JPS5993779A - Heat accumulative material - Google Patents
Heat accumulative materialInfo
- Publication number
- JPS5993779A JPS5993779A JP57203614A JP20361482A JPS5993779A JP S5993779 A JPS5993779 A JP S5993779A JP 57203614 A JP57203614 A JP 57203614A JP 20361482 A JP20361482 A JP 20361482A JP S5993779 A JPS5993779 A JP S5993779A
- Authority
- JP
- Japan
- Prior art keywords
- acetic acid
- heat
- temperature
- potassium
- solidification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Abstract
Description
【発明の詳細な説明】
〔発明利用分野]
本発明は冷房用の蓄熱材料に関するもので、酢酸あるい
は酢酸に酢酸塩を添加した組成物の凝固を促進させ凝固
時の過冷を防止するために発核材としてカリウムあるい
はアンモニウムのハロゲン化物を添加したものである。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a heat storage material for air conditioning, and is used to promote solidification of acetic acid or a composition in which acetic acid is added to acetic acid and to prevent overcooling during solidification. Potassium or ammonium halide is added as a nucleating material.
酢酸は純粋な場合は16.7C、工業用など不純物を含
有する場合は14. 5 0以上の一定温度で凝固一融
解し、この際潜熱の放出−吸収が起るため蓄熱材料とし
て使用されることが知られている。Acetic acid is 16.7C when pure, and 14.C when it contains impurities such as for industrial use. It is known that it is used as a heat storage material because it solidifies and melts at a constant temperature of 50° C. or higher, and releases and absorbs latent heat at this time.
しかし酢酸を密閉容器に封入すると6〜10Cの過冷を
生じて蓄熱−放熱が所定の温度で行なわれないと云う欠
点があった。この原因は明確でないが開放された容器に
酢酸を入れた場合は表面から酢酸の蒸発が起り、その際
気化熱が奪われることによって酢酸の結晶が析出し、こ
れが核になって凝固が進行するためと考えられる。However, when acetic acid is sealed in a closed container, supercooling of 6 to 10 C occurs, and heat storage and heat radiation cannot be carried out at a predetermined temperature. The cause of this is not clear, but when acetic acid is poured into an open container, it evaporates from the surface, and as the heat of vaporization is removed, acetic acid crystals precipitate, which become nuclei and solidify. It is thought that this is because of this.
酢酸に酢酸塩を溶解した組成物においても開放された状
態では過冷を生じないが密閉された状態では酢酸の場合
と同様に6〜10℃の過冷で生じ蓄熱−放熱が所定の温
度で行なわれ難かった。Even in a composition in which acetate is dissolved in acetic acid, supercooling does not occur in an open state, but in a sealed state, supercooling occurs at 6 to 10°C, as in the case of acetic acid, and heat storage and heat dissipation occur at a predetermined temperature. It was difficult to do.
本発明は酢酸あるいは酢酸に酢酸塩を添加した組成物の
過冷却を防止し、その物質の組成によって定まる一定温
度で蓄熱−放熱が行なわれる蓄熱材料を提供することを
目的としている。An object of the present invention is to provide a heat storage material that prevents overcooling of acetic acid or a composition obtained by adding an acetate to acetic acid, and that stores and releases heat at a constant temperature determined by the composition of the material.
一般に液体から固体への相変化は結晶核の発生段階と核
を中心とした結晶の成長段階に分けて考えることができ
る。核発生には大きなエネルギーを必要とし過冷現象は
このエネルギーを必要とし、過冷現象はこのエネルギー
障壁のために生ずることが知られている。このため核物
質を添加して過冷を防止する方法が行なわれている。In general, the phase change from liquid to solid can be divided into a crystal nucleus generation stage and a crystal growth stage centered on the nucleus. Nuclear generation requires a large amount of energy, and supercooling requires this energy, and it is known that supercooling occurs due to this energy barrier. For this reason, methods are being used to prevent overcooling by adding nuclear material.
