JPS5922986A - Heat-accumulating material - Google Patents

Heat-accumulating material

Info

Publication number
JPS5922986A
JPS5922986A JP13318082A JP13318082A JPS5922986A JP S5922986 A JPS5922986 A JP S5922986A JP 13318082 A JP13318082 A JP 13318082A JP 13318082 A JP13318082 A JP 13318082A JP S5922986 A JPS5922986 A JP S5922986A
Authority
JP
Japan
Prior art keywords
heat
heat storage
hydrogen phosphate
accumulating material
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13318082A
Other languages
Japanese (ja)
Inventor
Takeshi Toyama
武志 外山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentel Co Ltd
Original Assignee
Pentel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pentel Co Ltd filed Critical Pentel Co Ltd
Priority to JP13318082A priority Critical patent/JPS5922986A/en
Publication of JPS5922986A publication Critical patent/JPS5922986A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a heat-accumulating material having minimized super- cooling tendency and high stability with time, and useful for the accumulation of solar energy for room heating use, by using sodium acetate trihydrate and disodium hydrogen phosphate (hydrate) as essential components. CONSTITUTION:The objective heat-accumulating material can be prepared by mixing (A) 100pts.wt. of sodium acetate trihydrate with (B) 1-30pts.wt. of disodium hydrogen phosphate (hydrate) in terms of anhydride, and if necessary (C) a thickener such as sodium polyacrylate, a filler such as kaolin clay, asbestos powder, etc., and melting the mixture. EFFECT:A heat-accumulating material can be obtained only by charging the molten liquid into a container without using the coagulating process of the heat- accumulating material. It maintains stable crystal nucleus-forming effect even at a temperature of as high as about 90 deg.C, and repeats the heat-accumulating and heat-emitting steps in high stability.

Description

【発明の詳細な説明】 本発明は酢酸すl−リウム3水塩(CH3COONa・
3020)を基材とする蓄熱材に関し、更に詳しくは過
冷却を極力防止した蓄熱材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides sl-lium acetate trihydrate (CH3COONa.
3020) as a base material, and more specifically, it relates to a heat storage material that prevents supercooling as much as possible.

従来より、蓄熱材には、物質の顕熱を利用したものと、
潜熱を利用したものが知られている。
Traditionally, heat storage materials include those that utilize the sensible heat of substances;
One that uses latent heat is known.

潜熱を利用したものは、単位体積当り、単位重量当りの
蓄熱量が、顕熱を利用したものに比べ大きく、多種の物
質について研究されており。
Those that use latent heat have a larger amount of heat storage per unit volume and per unit weight than those that use sensible heat, and a wide variety of materials have been studied.

室内暖房用や太陽エネルギー蓄熱用としては無機水和物
がよく知られている。しかし無機水和物は一般に■過冷
却が大きい■結晶化速度が小さいなどの欠点を有してお
り、長周期(週〜季節)の蓄・放熱には適しているが、
短周期(時間〜日)の蓄・放熱には適さないものが多い
Inorganic hydrates are well known for indoor heating and solar energy storage. However, inorganic hydrates generally have drawbacks such as high supercooling and low crystallization speed, and are suitable for long-term (weekly to seasonal) heat storage and dissipation.
Many of them are not suitable for short-term (hours to days) heat storage and radiation.

例外的に過冷却が小さく、結晶化速度も大きな硝酸塩に
ついても■単位体積当りの蓄熱量が小さい■コス)−が
高い■酸化作用が大きく容器を侵すなどの欠点を有して
いた。
Exceptionally, nitrates with low supercooling and high crystallization rate had drawbacks such as (1) low amount of heat storage per unit volume, (2) high cost (cost), and (2) high oxidation effect that corrodes the container.

又、有機物蓄熱材も提案されているが、■伝熱速度が小
さい■蓄熱量が小さい■ロス1へが高いなどの問題があ
った。
Organic heat storage materials have also been proposed, but they have problems such as: (1) low heat transfer rate; (2) small amount of heat storage; (2) high loss 1.

