a preferred embodiment that the inorganic latent heat storage material is made into a gel form and a nucleating agent or a phase separation inhibitor is dispersed therein to form a capsule type latent heat medium enclosed in a capsule. The present invention further discloses, as a heat recovery means, a system in which the above capsule type latent heat medium is brought into direct contact with unused heat such as sewage or river water, and the latent heat medium is transported and stored in a heat storage tank. As a result, the heat exchanger can be downsized and the heat transport power can be reduced, or the pipe diameter can be reduced and the heat storage tank can be downsized.

【0011】本発明の対象となる無機系潜熱蓄熱材の好
ましい例としては、回収できる温度(融解温度)別にCa
Cl2 ・6H2O(融解温度:29 ℃) 、Na2SO4・10H2O(32 ℃) 、
LiClO3・3H2O(8 ℃) 、 Na2S2O3・5H2O(50℃) 、Na2HPO4
・12H2O(35.5 ℃) 等がある。さらに、 LiNO3・3H2O 、Ca
(NO3)2・4H2O 、Al(NO3)2・9H2O 、Na2CO3・10H2O、FeCl 3
・6H2O や水も用いることができる。さらに、融解温度を
変化させるために、Na 2SO4(31%) 、NaCl(13%) 、KCl(16
%)、H2O(40%)の混合系(融解温度:4℃) 等の無機蓄熱剤
も有効である。
The inorganic latent heat storage material which is the object of the present invention is preferably used.
A good example is Ca by recovery temperature (melting temperature).
Cl2・ 6H2O (melting temperature: 29 ° C), Na2SOFour・ 10H2O (32 ° C),
LiClO3・ 3H2O (8 ° C), Na2S2O3・ 5H2O (50 ℃), Na2HPOFour 
・ 12H2O (35.5 ℃) etc. In addition, LiNO3・ 3H2O, Ca
(NO3)2・ 4H2O, Al (NO3)2・ 9H2O, Na2CO3・ 10H2O, FeCl 3
・ 6H2O and water can also be used. In addition, the melting temperature
Na to change 2SOFour(31%), NaCl (13%), KCl (16
%), H2Inorganic heat storage agent such as mixed system of O (40%) (melting temperature: 4 ° C)
Is also effective.

【0012】本発明の潜熱蓄熱材に分散する核生成剤に
は、用いる潜熱蓄熱材により効果の程度は異なるが、難
溶解性の各種のストロンチウム塩(酸化ストリンチウ
ム、二酸化ストリンチウム、二酸化ストリンチウム8水
塩、塩化ストロンチウム6水塩、燐酸ストロンチウム、
水酸化ストロンチウム等)や各種のバリウム塩(燐酸1
水素バリウム、燐酸2水素バリウム、燐酸バリウム、ピ
ロリン酸バリウム、亜燐酸バリウム、しゅう酸バリウ
ム、メタホウ酸バリウム等)の他に、Na4P2O7 ・10H 2O、
Na2B4O7 ・10H2O、 KClO 、 Na2SiF6、K2SiF6、BaSiF6
ケイ酸カルシウム、無水ケイ酸、炭化珪素、炭酸カルシ
ウム等を用いることができる。また物理的に核となる微
粒子としてアルミ粉末、炭素粉末、粉末吸着剤、カ−ボ
ンブラック、モレキュラ−シ−ブス、珪藻土、硼砂、ゼ
オライト等の粉末材料やファイバ−材料も有効に用いる
ことができる。また、核生成剤の添加量は、組合せによ
り異なるが、0.5重量%より少ないと、核の個数が少な
すぎて充分過冷却を破壊できず、過冷却防止効果が不十
分になる。一方、10重量%を越えると核生成剤同志が合
体して粗粒化し過冷却防止効果が低下すると同時に、潜
熱蓄熱材の相対的な充填量が減るために潜熱量が減少し
てしまう。従って、核生成剤の添加量は、0.5から10重
量%が適当である。
The nucleating agent dispersed in the latent heat storage material of the present invention
The degree of effect varies depending on the latent heat storage material used.
Various soluble strontium salts (oxide stringent)
Water, stringent dioxide, stringent dioxide 8 water
Salt, strontium chloride hexahydrate, strontium phosphate,
Strontium hydroxide, etc.) and various barium salts (phosphoric acid 1
Barium hydrogen, barium dihydrogen phosphate, barium phosphate, pi
Barium rophosphate, barium phosphite, barium oxalate
Aluminum, barium metaborate, etc.), NaFourP2O7・ 10H 2O,
Na2BFourO7・ 10H2O, KClO, Na2SiF6, K2SiF6, BaSiF6Or
Calcium silicate, silicic anhydride, silicon carbide, calcium carbonate
Um or the like can be used. Also, the physical core
As particles, aluminum powder, carbon powder, powder adsorbent, carbon
Black, molecular sieves, diatomaceous earth, borax, zebra
Effective use of powder materials such as olite and fiber materials
be able to. The amount of nucleating agent added depends on the combination.
However, if it is less than 0.5% by weight, the number of nuclei is small.
It is not possible to destroy the supercooling sufficiently, and the effect of preventing supercooling is insufficient.
It will be a minute. On the other hand, if the content exceeds 10% by weight, the nucleating agents will be mixed together.
As the particles become coarser and the supercooling prevention effect decreases,
Since the relative filling amount of the heat storage material is reduced, the latent heat amount is reduced.
Will end up. Therefore, the amount of nucleating agent added is 0.5 to 10
Amount% is suitable.

