JPS58117277A - Thermal energy storage material - Google Patents

Thermal energy storage material

Info

Publication number
JPS58117277A
JPS58117277A JP3082A JP3082A JPS58117277A JP S58117277 A JPS58117277 A JP S58117277A JP 3082 A JP3082 A JP 3082A JP 3082 A JP3082 A JP 3082A JP S58117277 A JPS58117277 A JP S58117277A
Authority
JP
Japan
Prior art keywords
storage material
energy storage
nucleating agent
thermal energy
sodium sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3082A
Other languages
Japanese (ja)
Other versions
JPH0134477B2 (en
Inventor
Hiroshi Miyake
三宅 洋
Katsumi Takeshita
竹下 勝美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP3082A priority Critical patent/JPS58117277A/en
Publication of JPS58117277A publication Critical patent/JPS58117277A/en
Publication of JPH0134477B2 publication Critical patent/JPH0134477B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To provide a thermal energy storage material which facilitates nucleation during solidification, can prevent supercooling over a long period of time, and is economical and stable, by blending a specified nucleating agent with Na2 SO4.10H2O. CONSTITUTION:A thermal energy storage material is obtd. by blending at least one member selected from saccharin sodium, vanadate salts such as sodium vanadate, alkaline earth metal ethylenediamine-tetraacetates, such as barium ethylenediamine-tetraacetate, MgO and Mg(OH)2 as a nucleating agent with Na2SO4.10H2O. By adding the nucleating agent, nucleation is facilitated during the solidification of Na2SO4.10H2O. Further, since supercooling can be prevented over a long period of time, it becomes possible to provide an energy storage system using an economical, stable thermal energy storage material.

Description

【発明の詳細な説明】 本発明は潜熱型蓄熱装置等に用いられる蓄熱材に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat storage material used in latent heat type heat storage devices and the like.

周知の如く、近年のエネルギー事情の悪化に対処するた
めに排熱や太陽熱の有効利用の機運が高まりつ\あシ幅
広い時間範囲が要求される蓄熱の方法としては、水、岩
石等による顕熱方式や、含水塩、パラフィン等による潜
熱方式等7ノ・考えられるが、本発明は潜熱型蓄熱材と
して含水塩を利用するものである。
As is well known, in order to cope with the deterioration of the energy situation in recent years, there is increasing momentum for the effective use of waste heat and solar heat.As a heat storage method that requires a wide time range, sensible heat using water, rocks, etc. There are seven possible methods, such as a latent heat method using hydrated salt, paraffin, etc., but the present invention utilizes hydrated salt as a latent heat type heat storage material.

従来から含水塩の中で硫酸ナトリウム10水塩は常温付
近に融点をもつ安価、を蓄熱物質として知ら11でいた
が顕蔦な過冷却現象を有しているために実用化されるに
至っていない1、硫酸ナトリウム10水塩を溶融状態か
ら次第に降温させたとき、相変化温度(32℃)を過き
ても結晶化せず放熱しないという過冷却現象は、もし硫
酸ナトリウム10水塩に蓄熱されても所定温度で熱がと
り出せないことを意味し、硫酸ナトリウム10水塩を蓄
熱材として用いるためにv:丁この過冷却現象を押える
ことが必須となる。
Among hydrated salts, sodium sulfate decahydrate has long been known as a heat storage material because it is inexpensive and has a melting point near room temperature11, but it has not been put into practical use because it has a noticeable supercooling phenomenon. 1. The supercooling phenomenon in which when the temperature of sodium sulfate decahydrate is gradually lowered from its molten state, it does not crystallize and does not release heat even after passing the phase change temperature (32°C). This means that no heat can be taken out at a certain temperature, even if the temperature is low.In order to use sodium sulfate decahydrate as a heat storage material, it is essential to suppress this supercooling phenomenon.