前記水和物の中で、■ロス1〜的に有利C)蓄熱量が大
きく■結晶化速度も速いといった理由で酢酸すl−リウ
ム6水塩(CH3COONa・5 H2O)が注目され
ている。しかし乍ら酢酸ナトリウム5水塩は単独では過
冷却が大きく、蓄熱材として使用できないのが現状であ
る。そこで近年過冷却防止剤を併用して過冷却を防止す
る試みがなされており、過冷却防止剤としてピロリ/酸
す1−リウム10水塩(Na4 P2O7−10H20
)を用いた例(特開昭57−59981)ではかなりの
効果をあげている。しかしなから酢酸す1−リウム6水
塩とピロリン酸す1ヘリウム10水塩とからなる蓄熱材
は、第1回目の冷却の際りこ過冷却が破れず、室温まで
冷却されてしまうことがあり、この問題を解決する為に
は、この適冷状態にある酢酸す1ヘリウム3水塩とピロ
リン酸す1−リウム10水塩の混合物を、一度何らかの
方法で凝固させてやらなければならず2面倒な処理工程
が必要になるといった問題力f残さ第1ている。
Among the above-mentioned hydrates, sl-lium acetate hexahydrate (CH3COONa.5H2O) is attracting attention because of (1) advantageous in terms of loss (C) large amount of heat storage and (2) fast crystallization rate. However, at present, sodium acetate pentahydrate alone cannot be used as a heat storage material because of its large supercooling effect. Therefore, in recent years, attempts have been made to prevent supercooling by using a supercooling inhibitor in combination.
) (Japanese Unexamined Patent Publication No. 57-59981) has achieved considerable effects. However, in the heat storage material made of monohelium acetate hexahydrate and monohelium pyrophosphate decahydrate, supercooling may not be broken during the first cooling, and the material may be cooled to room temperature. In order to solve this problem, the mixture of monohelium acetate trihydrate and monolithium pyrophosphate decahydrate, which is in an appropriately cooled state, must be solidified by some method. The first problem is that it requires a complicated treatment process.

又、上述の酢酸すl・リウム5水塩に対するピロリン酸
すI−リウム10水塩の結晶核形成効果は蓄熱材に対す
る加熱温度が70°C程度であれば安定であるが、75
°C以上になると不安定になり、過冷却が現われてきて
、蓄熱材への加熱温度を70°C程度に抑えておかなけ
ればならず。
Furthermore, the crystal nucleation effect of sulfur pyrophosphate decahydrate on sulfur lithium acetate pentahydrate described above is stable if the heating temperature for the heat storage material is around 70°C;
If the temperature exceeds °C, it becomes unstable and supercooling appears, so the heating temperature of the heat storage material must be kept at about 70 °C.

使用上制限を受けるという欠点をも有していた。It also had the disadvantage of being limited in its use.

本発明者は前記した酢酸すl〜ツリウム水塩を基材にし
た蓄熱材に対してリン酸水素2すl〜ツリウム Na、
、 Hpo4)(水和塩を含む)を混合することにより
、該蓄熱材が第1回目の凝固時から過冷却することなく
凝固し、かつ90℃イ・]近の高温まで加熱しても結晶
核形成効果を失わず安定した蓄・放熱を行なうことを見
い出し本発明を完成したものである。
The present inventor has developed a heat storage material based on sulfur acetate to thulium hydrate as a base material to 2 sulfur hydrogen phosphate to thulium Na,
By mixing Hpo4) (including hydrated salt), the heat storage material solidifies without supercooling from the first solidification, and does not crystallize even when heated to a high temperature of around 90°C. The present invention was completed by discovering that stable heat storage and radiation can be performed without losing the nucleation effect.

即ち2本発明は酢酸す1−リウム3水塩と、リン酸水素
2すl−リウム(水利塩を含む)とより少なくともなる
蓄熱材を要旨とするものである。
That is, the gist of the present invention is a heat storage material consisting of at least 1-sulfur acetate trihydrate and 2-sulfur hydrogen phosphate (including hydric salt).