【0013】相分離防止剤も、用いる潜熱蓄熱材により
効果の程度は異なるが、ヒドロキシエチルセルロ−ス、
ベントナイト、ポリアクリル酸、酸化ポリエチレン、で
ん粉糊、木質パルプ等を有効に用いることができる。本
発明を実現するための潜熱蓄熱材をゲル化するゲル化剤
としては、天然有機重合体として、ゼラチン、でん粉、
橋かけ結合でん粉、セルロ−ズ重合体等を有効に用いる
ことができ、合成重合体として、ポリビニ−ルアルコ−
ル、ポリアクリル酸、ポリエチレンオキサイト、ポロア
クリルアミド、ポリメタクリルアミド、ポリハイドロオ
キシアルキルメタクリレ−ト、ポリエチレングリコ−
ル、アクリロニトリルグラフト化加水分解物、アクリル
酸グラフト化物、ポリビニルピリジン、カルボキシメチ
ルセルロ−ス等を有効に用いることができる。ゲル化剤
の添加量は、組合せにより多少異なるが、0.5重量%よ
り少ないと、潜熱剤とゲル化剤の混合が不均一となり、
ゲル生成が不十分となり、過冷却防止剤や相分離防止剤
が沈降し均一に分散しなくなる。一方、10重量%を越え
るとゲル構造が破壊されるためにゲル化作用が逆に低下
すると同時に、潜熱蓄熱材の相対的な充填量が減るため
に潜熱量が減少してしまう。従ってゲル化剤の添加量
は、0.5から10重量%が適当である。
The phase-separation-preventing agent also has different effects depending on the latent heat storage material used, but hydroxyethyl cellulose,
Bentonite, polyacrylic acid, polyethylene oxide, starch paste, wood pulp and the like can be effectively used. As a gelling agent for gelling the latent heat storage material for realizing the present invention, a natural organic polymer such as gelatin, starch,
Cross-linked starch, cellulose polymer and the like can be effectively used. As a synthetic polymer, polyvinyl alcohol
, Polyacrylic acid, polyethylene oxide, polyacrylamide, polymethacrylamide, polyhydroxyalkyl methacrylate, polyethylene glycol
, Acrylonitrile grafted hydrolyzate, acrylic acid grafted product, polyvinyl pyridine, carboxymethyl cellulose and the like can be effectively used. The addition amount of the gelling agent is slightly different depending on the combination, but if it is less than 0.5% by weight, the mixture of the latent heat agent and the gelling agent becomes uneven,
The gel formation becomes insufficient, and the supercooling preventive agent and the phase separation preventive agent settle and do not disperse uniformly. On the other hand, if the amount exceeds 10% by weight, the gel structure is destroyed and the gelling action is adversely decreased. At the same time, the relative amount of the latent heat storage material is reduced, and the amount of latent heat is reduced. Therefore, the appropriate amount of gelling agent added is 0.5 to 10% by weight.

【0014】[0014]

【作用】まず、好ましくはカプセルに封入した蓄熱材に
前記したゲル化剤を添加してゲル状にし、その中に前記
した核生成剤や相分離防止剤を分散させてカプセル型の
潜熱媒体を構成する。こうすることにより、潜熱媒体の
過冷却や相分離の防止効果が向上し経時劣化が解消でき
るために、これまで使用が困難とされていた無機系潜熱
蓄熱材を用いた未利用熱等の熱回収蓄熱システムが実現
できる。もちろんカプセルに封入せずにそのまま熱交換
媒体として用いることも可能である。
First, preferably, the gelling agent is added to the heat storage material enclosed in a capsule to form a gel, and the nucleating agent or the phase separation inhibitor is dispersed therein to form a capsule type latent heat medium. Constitute. By doing so, the effect of preventing overcooling of the latent heat medium and phase separation can be improved and deterioration over time can be eliminated, so that heat such as unused heat using an inorganic latent heat storage material that has been difficult to use until now. A recovery heat storage system can be realized. Of course, it is also possible to use it as a heat exchange medium as it is without encapsulating it.