本発明はか\る欠点を除くために硫酸ナトリウム10水
塩を改質して長期使用に耐える蓄熱材としたものであっ
て、硫酸ナトリウム10水塩の放熱結晶化における結晶
核の発生を促進させる有効な発核剤の発見に基〈もので
ある1、即ち、硫酸ナトリウム10水塩は無色単斜晶形
の結晶で、比重1.46、 包晶点32.4℃を示し、
比較柄低い温度の排熱や太陽熱の如き変動の大きい熱源
から熱を回収し、蓄熱して再利用する・ことができる。
In order to eliminate these drawbacks, the present invention modifies sodium sulfate decahydrate to make it a heat storage material that can withstand long-term use, and promotes the generation of crystal nuclei during heat dissipation crystallization of sodium sulfate decahydrate. Based on the discovery of an effective nucleating agent, sodium sulfate decahydrate is a colorless monoclinic crystal with a specific gravity of 1.46 and a peritectic point of 32.4°C.
Heat can be recovered from heat sources that fluctuate widely, such as comparatively low-temperature waste heat or solar heat, and can be stored and reused.

また硫酸ナトリウム10水塩の融解熱は約60cd/f
、単位体積あたりの融解熱は約93dl/dとかなり大
きい融解熱を有しており、蓄熱材として極めて好適な化
合物である点に本発明者等は着目し、蓄熱材として用い
る場合に最も大きな問題となる過冷却を防止する発核剤
について種々検討した。硫酸ナトリウム10水塩の発核
剤としては従来、Na2B407等のナトリウム塩を用
いるもの、水酸化バリウム、塩化バリウム、硝酸バリウ
ム等のバリウム塩や水酸化ストロンチウム、塩化ストロ
ンチウム、硝酸ストロンチウム等のストロンチウム塩を
用いるもの等積々の提案がなされているが、連続使用し
た場合なお問題点をもち、効果的な発核剤とはいえない
。本発明者等は硫酸ナトリウム10水塩を主剤とした蓄
熱剤の発核剤を種々検討した結果、従来知られていなか
った特定のナトリウム塩、酢酸塩、プロピルベンゼン誘
導体、マグネシウム化合物、ついずれか一種以上が極め
て効果的な発核剤であることを知り、本発明に到達した
The heat of fusion of sodium sulfate decahydrate is approximately 60 cd/f.
, the heat of fusion per unit volume is approximately 93 dl/d, which is a fairly large heat of fusion, and the present inventors have focused on the fact that it is an extremely suitable compound as a heat storage material. We investigated various nucleating agents to prevent the problem of supercooling. Nucleating agents for sodium sulfate decahydrate have conventionally used sodium salts such as Na2B407, barium salts such as barium hydroxide, barium chloride, and barium nitrate, and strontium salts such as strontium hydroxide, strontium chloride, and strontium nitrate. Although a number of proposals have been made regarding the use of nucleating agents, they still have problems when used continuously, and cannot be said to be effective nucleating agents. As a result of various studies on nucleating agents for heat storage agents based on sodium sulfate decahydrate, the present inventors found that certain sodium salts, acetate salts, propylbenzene derivatives, magnesium compounds, etc. The present invention was achieved based on the discovery that one or more types of nucleating agents are extremely effective nucleating agents.

すなわち本発明は、硫酸ナトリウム10水塩に、発核剤
としてサッカリンナトリウム、バナジン酸塩、エチレン
ジアミン四酢酸アルカリ土類金属塩、リグニン、酸化マ
グネシウム、水酸化マグネシウムからなる群より選ばれ
る少くとも一種を配合してなる蓄熱材に関するものであ
る。
That is, the present invention combines sodium sulfate decahydrate with at least one member selected from the group consisting of saccharin sodium, vanadate, alkaline earth metal salt of ethylenediaminetetraacetic acid, lignin, magnesium oxide, and magnesium hydroxide as a nucleating agent. The present invention relates to a heat storage material made of.

本発明で用いられる硫酸ナトリウム1o水塩は10水塩
ちょうとVこなっている必要はなく、10水塩に近い組
成であれば良く、結晶たけでなく、10水塩に近い水溶
液、スラリー状態のものなどすべて含むものである。′
fた、発核剤どして用いられるバナジン酸塩としてはバ
ナジン酸ナトリウム、バナジン酸アンモニウムがあケラ
れ、エチレンジアミン四酢酸のアルカリ土類金属塩とし
て&MCa塩、M2塩、Ba塩などがあげられる。
The sodium sulfate 1O hydrate used in the present invention does not have to be exactly V-containing to the 10-hydrate; it may be in the form of a composition close to that of the 10-hydrate, and is not in the form of crystals, but in the form of an aqueous solution or slurry close to that of the 10-hydrate. It includes everything such as. ′
Vanadate salts used as nucleating agents include sodium vanadate and ammonium vanadate, and alkaline earth metal salts of ethylenediaminetetraacetic acid include &MCa salt, M2 salt, Ba salt, etc. .