この場合核物質は液相中に浴解せずに存在し、界面上に
新たに生成する結晶との界面エネルギーが小さいこと、
核がある臨界半径以上の大きさを持つことが必要である
ことが知られている(臨海半径は1〜100μm)。ま
た結晶の成長は低分子密度の結晶面(立方晶では100
,110およひ111面)で起り易いことが知られてい
る。このような発核材の例として塩化カルシウム6水塩
に対する水酸化バリウム、水酸化ストロンチウムの効果
が認められている。しかし水酸化バリウム,水酸化スト
ロンチウムは酢酸中では酢酸バリウムおよび酢酸ストロ
ンチウムを生成して酢酸中に溶解するためこのような塩
基性無機物質は発核材になり得ない。また酢酸は大部分
の有機化合物と反応するため有機化合物の多くは発核材
となり得ない。このため酢酸、中性の無機物質について
発核効果を調べた結果、塩化カリウムおよび塩化アンモ
ニウムが著しい発核効果を示すことを見いだした。In this case, the nuclear material exists in the liquid phase without bath dissolution, and the interfacial energy with the newly generated crystal on the interface is small.
It is known that the nucleus needs to have a size larger than a certain critical radius (the critical radius is 1 to 100 μm). In addition, crystal growth is caused by crystal planes with low molecular density (for cubic crystals, 100
, 110 and 111). As examples of such nucleating materials, the effects of barium hydroxide and strontium hydroxide on calcium chloride hexahydrate have been recognized. However, since barium hydroxide and strontium hydroxide form barium acetate and strontium acetate in acetic acid and dissolve in acetic acid, such basic inorganic substances cannot be used as nucleating materials. Furthermore, since acetic acid reacts with most organic compounds, many organic compounds cannot serve as nucleating materials. For this reason, we investigated the nucleation effect of acetic acid and neutral inorganic substances, and found that potassium chloride and ammonium chloride showed a significant nucleation effect.
Nu−k Clは高温では酢酸中に溶解するが温度の降
下と共に溶解度が減少し、酢酸の凝固点では溶解度はな
くなる。このため酢酸の凝固に先行して、NH4Clの
結晶が析出し、酢酸の凝固点における酢酸の結晶の析出
の核となる。KC2もNI−bCtと類似の溶解度の変
化を示し、酢酸の凝固を促進させる。また酢酸塩全溶解
した酢酸はその凝固点でNH<CtまたはKCtによっ
て酢酸塩を溶解した酢酸の結晶の析出が促進されること
が見出された。Nu-kCl dissolves in acetic acid at high temperatures, but its solubility decreases as the temperature decreases and disappears at the freezing point of acetic acid. Therefore, NH4Cl crystals are precipitated prior to the solidification of acetic acid, and serve as the nucleus for the precipitation of acetic acid crystals at the solidification point of acetic acid. KC2 also shows similar solubility changes as NI-bCt and promotes acetic acid coagulation. It has also been found that in acetic acid in which acetate is completely dissolved, precipitation of crystals of acetic acid in which acetate is dissolved is promoted by NH<Ct or KCt at its freezing point.
このような発核作用はKおよびN I−1 4のハロゲ
ン化物(無水物)に共通して認められることも確認した
。It was also confirmed that such a nucleating effect is commonly observed in halides (anhydrides) of K and N I-14.
本発明の蓄熱材料は酢酸あるいは酢酸に酢酸塩を添加し
た組成物に発核材として塩化カリウム、塩化アンモニウ
ム,臭化カリウム、臭化アンモニウム,沃化カリウム,
沃化アンモニウム,弗化カリウム、弗化アンモニウムの
中から選ばれた1種あるいは2種以上の物質を添加した
ものである。The heat storage material of the present invention includes acetic acid or a composition prepared by adding acetate to acetic acid, and potassium chloride, ammonium chloride, potassium bromide, ammonium bromide, potassium iodide, etc. as a nucleating material.
One or more substances selected from ammonium iodide, potassium fluoride, and ammonium fluoride are added.
]一,普1(5己例〕
これらのIぐ,NH4のハロゲン化物の中から塩化カリ
ウム及び塩化アンモニウムを選んでその作用を説明する
。] 1, 1 (5 examples) Select potassium chloride and ammonium chloride from these NH4 halides and explain their effects.
第1図は純酢酸(99. 5%)の冷却曲線で曲線(a
)は発核材を添加しない場合、曲線(b)は発核材とし
て塩化カリウム全0.1%添加、曲線 (C)は塩化ア
ンモニウム’i o. i%添加した場合である。曲線
(a)は凝固開始前に8Cの過冷があり、7.5℃で凝
固が開始し、これに伴って温度が上昇してl5. 5
rに達して凝固完了までこの温度に保たれている。Figure 1 shows the cooling curve of pure acetic acid (99.5%).