【0015】本システムでは、上記のカプセル型潜熱媒
体を用いて未利用熱と直接接触熱交換させ、潜熱媒体の
滞留時間を調節できる。そのため、熱交換温度差が少な
くできるので熱交換器を小型化できる。また潜熱媒体自
身を輸送することにより高密度で熱輸送ができるので輸
送動力の低減と配管の小口径化ができる。さらに潜熱媒
体を蓄熱槽に貯蔵することにより高密度で蓄熱できるの
で蓄熱槽も小型化できる。
In this system, it is possible to adjust the residence time of the latent heat medium by directly contacting heat exchange with the unused heat using the above capsule type latent heat medium. Therefore, the difference in heat exchange temperature can be reduced, and the heat exchanger can be downsized. Further, since the latent heat medium itself is transported, heat can be transported at a high density, so that the transport power can be reduced and the pipe diameter can be reduced. Further, since the latent heat medium is stored in the heat storage tank, heat can be stored at a high density, so that the heat storage tank can be downsized.

【0016】[0016]

【実施例】以下、実施例により本発明を説明する。ま
ず、潜熱媒体の実施例を示す。 〔実施例1〕蓄熱剤として塩化カルシウム6水塩(CaCl
2-6H2O)を40℃で加熱融解し、そこに核形成剤として塩
化ストロンチウム6水塩(SrCl2-6H2O)を重量で1%、
ゲル化剤としてゼラチンを重量で5%添加しながら、15
分攪拌して、核生成剤を均一に蓄熱剤に分散させた状態
でゲル化した潜熱媒体を50ccビーカーに作成した。 〔実施例2〕ゲル化剤としてポリビニルアリコールを用
いた点の除き実施例1と同様にしてゲル化した潜熱媒体
を50ccビーカーに作成した。 〔実施例3〕実施例2で調整したゲル化した蓄熱剤を、
直径10mm、厚み0.5mm のポリスチレン製の柱状カプセル
に充填してカプセル状潜熱媒体を作成した。 〔比較例1〕蓄熱剤として塩化カルシウム6水塩(CaCl
2-6H2O)を40℃で加熱融解して、蓄熱剤を50ccビーカー
に作成した。 〔比較例2〕蓄熱剤として塩化カルシウム6水塩(CaCl
2-6H2O)を40℃で加熱融解し、そこに核形成剤として塩
化ストロンチウム6水塩(SrCl2-6H2O)を重量で1%添
加しながら攪拌して、蓄熱剤を50ccビーカーに作成し
た。 〔潜熱媒体としての性能評価法〕実施例1ないし3ノ潜
熱媒体および比較例1および2の蓄熱剤に対して、10℃
まで冷却して凝固させる放熱操作と、50℃まで加熱して
融解させる蓄熱操作を1サイクルとして、凝固時の過冷
却温度差の変化を測定した。ここで、過冷却温度差と
は、塩化カルシウム6水塩の凝固(融解)温度である29
℃と、実際に作成した蓄熱剤がサイクルテストで示す凝
固温度との差をいうものとする。その差が小さい程、核
生成剤が有効に働き優れていると評価できる。
EXAMPLES The present invention will be described below with reference to examples. First, an example of the latent heat medium will be shown. [Example 1] As a heat storage agent, calcium chloride hexahydrate (CaCl
2 -6H 2 O) is heated and melted at 40 ° C, and strontium chloride hexahydrate (SrCl 2 -6H 2 O) as a nucleating agent is added thereto in an amount of 1% by weight,
While adding 5% by weight of gelatin as a gelling agent,
After stirring for a minute, a latent heat medium gelled in a state where the nucleating agent was uniformly dispersed in the heat storage agent was prepared in a 50 cc beaker. [Example 2] A gelled latent heat medium was prepared in a 50 cc beaker in the same manner as in Example 1 except that polyvinyl alcohol was used as a gelling agent. [Example 3] The gelled heat storage agent prepared in Example 2 was
A columnar capsule made of polystyrene having a diameter of 10 mm and a thickness of 0.5 mm was filled to prepare a capsule-shaped latent heat medium. [Comparative Example 1] Calcium chloride hexahydrate (CaCl
2 -6H 2 O) was heated and melted at 40 ° C to prepare a heat storage agent in a 50cc beaker. [Comparative Example 2] Calcium chloride hexahydrate (CaCl 2 as a heat storage agent
2 -6H 2 O) is heated and melted at 40 ° C, and strontium chloride hexahydrate (SrCl 2 -6H 2 O) as a nucleating agent is added thereto in an amount of 1% by weight and stirred, and a heat storage agent is added in a 50cc beaker. Created in. [Performance Evaluation Method as Latent Heat Medium] 10 ° C. for the latent heat medium of Examples 1 to 3 and the heat storage agents of Comparative Examples 1 and 2
The change of the supercooling temperature difference at the time of solidification was measured, with one cycle consisting of a heat radiation operation of cooling to solidify and heating to heat to 50 ° C. and melting. Here, the supercooling temperature difference is the solidification (melting) temperature of calcium chloride hexahydrate 29
The difference between ° C and the solidification temperature of the actually prepared heat storage agent in the cycle test. It can be evaluated that the smaller the difference, the more effectively the nucleating agent works.