これら発核剤のうち少くとも一種を添加することにより
、硫酸ナトリウム1o水塩の凝固時の核発生が容易とな
J、−=た長期Vこわたって・過冷却を防止することが
できるため経済的かつ安定な蓄熱材によるエネルギー貯
蔵システムが可能となる。本発明に用いられるこれら発
核剤の添加量は硫酸ナトリウム10水塩に対して少くと
も0.01重量%以上が好ましく、また1重量%以上加
えても添加量に見番う効果の向上は見られず、経済的に
も得策ではない。従づて発核剤添加量の好適範囲は硫酸
ナトリウム10水塩に対して0.01〜1重量%であり
、少量であるため硫酸ナトリウム10水塩の本質的物性
には何ら悪影響は与えず、蓄熱材として有効に使用でき
るものである。なお融解時には発核剤と一部の硫酸ナト
リウム無水塩が固体として存在するので、これらと液相
との分離を防止し、凝固時の10水塩への転移速度を大
きくするために、雲母粉、アルギン酸ナトリウム、ポリ
アクリル酸ナトリウムやゼラチン等の増粘剤を少量添加
しても良い。以下、実施例によシ本発明をよシ詳細に説
明する。
By adding at least one of these nucleating agents, it is possible to easily generate nuclei during solidification of sodium sulfate 1O hydrate, and to prevent long-term overcooling and overcooling. This makes it possible to create an energy storage system using a reliable and stable heat storage material. The amount of these nucleating agents used in the present invention is preferably at least 0.01% by weight or more based on sodium sulfate decahydrate, and even if 1% by weight or more is added, the effect will not improve depending on the amount added. It is difficult to see, and it is not economically advisable. Therefore, the preferred range of the amount of nucleating agent added is 0.01 to 1% by weight relative to sodium sulfate decahydrate, and since it is a small amount, it does not have any adverse effect on the essential physical properties of sodium sulfate decahydrate. , which can be effectively used as a heat storage material. Since the nucleating agent and some sodium sulfate anhydride exist as solids during melting, mica powder was added to prevent these from separating from the liquid phase and to increase the rate of transition to decahydrate during solidification. A small amount of thickener such as sodium alginate, sodium polyacrylate or gelatin may be added. Hereinafter, the present invention will be explained in detail using examples.

実施例1 硫酸ナトリウム10水塩30ノ(ポリアクリル酸ナトリ
ウム0.62を含む)をガラス容器中に密封したものA
と、同じ硫酸ナトリウム1゜水塩302(ポリアクリル
酸ナトリウム0.62を含む)にサッカリンナトリウム
o、1st(対硫酸ナトリウム10水塩0.5重量係)
を添加し、充分混合して密封した試料Bを用意した(両
試料共熱電対を挿入した)5、 両試料を1ず50℃の恒温水槽に浸漬し内部温度が50
℃になるまで加温した後、別に用意した20℃の恒温水
槽(/c両鼠料を移して内部温度を測定した。このよう
な加温〜冷却サイクルをくシ返して、凝固開始温度、過
冷却温度を第1表に示したが、発核剤を含まないAでは
過冷却の結果、凝固が起こらず蓄熱材として全く不適で
あり、発核剤を含むBでは過冷却は僅かで凝固が生じ・
ている、。
Example 1 30 grams of sodium sulfate decahydrate (containing 0.62 sodium polyacrylate) sealed in a glass container A
and the same sodium sulfate 1° hydrate 302 (contains 0.62 sodium polyacrylate) and saccharin sodium o, 1st (based on sodium sulfate decahydrate 0.5 weight ratio)
Sample B was prepared by adding, thoroughly mixing, and sealing (thermocouples were inserted in both samples)5.Both samples were first immersed in a constant temperature water bath at 50°C until the internal temperature reached 50°C.
After heating to ℃, both mice were transferred to a separately prepared constant temperature water bath (/c) and the internal temperature was measured. By repeating this heating-cooling cycle, the temperature at which solidification started, The supercooling temperatures are shown in Table 1. In A, which does not contain a nucleating agent, no solidification occurs as a result of supercooling, making it completely unsuitable as a heat storage material, while in B, which contains a nucleating agent, there is only a slight amount of supercooling and no solidification occurs. occurs.
ing,.