) is when no nucleating material is added, curve (b) is when 0.1% total potassium chloride is added as a nucleating material, and curve (C) is when ammonium chloride 'i o. This is the case where i% is added. In curve (a), there is supercooling of 8C before the start of solidification, solidification starts at 7.5°C, and the temperature rises accordingly to 15. 5
The temperature is maintained at this temperature until the temperature reaches r and solidification is completed.
これに対して曲線(b)は凝固開始前の過冷がIC1(
C)は0.5Cで曲線(a)に比べて極めて少ない。こ
の場合も凝固開始に伴って温度が上昇して曲線(a)と
同様に凝固完了まで15. 5Uに保たれている。On the other hand, curve (b) shows that supercooling before the start of solidification is IC1 (
C) is 0.5C, which is extremely small compared to curve (a). In this case as well, the temperature rises as the solidification begins, and the temperature rises until the solidification is completed, as in curve (a). It is kept at 5U.
第2図は酢酸に酢酸ナトリウム5重量%,酢酸カリウム
5重量%を添加溶解した組成物の冷却曲線で曲線(a)
は発核材を添加しない場合、曲線(b)は発核材として
塩化アンモニウムを、曲線(C)は塩化カリウムをそれ
ぞれ0.1重量%添加した場合である。曲線(a)は凝
固開始前に6Cの過冷があり、1.5Cで凝固を開始し
、これに伴って温度が上昇して7.5Cに達し、凝固完
了までこの温度に保たれている。Figure 2 shows the cooling curve of a composition prepared by adding and dissolving 5% by weight of sodium acetate and 5% by weight of potassium acetate in acetic acid.Curve (a)
Curve (b) is the case where no nucleating material is added, curve (C) is the case where 0.1% by weight of potassium chloride is added as the nucleating material. In curve (a), there is a supercooling of 6C before solidification starts, solidification starts at 1.5C, the temperature rises accordingly, reaches 7.5C, and is maintained at this temperature until solidification is completed. .
これに対して曲線(b)は凝固開始前の過冷が0.6C
,曲線(C)は凝固開始前の過冷がO。3Cで曲線(a
)に比べて極めて少ない。この場合も凝固開始に伴って
温度が上昇し曲線(a)と同様に凝固完了まで7.5C
に保たれている。On the other hand, curve (b) shows that the supercooling before the start of solidification is 0.6C.
, curve (C) indicates that the supercooling before the start of solidification is O. 3C curve (a
) is extremely small compared to In this case as well, the temperature increases with the start of solidification, and as in curve (a), the temperature rises to 7.5C until solidification is completed.
is maintained.
一般的な蓄熱材料の利用方法として蓄熱材料を融解させ
ておき、蓄熱槽の周囲に低温の水あるいは空気などの熱
媒体を送って蓄熱材料の凝固の際に放出される熱によっ
て加熱し、この熱を利用することが行なわれている。も
し、この際蓄熱材料が熱媒体の温度以下に過冷すれば凝
固潜熱を有効に取出すことはできない。一般に暖・冷房
に蓄熱材料を利用する場合には蓄熱材料の凝固−融解温
度と熱交換前の熱媒体の温度との差を2〜4Cにとると
効率がよい。このためわずかな過冷の存在が熱の利用効
率に大きく影響する。本発明のカリウムおよびアンモニ
ウムのハロゲン化物は酢酸中への溶解が少なく、酢酸と
化合物を作ることはない。このためカリウムおよびアン
モニウムのハロゲン化物は蓄熱相の凝固に際して殆ど完
全に析出し、長期間繰返して使用しても発核材が溶解あ
るいは化学変化を生じて効果が失われることはない,こ
のため元核効果は長期にわたって安定である,以下本発
明の実施例について説明する。A common method of using heat storage materials is to melt the heat storage material, send a heat medium such as low-temperature water or air around the heat storage tank, and heat it with the heat released when the heat storage material solidifies. Heat is being used. At this time, if the heat storage material is supercooled below the temperature of the heat medium, the latent heat of solidification cannot be effectively extracted. Generally, when a heat storage material is used for heating or cooling, it is efficient to set the difference between the solidification-melting temperature of the heat storage material and the temperature of the heat medium before heat exchange to be 2 to 4C. For this reason, the presence of a slight amount of supercooling greatly affects heat utilization efficiency. The potassium and ammonium halides of the present invention have low solubility in acetic acid and do not form compounds with acetic acid. For this reason, potassium and ammonium halides are almost completely precipitated when the heat storage phase solidifies, and even after repeated use over a long period of time, the nucleating material will not dissolve or chemically change and lose its effectiveness. Examples of the present invention in which the nuclear effect is stable over a long period of time will be described below.