【0017】[0017]

【表1】 〔性能評価結果〕表1は上記方法で作成し、性能評価テ
ストを行った実施例1ないし3の潜熱媒体および比較例
1および2の蓄熱剤のテスト結果を示す。表では、1回
目と50回目の過冷却温度差の実測値を示している。
[Table 1] [Performance Evaluation Result] Table 1 shows the test results of the latent heat mediums of Examples 1 to 3 and the heat storage agents of Comparative Examples 1 and 2 which were prepared by the above method and subjected to the performance evaluation test. In the table, the actual measured values of the first and 50th supercooling temperature differences are shown.

【0018】その結果、蓄熱剤のみである比較例1では
過冷却温度差は18℃と大きく、また核生成剤を添加した
比較例2では、1回目は過冷却温度差は2℃と小さい
が、50回目では核生成剤の沈降のため、過冷却温度差は
17℃と大きくなってしまう。一方、本発明である実施例
1、2、3の潜熱媒体はいずれも50回目まで過冷却温度
差は2℃と小さく、かつ変化しない。実施例1、2で
は、ゲル化剤を変えているが両者の差は少なく、過冷却
温度差は小さい。実施例4、5ではビーカー状態とカプ
セル状態との違いを示すが、両者には差はなく、カプセ
ル状態でも本発明の効果が同じであることが実証され
た。
As a result, in Comparative Example 1 containing only the heat storage agent, the difference in supercooling temperature was as large as 18 ° C., and in Comparative Example 2 in which the nucleating agent was added, the difference in supercooling temperature was as small as 2 ° C. at the first time. , At the 50th time, the subcooling temperature difference was
It becomes as large as 17 ℃. On the other hand, in the latent heat mediums of Examples 1, 2 and 3 which are the present invention, the difference in supercooling temperature is as small as 2 ° C. and does not change until the 50th time. In Examples 1 and 2, the gelling agent was changed, but the difference between the two was small and the supercooling temperature difference was small. Examples 4 and 5 show the difference between the beaker state and the capsule state, but there is no difference between them, and it was demonstrated that the effect of the present invention is the same even in the capsule state.

【0019】以上の実施例から、本発明のゲル化剤を用
いた潜熱媒体はカプセル状態でも長期間使用しても過冷
却の劣化はなく安定した性能が得られることがわかっ
た。次に、上記した本発明による潜熱媒体を熱交換媒体
として用いた熱回収蓄熱システムの一実施例を図1〜図
2を用いて説明する。図1は本発明による熱回収蓄熱シ
ステムのサイクル図を示し、図2は熱回収蓄熱システム
に用いる潜熱蓄熱材を充填したカプセル型熱媒体の断面
図を示す。蓄熱槽1にはカプセル型潜熱媒体(以下潜熱
媒体と呼ぶ)3と搬送流体4が混合して蓄えられてお
り、蓄熱槽1と熱交換器2の間には潜熱媒体3を搬送流
体4といっしょに搬送するための搬送用ポンプ5が設け
られている。蓄熱槽1と熱交換器2は実用的に断熱され
た断熱管8で接続されている。
From the above examples, it was found that the latent heat medium using the gelling agent of the present invention does not deteriorate due to supercooling and has stable performance even in the capsule state or long-term use. Next, an embodiment of a heat recovery heat storage system using the above-described latent heat medium according to the present invention as a heat exchange medium will be described with reference to FIGS. FIG. 1 shows a cycle diagram of a heat recovery heat storage system according to the present invention, and FIG. 2 shows a sectional view of a capsule type heat medium filled with a latent heat storage material used in the heat recovery heat storage system. A capsule type latent heat medium (hereinafter referred to as latent heat medium) 3 and a carrier fluid 4 are mixed and stored in the heat storage tank 1, and the latent heat medium 3 and the carrier fluid 4 are stored between the heat storage tank 1 and the heat exchanger 2. A transport pump 5 for transporting together is provided. The heat storage tank 1 and the heat exchanger 2 are connected by a heat insulating pipe 8 which is practically insulated.

【0020】搬送流体4は、ヒートポンプ11などの熱源
に使用する水や油を主成分として必要に応じて腐食防止
剤などの添加剤を加えた流体である。熱源流体7は、熱
源6からポンプ9で供給される河川水、下水、海水など
の環境温度付近の低温度レベルの流体である。熱源6か
ら熱源流体7を、ポンプ9で熱交換器2へ送る。熱源流
体7は、熱交換器2の中で潜熱媒体3と流動状態で直接
接触し、カプセル内の無機系潜熱蓄熱材に熱を与え、冷
却された後、熱源6へ戻される。
The carrier fluid 4 is a fluid whose main component is water or oil used for a heat source such as the heat pump 11 and to which additives such as a corrosion inhibitor are added if necessary. The heat source fluid 7 is a fluid having a low temperature level near the ambient temperature such as river water, sewage, seawater, etc., which is supplied from the heat source 6 by the pump 9. The heat source fluid 7 is sent from the heat source 6 to the heat exchanger 2 by the pump 9. The heat source fluid 7 is in direct contact with the latent heat medium 3 in the heat exchanger 2 in a flowing state, gives heat to the inorganic latent heat storage material in the capsule, is cooled, and is then returned to the heat source 6.