本発明の蓄熱材が何故第1回目の凝固時から′過冷却す
ることなく凝固し、かつ90℃付近の高温まで加熱して
も結晶核形成効果を失わす安定した蓄・放熱を行なうか
は定かではないが。
Why does the heat storage material of the present invention solidify without supercooling from the first time it solidifies, and does it store and release heat stably without losing its crystal nucleation effect even when heated to high temperatures around 90°C? Not sure though.

酢酸す)−リウム3水塩にヌ・1するリン酸水素2す1
−リウム(水和塩を含む)の親和性に起因1−るもので
あると思われる。
Hydrogen phosphate 2 s 1 added to 1 s)-lium acetate trihydrate
This is thought to be due to the affinity of -lium (including hydrated salts).

次に本発明の各成分について説明する。Next, each component of the present invention will be explained.

酢酸す1−リウム3水塩は本発明の蓄熱材の基材となる
ものである。
So-1-lium acetate trihydrate serves as a base material for the heat storage material of the present invention.

リン酸水素2ナトリウム(水和物を含む)は結晶核形成
剤として使用するものでその使用量は酢酸ナトリウム3
水塩100重量部に対して無水物換算で1〜50重量部
である。1重量部より少ないと結晶核形成力が弱く過冷
却を生じやすくなり、30重量部より多いと蓄熱量が低
下するといった問題を生じる。尚、リン酸水素2ナトリ
ウム水利塩は酢酸ナトリウム5水塩に混合した場合、一
旦融解するが酢酸ナトリウム6水塩融液中ではリン酸水
素2す1−リウムの溶解度が下がり、リン酸水素2す1
−リウムの微細粒子として析出し、リン酸水素2すl〜
ツリウム同様な効果を示す。
Disodium hydrogen phosphate (including hydrates) is used as a crystal nucleating agent, and the amount used is 30% sodium acetate.
The amount is 1 to 50 parts by weight in terms of anhydride based on 100 parts by weight of aqueous salt. If it is less than 1 part by weight, the crystal nucleation ability is weak and supercooling tends to occur, and if it is more than 30 parts by weight, there will be a problem that the amount of heat storage will be reduced. Note that when disodium hydrogen phosphate aqueous salt is mixed with sodium acetate pentahydrate, it will melt once, but in the sodium acetate hexahydrate melt, the solubility of dibasic hydrogen phosphate decreases, and dihydrogen phosphate Su1
-Precipitated as fine particles of lithium, 2 liters of hydrogen phosphate
Shows effects similar to thulium.

又、蓄熱材中でのリン酸水素2す1ヘリウムの沈降を防
止する目的でポリアクリル酸ソーダなどの増粘剤や、カ
オリン土、アスベヌ1−粉などの充填材を適宜添加した
り、酢酸ナトリウムろ水塩の凝固速度を調節する目的で
水を適宜添加したり、結晶核形成を保助する目的で他の
結晶核形成剤を適宜添加したり、蓄熱材の融点調節の目
的で他の添加剤を適宜添加することもでき例を簡単に述
べる。
In addition, in order to prevent precipitation of dihelium hydrogen phosphate in the heat storage material, thickeners such as sodium polyacrylate and fillers such as kaolin earth and asbenu powder are added as appropriate, and acetic acid Water may be added as appropriate for the purpose of adjusting the solidification rate of the sodium filtrate salt, other crystal nucleating agents may be appropriately added for the purpose of supporting crystal nucleation formation, and other crystal nucleating agents may be appropriately added for the purpose of adjusting the melting point of the heat storage material. Additives may be added as appropriate, and examples will be briefly described.

先ず酢酸ナトリウム3水塩とリン酸水素2ナトリウム(
水和物を含む)を必要量混合し、必要に応じて他の添加
剤を添加して2加熱溶融することにより容易に得られる
First, sodium acetate trihydrate and disodium hydrogen phosphate (
(including hydrates) in the required amount, add other additives as necessary, and heat and melt the mixture.

次に本発明の蓄熱材の蓄・放熱の動作について簡単に述
べる。
Next, the heat storage/radiation operation of the heat storage material of the present invention will be briefly described.