(1)工業用酢酸(−融点15.0c)に発核材として
塩化カリウム0.01重量%を添加した蓄熱材料ffi
4(I’に加熱してからoCまで冷却するザイクルf.
r20面繰返し、蓄熱材料の温度一時間曲線を記録させ
た。この場合の各回の過冷は1.0C以下で20回の繰
返しによって凝固温度と過冷度は全く変化しなかった。(1) Heat storage material ffi made by adding 0.01% by weight of potassium chloride as a nucleating material to industrial acetic acid (-melting point 15.0c)
4 (cycle f. heating to I' and then cooling to oC).
The temperature curve of the heat storage material was recorded for one hour by repeating the r20 surface. In this case, each round of supercooling was 1.0 C or less, and the solidification temperature and degree of supercooling did not change at all after 20 repetitions.
なお同時に行なった発核拐料なしの酢酸の加熱冷却実験
では毎回8〜10Cの過冷を生じた。In addition, in the heating and cooling experiments of acetic acid without a nuclear detergent conducted at the same time, supercooling of 8 to 10 C occurred each time.
(2)工業用酢酸(融点15. o C)に発核材とし
て塩化アンモニウム0,01重量%を添加した蓄熱材料
−i40cに加熱してからOC1で冷却するサイクルを
20回繰返し、蓄熱材料の温度一時間曲線金記録させた
。この場合の各回の過冷は0.5C以下で20回の繰返
しによって凝固温度と過冷度は全く変化しなかった。(2) Heat storage material - i40c made by adding 0.01% by weight of ammonium chloride as a nucleating material to industrial acetic acid (melting point 15.0C).The cycle of heating and cooling with OC1 was repeated 20 times to form a heat storage material. A temperature one hour curve was recorded. In this case, the supercooling each time was 0.5C or less, and the solidification temperature and degree of supercooling did not change at all after 20 repetitions.
(3)工業用酢酸に酢酸ナトリウム5重景%,酢酸カリ
ウム3重量%を添加した組成物(凝固点8C)に発核材
として塩化カリウム0.01%を添加した蓄熱材料を2
5rに加熱してから−5Cまで冷却するサイクルを20
回繰返して蓄熱材料の温度一時間曲線を記録させた。こ
の場合の各回の過冷は0.6C以下で20回の繰返しに
よって凝固温度と過冷度は全く変化しなかった。(3) A heat storage material made by adding 0.01% potassium chloride as a nucleating material to a composition (freezing point 8C) made by adding 5% sodium acetate and 3% potassium acetate by weight to industrial acetic acid.
20 cycles of heating to 5R and cooling to -5C
The temperature one-hour curve of the heat storage material was recorded repeatedly. In this case, each supercooling was 0.6C or less, and the solidification temperature and degree of supercooling did not change at all after 20 repetitions.
(4)工業用酢酸に酢酸ナトリウム5 M.ft%,酢
酸カリウム3Mt%全添加した組成物(凝固点8C)に
発核材として塩化アンモニウムO、01%を添加した蓄
熱材料を25tl’に加熱してから−5Cまで冷却する
サイクルを20回繰返した。(4) 5M sodium acetate in industrial acetic acid. ft%, potassium acetate 3Mt% total addition composition (freezing point 8C), ammonium chloride O, 01% added as a nucleating material, heat storage material was heated to 25 tl' and then cooled to -5C, the cycle was repeated 20 times. Ta.
この場合の各回の過冷は0.3C以下で20回の繰返し
によって凝固温度と過冷度は全く変化しなかった。In this case, each supercooling was 0.3C or less, and the solidification temperature and degree of supercooling did not change at all after 20 repetitions.
以上説明したように本発明によれば発核材の添加によっ
て酢酸あるいは酢酸に酢酸塩を添加した組成物の過冷を
防止することができるので凝固の際に放出される潜熱を
効率よく利用できる。As explained above, according to the present invention, it is possible to prevent overcooling of acetic acid or a composition in which acetic acid is added to acetic acid by adding a nucleating material, so that the latent heat released during solidification can be efficiently utilized. .
また蓄熱材料の凝固温度と熱交換すべき熱媒体(水,空
気など)の温度差を少なくすることが可能になり、熱設
計が容易になるという効果が得られる。Further, it is possible to reduce the difference in temperature between the solidification temperature of the heat storage material and the heat medium (water, air, etc.) to be heat exchanged, and the effect of facilitating thermal design can be obtained.