【0021】一方、熱交換器2内で、カプセル内の固体
の潜熱蓄熱材が融解し、熱源流体7から得た熱が潜熱蓄
熱材の融解潜熱としてカプセル内に高密度で貯蔵され
る。液体状態の潜熱材を充填した潜熱媒体3は搬送流体
4と混合して断熱管8内を搬送され、蓄熱槽1へ貯蔵さ
れる。熱の需要側のニ−ズに対応して、搬送流体4のみ
がヒ−トポンプ11へ送られ必要温度まで昇温してビル等
の暖房用熱源として供給される。ここで、ヒ−トポンプ
11へ潜熱媒体3と搬送流体4を混合して流せば、その間
の配管の小口径化も可能となる。
On the other hand, in the heat exchanger 2, the solid latent heat storage material in the capsule is melted, and the heat obtained from the heat source fluid 7 is stored in the capsule at high density as the latent heat of fusion of the latent heat storage material. The latent heat medium 3 filled with the latent heat material in a liquid state is mixed with the carrier fluid 4 and carried in the heat insulating pipe 8 and stored in the heat storage tank 1. Corresponding to the heat demand side, only the carrier fluid 4 is sent to the heat pump 11 to be heated to a required temperature and supplied as a heat source for heating a building or the like. Where the heat pump
If the latent heat medium 3 and the carrier fluid 4 are mixed and flown to 11, it is possible to reduce the diameter of the pipe between them.

【0022】熱交換器2は、容器内で、カプセル3が熱
源流体7と流動しながら直接接触して熱交換しながら下
降していく構造になっている。一方蓄熱槽1は、カプセ
ルが搬送流体4中に充填されており、ポンプ5で熱交換
器2へカプセル3が送られながら、ピストン流で槽内を
移動する。搬送流体4は槽内のストレーナ8を通してヒ
ートポンプ11へ送られるが、カプセル3はヒートポンプ
11へは送られない構造となっている。
The heat exchanger 2 has a structure in which the capsule 3 is in direct contact with the heat source fluid 7 while flowing in the container and descends while exchanging heat. On the other hand, in the heat storage tank 1, the capsule is filled in the carrier fluid 4, and while the capsule 3 is sent to the heat exchanger 2 by the pump 5, the capsule moves in the tank by the piston flow. The carrier fluid 4 is sent to the heat pump 11 through the strainer 8 in the tank, while the capsule 3 is the heat pump.
It is structured so that it cannot be sent to 11.

【0023】また、熱交換器2で熱源流体7と潜熱媒体
3は間接的に熱交換してもよいが、直接的に熱交換する
場合は、蓄熱槽1と熱交換器2の間に潜熱媒体3と搬送
流体4を分離する装置を設けて潜熱媒体3のみを熱源流
体7が接触熱交換できるようにする方が良い。ここで、
熱交換器2の中に潜熱媒体3を密に充填して、ほぼ静止
状態(ピストン流れも含む)で熱源流体7と熱交換して
も良い。しかし、潜熱媒体の充填量を減らして潜熱媒体
を流動状態で熱交換させた方が、熱交換性能が向上でき
ると同時に、熱源流体が汚れた下水等の場合は、潜熱媒
体のカプセル表面に汚れが付きにくく耐汚れ性が向上す
る効果がある。
Although the heat source fluid 7 and the latent heat medium 3 may indirectly exchange heat in the heat exchanger 2, when the heat is directly exchanged, the latent heat is generated between the heat storage tank 1 and the heat exchanger 2. It is better to provide a device for separating the medium 3 and the carrier fluid 4 so that only the latent heat medium 3 can be contacted by the heat source fluid 7 for heat exchange. here,
The latent heat medium 3 may be densely filled in the heat exchanger 2 to exchange heat with the heat source fluid 7 in a substantially stationary state (including piston flow). However, the heat exchange performance can be improved by reducing the filling amount of the latent heat medium and exchanging heat with the latent heat medium in a flowing state, and at the same time, when the heat source fluid is dirty, such as sewage, the capsule surface of the latent heat medium becomes dirty. It has the effect of making it hard to attach and improving the stain resistance.