第   1   表 また第1図には、第1表のBの凝固開始温度(1)、過
冷却温度(2)を折れ線グラフで示した。
Table 1 Also, in FIG. 1, the solidification start temperature (1) and supercooling temperature (2) of B in Table 1 are shown in a line graph.

これらの結果から明らかなように、発核剤を添加すると
とi/こより過冷却は僅かとなり、くシ返し使用しても
その特性は殆んど変化なく、蓄熱材として実用可能であ
る。
As is clear from these results, when a nucleating agent is added, the supercooling becomes slighter than that of i/, and its properties hardly change even after repeated use, making it practical as a heat storage material.

第2図は蓄熱材を1度だけ50℃に加熱してそのまま放
置した場合の内部温度を示す。この図におけるA、B両
曲線の違いは、発核剤を含−!ないAでは顕熱のみの利
用しかできないのに対し、発核剤ケ含有するBでは、フ
ラット部においで凝固する間に潜熱を放出するものであ
る、。
FIG. 2 shows the internal temperature when the heat storage material is heated to 50° C. only once and left as it is. The difference between curves A and B in this figure is that they contain nucleating agents. In A, which does not contain a nucleating agent, only sensible heat can be used, whereas in B, which contains a nucleating agent, latent heat is released during solidification in the flat part.

潜熱は顕熱より著しく多量なので装置の小型化に有利で
あるし、一定温度で潜熱の放出が行われるので装置の運
転面で有利である。。
Since latent heat is significantly larger than sensible heat, it is advantageous in miniaturizing the device, and since latent heat is released at a constant temperature, it is advantageous in terms of device operation. .

実施例2〜6.比較例1〜3 実施例1と同様操作で発核剤としてバナジン酸ナトリウ
ム16水塩、エチレンジアミン四酢酸バリウム、リクニ
ン、酸化マグネシウム、水酸化マグネシウム及び比較例
として硝酸ナトリウム、酢酸アンモニウム、水酸化カル
シウムをそれぞれ0.151i’(対硫酸ナトリウム1
0水塩0.5重量係)添加して凝固開始温度と過冷却温
度を測定した5、 その結果を第2表に示すが、実施例2〜乙のものはいず
れも過冷却は僅かであり、凝固温度もほとんど変化なく
長期くり返し使用に耐え得るものであった。これに対し
比較例1〜5のものはいずれも凝固せず、潜熱の回収は
できなかった。
Examples 2-6. Comparative Examples 1 to 3 In the same manner as in Example 1, sodium vanadate hexahydrate, barium ethylenediaminetetraacetate, likunin, magnesium oxide, and magnesium hydroxide were used as nucleating agents, and sodium nitrate, ammonium acetate, and calcium hydroxide were used as comparative examples. 0.151i' each (for sodium sulfate 1
The solidification start temperature and supercooling temperature were measured by adding 0.5 hydrated salt (by weight)5. The results are shown in Table 2, and the supercooling was slight in all of Examples 2 to B. The solidification temperature showed almost no change and could withstand repeated use over a long period of time. On the other hand, none of Comparative Examples 1 to 5 solidified, and latent heat could not be recovered.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は硫酸ナトリウム10水塩に増粘剤と発核剤を加
えた試料を加温融解させた後冷却する操作をくり返した
場合の過冷却の状態を示すグラフ(凝固開始温度、過冷
却温度と操作回数との関係)であり、第2図は同様の試
料および発核剤を加えない試料について温度降下9状態
を示すグラフ(温度と時間の関係)である。 代理人 内  1)   明 代理人  萩  原  亮  − 昭和57年 2 月/、P日 特許庁長官 島田春樹 殿 1、事件の表示 昭和57年特許願第6,0号 2、発明の名称 蓄熱材 3、補正をする者 1′−件との関係  特許出願人 1i:  +’li  山口県宇部市大字沖宇部525
3番地1(名  (220)  セントラル硝子株式会
社と、(fl 代表者  伊 藤 三 良 Z補正の対象 (1) 明細書の「発明の詳細な説明」の−8補正の内
容 (11明細書第7頁Fから4行目〜3行目のr jJI
I熱してそのまま放置した場合の内部温度を示す。」な
゛る記載を「加熱した後20℃の恒温水mに移した場合
の内部温度を示す。」と訂正する。
Figure 1 is a graph showing the state of supercooling when a sample prepared by adding a thickener and a nucleating agent to sodium sulfate decahydrate is heated and melted, then cooled repeatedly. FIG. 2 is a graph (relationship between temperature and time) showing nine states of temperature drop for similar samples and samples to which no nucleating agent was added. Agents 1) Akira Agent Ryo Hagiwara - February 1980/, P-day Commissioner of the Patent Office Haruki Shimada 1, Indication of the case 1982 Patent Application No. 6,0 2, Name of the invention Thermal storage material 3 , Relationship with the person making the amendment 1'- Patent applicant 1i: +'li 525 Okiube, Ube City, Yamaguchi Prefecture
3 No. 1 (Name (220) Central Glass Co., Ltd. and (fl Representative Miyoshi Ito Z subject of amendment (1) Contents of -8 amendment to "Detailed Description of the Invention" of the specification (No. 11 of the specification) 7th page F to 4th line to 3rd line r jJI
This shows the internal temperature when heated and left as is. '' has been corrected to ``Indicates the internal temperature when heated and then transferred to constant temperature water m at 20°C.''