第1図は純酢酸の冷却の際の温度一時間曲線で曲線(a
)は発核材なし、曲線(b)は発核材として塩化カリウ
ム、(C)は発核材として塩化アンモニウムをそれぞれ
0.1重量%添加した場合の図、第2図は酢酸に酢酸ナ
トリウム5 Mfil%、酢酸カリウム5重量%を添加
した場合の冷却の際の温度一時間曲線で曲線(a)は発
核材なし、曲線(b)は発核材として塩化カリウム、(
C)は発核材として塩化アンモニウムをそれぞれ0.1
重量%を添加した場合の図である。Figure 1 shows the temperature curve (a) for one hour during cooling of pure acetic acid.
) shows the case without nucleating material, curve (b) shows the case when potassium chloride is added as the nucleating material, curve (C) shows the case when 0.1% by weight of each ammonium chloride is added as the nucleating material, and Fig. 2 shows the case when sodium acetate is added to acetic acid. 5Mfil% and 5% by weight of potassium acetate were added. Curve (a) shows no nucleating material and curve (b) shows potassium chloride and (
C) each uses 0.1 ammonium chloride as a nucleating material.
It is a figure when adding weight%.
Claims (1)
防止する発核材として、カリウム及びアンモニウムのハ
ロゲン化物の群の中から選ばれた1または2以上の材料
を添加することを特徴とする蓄熱材料。 2,カリウム及びアンモニウムのハロゲン化物がカリウ
ム及びアンモニウムの塩化物(KCt,Nrl. Ct
)またはカリウム及びアンモニウムの臭化物( KBr
, NH4Br)であることを特徴とする特許請求の範
囲第1項記載の蓄熱材料。[Claims] ■. It is characterized by adding one or more materials selected from the group of potassium and ammonium halides as a nucleating material to completely prevent overcooling to acetic acid or a composition obtained by adding an acetate to acetic acid. Heat storage material. 2. Potassium and ammonium halides are potassium and ammonium chlorides (KCt, Nrl. Ct
) or potassium and ammonium bromide ( KBr
, NH4Br) according to claim 1.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57203614A JPS5993779A (en) | 1982-11-22 | 1982-11-22 | Heat accumulative material |
US06/484,271 US4518514A (en) | 1982-04-16 | 1983-04-12 | Heat storage material |
EP83103671A EP0092199B1 (en) | 1982-04-16 | 1983-04-15 | Heat storage material |
DE8383103671T DE3361331D1 (en) | 1982-04-16 | 1983-04-15 | Heat storage material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57203614A JPS5993779A (en) | 1982-11-22 | 1982-11-22 | Heat accumulative material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5993779A true JPS5993779A (en) | 1984-05-30 |
Family
ID=16476953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57203614A Pending JPS5993779A (en) | 1982-04-16 | 1982-11-22 | Heat accumulative material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5993779A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020007415A (en) * | 2018-07-04 | 2020-01-16 | 東邦瓦斯株式会社 | Latent heat storage material composition |
-
1982
- 1982-11-22 JP JP57203614A patent/JPS5993779A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020007415A (en) * | 2018-07-04 | 2020-01-16 | 東邦瓦斯株式会社 | Latent heat storage material composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6324555B2 (en) | ||
JPS5993779A (en) | Heat accumulative material | |
JPS5922986A (en) | heat storage material | |
JPS59109578A (en) | Heat storage material | |
JPH021195B2 (en) | ||
JPH0157157B2 (en) | ||
JPS60243189A (en) | Heat storage material | |
JP2001192650A (en) | Cold storage material | |
JPS588711B2 (en) | heat storage material | |
JPS58117277A (en) | Thermal energy storage material | |
JPH0215598B2 (en) | ||
JPS6151079A (en) | Thermal energy storage material | |
JPS61278588A (en) | Heat storing material | |
JPS617376A (en) | Method for activating crystal nucleus forming material | |
JPS586399A (en) | Heat regenerative material | |
JPH0348238B2 (en) | ||
JPS5866799A (en) | Heat-accumulating material | |
JPH0134475B2 (en) | ||
JPH03128987A (en) | Latent heat storage material | |
JPS5852995A (en) | Heat accumulating material | |
JPS5860198A (en) | Heat accumulating material | |
JPS61197668A (en) | Thermal energy storage material | |
JPS6142958B2 (en) | ||
JPH0114957B2 (en) | ||
JPS606781A (en) | Composition for thermal energy storage meaterial and its preparation |