【0024】蓄熱槽1への潜熱媒体3の充填状態も、上
記と同様である。即ち、蓄熱槽1に潜熱媒体3を密に充
填して、ほぼ静止状態(ピストン流れも含む)で熱交換
しても良いが、潜熱媒体の充填量を減らして潜熱媒体を
流動状態で熱交換させた方が、熱交換性能が向上でき、
蓄熱槽の負荷応答性が向上する。対象、規模又は目的に
よっては、蓄熱槽1と熱交換器2に別々に潜熱媒体3を
充填して、両者間で潜熱媒体3を循環させない方法が有
利である。この場合は、熱交換器を2つ以上設置し、バ
ッチ式で交互に凝固と融解を行うが、搬送ポンプ5が安
価なポンプが使える効果がある。
The filling state of the latent heat medium 3 in the heat storage tank 1 is also the same as above. That is, the heat storage tank 1 may be densely filled with the latent heat medium 3 and heat may be exchanged in a substantially stationary state (including the piston flow), but the latent heat medium may be exchanged in a fluid state by reducing the filling amount of the latent heat medium. The better the heat exchange performance,
The load response of the heat storage tank is improved. Depending on the object, scale, or purpose, it is advantageous to fill the heat storage tank 1 and the heat exchanger 2 with the latent heat medium 3 separately and not circulate the latent heat medium 3 between them. In this case, two or more heat exchangers are installed and the solidification and the melting are alternately performed in a batch type, but the transport pump 5 has an effect that an inexpensive pump can be used.

【0025】以上は、冬季の暖房等を目的に、熱源流体
7から熱を回収してヒ−トポンプ11の熱源に利用する場
合を示したが、カプセル内の潜熱蓄熱材は、熱交換器2
で融解が、蓄熱槽1で凝固が起こる。一方、夏場の冷房
等を目的に、河川水や下水の熱源流体7を冷凍機(ヒ−
トポンプと同じ機器で可)11の冷却源にする場合には、
カプセル内の潜熱蓄熱材は、相変化が逆になり、熱交換
器2で凝固が、蓄熱槽1で融解が起こるが、熱回収シス
テムの構成及び操作は冬季と同様である。
In the above, the case where the heat is recovered from the heat source fluid 7 and used as the heat source of the heat pump 11 for the purpose of heating in the winter, etc., the latent heat storage material in the capsule is the heat exchanger 2.
And the solidification occurs in the heat storage tank 1. On the other hand, the heat source fluid 7 for river water or sewage is used as a refrigerator (heater) for the purpose of cooling in summer.
The same equipment as the pump can be used.)
The phase change of the latent heat storage material in the capsule is reversed, solidification occurs in the heat exchanger 2 and melting occurs in the heat storage tank 1, but the configuration and operation of the heat recovery system are the same as in winter.

【0026】上記の熱回収はカプセル内の潜熱蓄熱材に
過冷却や、相分離等が無い場合に有効に機能する。本発
明においては、前記した図2に示すゲル化した潜熱蓄熱
材10に過冷却防止剤20や相分離防止剤30を均一に分散さ
せて、それを樹脂などのカプセル殻40でカプセル化した
ものを用いるのが特に有効である。カプセルの直径は、
0.5 〜30mm程度のものが流動や輸送に適した寸法であ
る。また、カプセルの形状は、熱源流体の種類や使用目
的等により変化し、例えば潜熱媒体を静止状態(ピスト
ン流れも含む)で使用する場合は、逆に流動が制限され
る円筒型や角形等の非球形が良い場合がある。
The above heat recovery works effectively when the latent heat storage material in the capsule does not have supercooling or phase separation. In the present invention, the supercooling preventive agent 20 and the phase separation preventive agent 30 are uniformly dispersed in the gelled latent heat storage material 10 shown in FIG. 2 and encapsulated in a capsule shell 40 such as a resin. Is particularly effective. The diameter of the capsule is
The size of 0.5 to 30 mm is suitable for flow and transportation. The shape of the capsule changes depending on the type of heat source fluid and the purpose of use. For example, when using a latent heat medium in a stationary state (including piston flow), conversely the flow is restricted, such as a cylindrical type or a rectangular shape. The non-spherical shape may be good.

【0027】熱源の種類や季節(目的)により、熱源流
体の温度レベルが異なる。例えば、河川水や下水等は、
冬季の暖房時期には、10℃程度と外気温より高いので暖
房用の熱源に使えるが、夏季の冷房時期は、17℃程度と
外気温より低くなるので冷房用の冷却源に使える等、同
じ熱源でも季節により温度が異なる。従って、用いるカ
プセルに充填する潜熱蓄熱材の融解温度が異なるので、
目的と対象に応じて潜熱蓄熱材を選定する必要がある。
The temperature level of the heat source fluid varies depending on the type of heat source and the season (purpose). For example, river water and sewage,
During the heating period in winter, the temperature is around 10 ° C, which is higher than the outside temperature, so it can be used as a heat source for heating, but in the summer, the cooling period is around 17 ° C, which is lower than the outside temperature, so it can be used as a cooling source for cooling. Even the heat source has different temperatures depending on the season. Therefore, since the melting temperature of the latent heat storage material filled in the capsule to be used is different,
It is necessary to select a latent heat storage material according to the purpose and target.