Claims (1)

【特許請求の範囲】[Claims] 硫酸ナトリウム10水塩に発核剤としてサッカリンナト
リウム、バナジン酸塩、エチレンジアミン四酢酸アルカ
リ土類金属塩、リグニン、酸化マグネシウム、水酸化マ
グネシウムからなる群より選ばれる少くとも一種を配合
してなる蓄熱材。
A heat storage material comprising sodium sulfate decahydrate mixed with at least one member selected from the group consisting of saccharin sodium, vanadate, alkaline earth metal salt of ethylenediaminetetraacetic acid, lignin, magnesium oxide, and magnesium hydroxide as a nucleating agent.
JP3082A 1982-01-05 1982-01-05 Thermal energy storage material Granted JPS58117277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3082A JPS58117277A (en) 1982-01-05 1982-01-05 Thermal energy storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3082A JPS58117277A (en) 1982-01-05 1982-01-05 Thermal energy storage material

Publications (2)

Publication Number Publication Date
JPS58117277A true JPS58117277A (en) 1983-07-12
JPH0134477B2 JPH0134477B2 (en) 1989-07-19

Family

ID=11462958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3082A Granted JPS58117277A (en) 1982-01-05 1982-01-05 Thermal energy storage material

Country Status (1)

Country Link
JP (1) JPS58117277A (en)

Also Published As

Publication number Publication date
JPH0134477B2 (en) 1989-07-19

Similar Documents

Publication Publication Date Title
EP0103450B1 (en) Latent heat storage and supply system and method
US4292189A (en) Thermal energy storage composition comprising sodium sulfate decahydrate; sodium carbonate decahydrate; and sodium tetraborate decahydrate
WO2018168340A1 (en) Latent-heat storage material composition and latent-heat storage tank
JPS6324555B2 (en)
JP2018030924A (en) Heat storage material composition and heating pack containing the same
JP2529974B2 (en) Reversible Phase Change Composition of Hydrated Calcium Bromide
JP7448158B2 (en) Metal nitrate-based compositions for use as phase change materials
JPS6317313B2 (en)
JPS58117277A (en) Thermal energy storage material
JPS5922986A (en) Heat-accumulating material
JPS59543B2 (en) heat storage material
JPH0134475B2 (en)
RU2790484C1 (en) Method for producing heat storage material based on calcium-potassium nitrate double salt trihydrate (versions)
JPS604583A (en) Latent thermal energy storage material
JPH0141672B2 (en)
JPS6151079A (en) Thermal energy storage material
JPH0215598B2 (en)
JP4100590B2 (en) Latent heat storage material composition and heat storage method
JPS63137982A (en) Heat storage material composition
JPS5821942B2 (en) Heat storage agent composition
JPS588712B2 (en) Heat storage agent composition
JPS5993779A (en) Heat accumulative material
JPS6351478B2 (en)
JPS58120093A (en) Composition of heat accumulating agent
JPS581714B2 (en) Heat storage agent composition