本発明の蓄熱材を加熱して行くと、先ず同相の比熱に応
じた顕熱を蓄積して行き、融点に達すると融解潜熱を蓄
熱して、融解し、液体となり、更に加熱して行くと、液
相の比熱に応じた顕熱を蓄積して行く。次にこの融解し
た蓄熱材を冷却して、熱を取り出す場合は、先ず液相の
比熱に応じた顕熱を放出し、凝固温度よりもわずかに冷
却されると、リン酸水素2ナトリウム結晶表面に酢酸ナ
トリウム6水塩の結晶核が発生し、該結晶核を起点とし
て酢酸す1−リウム3水塩の結晶が成長して行くことに
よって、過冷却をほとんど示さずに凝固潜熱を放出しつ
つ固化し、さらに冷却して行くと固相の比熱に応じた顕
熱を放出して行く。
When the heat storage material of the present invention is heated, it first accumulates sensible heat corresponding to the specific heat of the same phase, and when it reaches the melting point, it stores the latent heat of fusion and melts, becoming a liquid. , accumulates sensible heat according to the specific heat of the liquid phase. Next, when this molten heat storage material is cooled and heat is extracted, sensible heat corresponding to the specific heat of the liquid phase is released, and when the material is cooled slightly below the solidification temperature, the disodium hydrogen phosphate crystal surface A crystal nucleus of sodium acetate hexahydrate is generated, and crystals of sodium 1-lium acetate trihydrate grow from the crystal nucleus as a starting point, thereby releasing latent heat of solidification with almost no supercooling. When solidified and further cooled, sensible heat corresponding to the specific heat of the solid phase is released.

次に本発明を実施例により更に詳細に説明する。実施例
中「部」とあるのは「重量部」を示す。
Next, the present invention will be explained in more detail with reference to Examples. In the examples, "parts" indicate "parts by weight."

実施例1 酢酸す1−リウム3水塩      100部リン酸水
素2ナトリウム      10部上記成分を混合し、
ビーカーに入れウォーターバス中で70℃で加熱融解し
て蓄熱材を得た。
Example 1 1-lium acetate trihydrate 100 parts Disodium hydrogen phosphate 10 parts The above components were mixed,
The mixture was placed in a beaker and heated and melted at 70°C in a water bath to obtain a heat storage material.

実施例2 酢酸す1〜リウム3水塩      100部リン酸水
素2す1−リウム12水塩  1o部アスベス1〜粉 
          10部上記成分を混合し、実施例
1と同様にして蓄熱材を得た。
Example 2 Mono-lithium acetate trihydrate 100 parts Dis-1-lium decahydrate hydrogen phosphate 10 parts Asbeth 1-powder
A heat storage material was obtained in the same manner as in Example 1 by mixing 10 parts of the above components.

実施例5 酢酸す1−リウム3水塩      100部リン酸水
素2ナトリウム      10部水        
                     10 部
上記成分を混合し、実施例1と同様にして蓄熱材を得た
Example 5 Mono-lium acetate trihydrate 100 parts Disodium hydrogen phosphate 10 parts Water
10 parts of the above components were mixed and a heat storage material was obtained in the same manner as in Example 1.

実施例4 酢酸ナトリウム3水塩      100部リン酸水素
2ナトリウム12水塩     10部ポリアクリル酸
ソーダ        3部上記成分を混合し、実施例
1と同様にして蓄熱材を得た。
Example 4 Sodium acetate trihydrate 100 parts Disodium hydrogen phosphate dodecahydrate 10 parts Sodium polyacrylate 3 parts The above components were mixed and a heat storage material was obtained in the same manner as in Example 1.

比較例1 酢酸す1−リウム6水塩単独のものを蓄熱材とした。Comparative example 1 Mono-lium acetate hexahydrate alone was used as a heat storage material.

比較例2 酢酸す1−リウム6水塩      100部ピロリン
酸す)−リウム10水塩     5部上記成分を混合
し、実施例1と同様にして蓄熱材を得た。
Comparative Example 2 100 parts of 1-lium acetate hexahydrate 5 parts of 1-lium pyrophosphate decahydrate The above components were mixed and a heat storage material was obtained in the same manner as in Example 1.