【0028】[0028]

【発明の効果】本発明は、潜熱蓄熱材をゲル化してその
中に過冷却防止剤や相分離防止剤を均一に分散させた潜
熱媒体とすることにより、これまで過冷却や相分離のた
め使用が困難とされていた安価で高蓄熱密度の無機系潜
熱蓄熱材を、効率よく使用できるようにした。それによ
り、上記の潜熱媒体を用いた熱交換器と蓄熱槽を持つ未
利用熱の回収に適した熱回収蓄熱システムを実現でき
る。本システムは、熱交換器の小型化、耐汚れ性向上と
蓄熱槽の小型化及び輸送動力の低減又は配管の小口径化
が可能である。
According to the present invention, the latent heat storage material is gelled and used as a latent heat medium in which a supercooling inhibitor and a phase separation inhibitor are uniformly dispersed. Inorganic latent heat storage material with low heat storage density and high heat storage density, which was considered difficult to use, can be used efficiently. As a result, it is possible to realize a heat recovery heat storage system suitable for recovering unused heat, which has a heat exchanger using the latent heat medium and a heat storage tank. This system is capable of downsizing heat exchangers, improving stain resistance, downsizing heat storage tanks, reducing transport power, and downsizing pipes.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による熱媒体を用いた熱回収蓄熱シス
テムのサイクル図。
FIG. 1 is a cycle diagram of a heat recovery heat storage system using a heat medium according to the present invention.

【図2】 熱回収蓄熱システムに用いるカプセル型熱媒
体の断面図。
FIG. 2 is a cross-sectional view of a capsule-type heat medium used in the heat recovery heat storage system.

【符号の説明】[Explanation of symbols]

1…蓄熱槽 2…熱交換器 3…カプセル型熱媒体 4…搬送流体 6…熱源 7…熱源流体 10…潜熱蓄熱材 11…ヒ−トポンプ 20…過冷却防止剤 30…相分離防止剤 40…カプセル殻 1 ... Heat storage tank 2 ... Heat exchanger 3 ... Capsule type heat medium 4 ... Carrier fluid 6 ... Heat source 7 ... Heat source fluid 10 ... Latent heat storage material 11 ... Heat pump 20 ... Supercooling inhibitor 30 ... Phase separation inhibitor 40 ... Capsule shell

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 ゲル化剤を用いてゲル化した固液変化時
の潜熱を利用する潜熱蓄熱材の中に過冷却防止用の核生
成剤が分散していることを特徴とする熱交換により固液
変化する潜熱媒体。
1. A heat exchange characterized in that a nucleating agent for preventing supercooling is dispersed in a latent heat storage material that utilizes latent heat at the time of solid-liquid change by gelling with a gelling agent. A latent heat medium that changes solid-liquid.
【請求項2】 請求項1記載の潜熱媒体をカプセル容器
に封じ込めたことを特徴とするカプセル状潜熱媒体。
2. A capsule-shaped latent heat medium comprising the latent heat medium according to claim 1 enclosed in a capsule container.
【請求項3】 潜熱蓄熱材をゲル化するゲル化剤とし
て、ゼラチン、でん粉、橋かけ結合でん粉、セルロ−ズ
重合体等の天然有機重合体を用いたことを特徴とする請
求項1または2記載の潜熱媒体。
3. A natural organic polymer such as gelatin, starch, cross-linked starch, or cellulose polymer is used as a gelling agent for gelling the latent heat storage material. The latent heat medium described.
【請求項4】 潜熱蓄熱材をゲル化するゲル化剤とし
て、ポリビニ−ルアルコ−ル、ポリアクリル酸、ポリエ
チレンオキサイト、ポロアクリルアミド、ポリメタクリ
ルアミド、ポリハイドロオキシアルキルメタクリレ−
ト、ポリエチレングリコ−ル、アクリロニトリルグラフ
ト化加水分解物、アクリル酸グラフト化物、ポリビニル
ピリジン、カルボキシメチルセルロ−ス等の合成重合体
を用いたことを特徴とする請求項1または2記載の潜熱
媒体。
4. A gelling agent for gelling a latent heat storage material, such as polyvinyl alcohol, polyacrylic acid, polyethylene oxide, polyacrylamide, polymethacrylamide, polyhydroxyalkylmethacrylate.
The latent heat medium according to claim 1 or 2, wherein a synthetic polymer such as a polyester, a polyethylene glycol, an acrylonitrile grafted hydrolyzate, an acrylic acid grafted product, polyvinyl pyridine, or carboxymethyl cellulose is used.
【請求項5】 相分離防止剤をさらに添加したことを特
徴とする請求項1または2記載の潜熱媒体。
5. The latent heat medium according to claim 1 or 2, further comprising a phase separation inhibitor.
【請求項6】 相分離防止剤として、ヒドロキシエチル
セルロ−ス、ベントナイト、ポリアクリル酸、酸化ポリ
エチレン、でん粉糊、木質パルプを用いたことを特徴と
する請求項5記載の潜熱媒体。
6. The latent heat medium according to claim 5, wherein hydroxyethyl cellulose, bentonite, polyacrylic acid, polyethylene oxide, starch paste, and wood pulp are used as the phase separation inhibitor.
【請求項7】 請求項1ないし6記載の潜熱媒体を熱源
流体と直接接触熱交換させる構造の熱交換器を具備する
ことを特徴とする熱回収システム。
7. A heat recovery system comprising a heat exchanger having a structure in which the latent heat medium according to claim 1 is directly contacted with a heat source fluid for heat exchange.
【請求項8】 潜熱媒体を流動状態で直接接触熱交換さ
せる構造の熱交換器を具備することを特徴とする請求項
8記載の熱回収システム。
8. The heat recovery system according to claim 8, further comprising a heat exchanger having a structure for performing direct contact heat exchange of the latent heat medium in a fluid state.
【請求項9】 請求項1ないし6記載の潜熱媒体を蓄熱
材として熱回収流体と直接接触熱交換させる構造の蓄熱
槽を具備することを特徴とする熱回収蓄熱システム。
9. A heat recovery heat storage system comprising a heat storage tank having a structure in which the latent heat medium according to claim 1 is used as a heat storage material to directly exchange heat with a heat recovery fluid.
【請求項10】 潜熱媒体を流動状態で直接接触熱交換
させる構造の蓄熱槽を具備することを特徴とする請求項
10記載の熱回収蓄熱システム。
10. A heat storage tank having a structure for directly contacting heat exchange of a latent heat medium in a fluid state.
10. The heat recovery heat storage system described in 10.
【請求項11】 請求項1ないし6記載の潜熱媒体と搬
送流体とを貯蔵する蓄熱槽と、前記潜熱媒体を用いて熱
源流体と直接的または間接的に熱を交換する熱交換器
と、該蓄熱槽と前記熱交換器の間に潜熱媒体を搬送流体
とともに循環輸送する手段を設けたことを特徴とする熱
回収蓄熱システム。
11. A heat storage tank for storing the latent heat medium according to claim 1 and a carrier fluid, a heat exchanger for directly or indirectly exchanging heat with a heat source fluid using the latent heat medium, A heat recovery heat storage system characterized in that a means for circulating and transporting a latent heat medium together with a carrier fluid is provided between the heat storage tank and the heat exchanger.
JP4313303A 1992-11-24 1992-11-24 Latent heat medium and heat collecting and accumulating system using the same Pending JPH06159965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4313303A JPH06159965A (en) 1992-11-24 1992-11-24 Latent heat medium and heat collecting and accumulating system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4313303A JPH06159965A (en) 1992-11-24 1992-11-24 Latent heat medium and heat collecting and accumulating system using the same

Publications (1)

Publication Number Publication Date
JPH06159965A true JPH06159965A (en) 1994-06-07

Family

ID=18039599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4313303A Pending JPH06159965A (en) 1992-11-24 1992-11-24 Latent heat medium and heat collecting and accumulating system using the same

Country Status (1)

Country Link
JP (1) JPH06159965A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110951465A (en) * 2019-12-13 2020-04-03 天津优米优科技有限公司 Novel phase change capsule and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110951465A (en) * 2019-12-13 2020-04-03 天津优米优科技有限公司 Novel phase change capsule and preparation method thereof

Similar Documents

Publication Publication Date Title
Nagano et al. Thermal characteristics of magnesium nitrate hexahydrate and magnesium chloride hexahydrate mixture as a phase change material for effective utilization of urban waste heat
EP0000099B1 (en) Thermal energy storage material
Gawron et al. Properties of some salt hydrates for latent heat storage
JP2006219557A (en) Heat storage material composition, heat storage body using the same and heat storage apparatus
JP2009019857A (en) Cold heat accumulating microcapsule and ice heat accumulating air-conditioning system using this microcapsule
WO2012139338A1 (en) Lithium battery electric core module and design method of battery package cooling system
US4341649A (en) Energy storage medium and method
US4360442A (en) Ethylene carbonate as a phase-change heat storage medium
JPH06159965A (en) Latent heat medium and heat collecting and accumulating system using the same
JP2003130562A (en) Hot heat storage apparatus
JP2000087020A (en) Heat storage material composition and heat storage type hot water supplying apparatus using the same
JP2981890B1 (en) Thermal storage device and thermal management method in the device
US4342661A (en) Heat storage medium
Farid et al. A Review on Phase Change Energy Storage: Materials and Applications
JP2017187181A (en) Heat exchanger and water heater
JPH05215369A (en) Cooling or heating method utilizing latent heat
HU188494B (en) High-capacity heat accumulator
JP3444127B2 (en) Heat storage material composition
JPS58219399A (en) Heat accumulating material
JPH10130637A (en) Heat-reserving material composition
JPH0215598B2 (en)
JPS606780A (en) Thermal energy storage material composition and production thereof
JPH05331457A (en) Composition for heat storage
JPS586399A (en) Heat regenerative material
JPH0525471A (en) Heat storage medium