以上、実施例1〜4.比較例1,2で得られ目、100
回目の凝固温度測定結果、並びにサイクルにかける前の
融点、融解熱の測定結果を表−1しこ示す。尚、比較例
1,2で得られた蓄熱材は第1回の凝固時に過冷却を生
じ凝固しなかったため2回目からは種子結晶(酢酸ナト
リウム3水塩の結晶微粒子)を投入し1強制的に一度凝
固させた後、同様な試験を繰り返した。
Above are Examples 1 to 4. Obtained in Comparative Examples 1 and 2, 100
Table 1 shows the results of the second solidification temperature measurement, as well as the melting point and heat of fusion measurements before the cycle. In addition, since the heat storage materials obtained in Comparative Examples 1 and 2 did not solidify due to supercooling during the first solidification, seed crystals (fine crystal particles of sodium acetate trihydrate) were added from the second time. After solidifying once, the same test was repeated.

表−1 *1 融点は示差走査熱量(DSC)曲線から求めた。Table-1 *1 Melting point was determined from a differential scanning calorimetry (DSC) curve.

*2 融解熱は示差走査熱量計を用いて測定した。*2 Heat of fusion was measured using a differential scanning calorimeter.

次に実施例1並びに比較例2で得られた蓄熱材の加熱・
冷却サイクル3種(70℃030℃。
Next, the heat storage materials obtained in Example 1 and Comparative Example 2 were heated and
3 types of cooling cycles (70℃030℃.

80℃←30℃、90℃030℃)をそれぞれ5回繰り
返した際の凝固温度の測定績U−2に示す。
The measurement result of the coagulation temperature when 80°C←30°C, 90°C, 030°C) was repeated five times is shown in U-2.

表−2 尚、比較例2については種子結晶(酢酸す1〜リウム3
水塩の結晶微粒子)を投入し一度強制的に凝固させてか
ら試験を行なったものである。
Table 2 Regarding Comparative Example 2, seed crystals (1 to 3 lithium acetate)
The test was conducted after introducing aqueous salt (fine crystalline particles) and forcibly coagulating it once.

以上に示した様に7本発明の蓄熱材は混合調製後の第1
回目の凝固時から過冷却することなく凝固するので、一
度何らかの方法で蓄熱材を凝固させるといった面倒な処
理工程を省略する拐を構成できるといった利点を有し、
がっ。
As shown above, the heat storage material of the present invention is the first heat storage material after mixing and preparation.
Since it solidifies without supercooling from the time of solidification, it has the advantage that it can be configured to omit the troublesome process of solidifying the heat storage material by some method.
Gah.

90℃付近の高温に対しても安定した結晶核形成効果を
維持し、安定した蓄・放熱を繰り返すために蓄熱材とし
て、室内暖房用、太陽エネルギー蓄熱用などに拡く使用
でき、経時的にも安定した性能を発揮する優れたもので
ある。
It maintains a stable crystal nucleation effect even at high temperatures around 90 degrees Celsius, and can be used as a heat storage material for indoor heating, solar energy storage, etc., as it repeatedly and stably stores and releases heat. It is also an excellent product that exhibits stable performance.

特許出願人 ぺんてる株式会社Patent applicant: Pentel Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)酢酸す1−リウム3水塩と、リン酸水素2す1−
リウム(水和塩を含む)とより少なくともなる蓄熱材。
(1) 1-lium acetate trihydrate and 2-1-lium hydrogen phosphate
A heat storage material consisting of at least 30% of aluminum (including hydrated salts) and more.
(2)酢酸す)−リウム3水塩10口重量部に対してリ
ン酸水素2す1−リウム(水利塩を含む)が無水物換算
で1〜30重量部である特許請求の範囲第1項記載の蓄
熱材。
(2) Claim 1: 1 to 30 parts by weight of 2s-1-lium hydrogen phosphate (including hydric salt) in terms of anhydride based on 10 parts by weight of (2)-lium acetate trihydrate Heat storage material described in section.
JP13318082A 1982-07-30 1982-07-30 Heat-accumulating material Pending JPS5922986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13318082A JPS5922986A (en) 1982-07-30 1982-07-30 Heat-accumulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13318082A JPS5922986A (en) 1982-07-30 1982-07-30 Heat-accumulating material

Publications (1)

Publication Number Publication Date
JPS5922986A true JPS5922986A (en) 1984-02-06

Family

ID=15098549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13318082A Pending JPS5922986A (en) 1982-07-30 1982-07-30 Heat-accumulating material

Country Status (1)

Country Link
JP (1) JPS5922986A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153386A (en) * 1984-08-21 1986-03-17 Hitachi Chem Co Ltd Heat-storing material
JPS61197668A (en) * 1985-02-28 1986-09-01 Nok Corp Thermal energy storage material
WO2003012002A3 (en) * 2001-07-27 2005-05-06 Merck Patent Gmbh Means for storing heat
WO2014195691A1 (en) * 2013-06-03 2014-12-11 Sunamp Limited Improved phase change compositions
JP2020012084A (en) * 2018-07-20 2020-01-23 東邦瓦斯株式会社 Latent heat storage material composition, and heater
JP2022138874A (en) * 2021-03-11 2022-09-26 東邦瓦斯株式会社 Latent heat storage material composition

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153386A (en) * 1984-08-21 1986-03-17 Hitachi Chem Co Ltd Heat-storing material
JPS61197668A (en) * 1985-02-28 1986-09-01 Nok Corp Thermal energy storage material
WO2003012002A3 (en) * 2001-07-27 2005-05-06 Merck Patent Gmbh Means for storing heat
WO2014195691A1 (en) * 2013-06-03 2014-12-11 Sunamp Limited Improved phase change compositions
CN105308149A (en) * 2013-06-03 2016-02-03 苏纳珀有限公司 Improved phase change compositions
AU2014276630B2 (en) * 2013-06-03 2017-08-03 Sunamp Limited Improved phase change compositions
US10308855B2 (en) 2013-06-03 2019-06-04 Sunamp Limited Phase change compositions
US10767093B2 (en) 2013-06-03 2020-09-08 Sunamp Limited Phase change compositions
EP4023732A1 (en) * 2013-06-03 2022-07-06 Sunamp Limited Improved phase change compositions
JP2020012084A (en) * 2018-07-20 2020-01-23 東邦瓦斯株式会社 Latent heat storage material composition, and heater
JP2022138874A (en) * 2021-03-11 2022-09-26 東邦瓦斯株式会社 Latent heat storage material composition

Similar Documents

Publication Publication Date Title
CA1201031A (en) Latent heat storage and supply system and method
US4292189A (en) Thermal energy storage composition comprising sodium sulfate decahydrate; sodium carbonate decahydrate; and sodium tetraborate decahydrate
JP2018030924A (en) Heat storage material composition and heating pack containing the same
JPS5922986A (en) Heat-accumulating material
JPH0341185A (en) Preparation of heat-storage composition
JP3442155B2 (en) Heat storage material composition
JP2006131856A (en) Latent heat cold storage material composition
JP2001031956A (en) Latent heat storage material composition
JP2000080358A (en) Heat storage material composition
KR100291100B1 (en) Novel latent heat/heat storage composition
JPS5952920B2 (en) Latent heat storage material
JPS59543B2 (en) heat storage material
JP3774530B2 (en) Manufacturing method of heat storage material
JPH0215598B2 (en)
JPS58117277A (en) Thermal energy storage material
JPS6142958B2 (en)
JPS6022031B2 (en) Heat storage agent composition
JPH0134475B2 (en)
JPS6224033B2 (en)
JPS5941382A (en) Heat storage material
JPS6197380A (en) Thermal energy storage material
JPS61190583A (en) Heat-accumulation material and production thereof
JPS6044578A (en) Thermal energy storage material
JPS6335683A (en) Latent-heat storing agent composition
JPS5942034B2 (en) heat storage material