JPH0134477B2 - - Google Patents

Info

Publication number
JPH0134477B2
JPH0134477B2 JP3082A JP3082A JPH0134477B2 JP H0134477 B2 JPH0134477 B2 JP H0134477B2 JP 3082 A JP3082 A JP 3082A JP 3082 A JP3082 A JP 3082A JP H0134477 B2 JPH0134477 B2 JP H0134477B2
Authority
JP
Japan
Prior art keywords
sodium sulfate
heat
sulfate decahydrate
temperature
nucleating agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3082A
Other languages
Japanese (ja)
Other versions
JPS58117277A (en
Inventor
Hiroshi Myake
Katsumi Takeshita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP3082A priority Critical patent/JPS58117277A/en
Publication of JPS58117277A publication Critical patent/JPS58117277A/en
Publication of JPH0134477B2 publication Critical patent/JPH0134477B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は潜熱型蓄熱装置等に用いられる蓄熱材
に関するものである。 周知の如く、近年のエネルギー事情の悪化に対
処するために排熱や太陽熱の有効利用の機運が高
まりつゝあり幅広い時間範囲が要求される蓄熱の
方法としては、水、岩石等による顕熱方式や、含
水塩、パラフイン等による潜熱方式等が考えられ
るが、本発明は潜熱型蓄熱材として含水塩を利用
するものである。 従来から含水塩の中で硫酸ナトリウム10水塩は
常温付近に融点をもつ安価な蓄熱物質として知ら
れていたが顕著な過冷却現象を有しているために
実用化されるに至つていない。硫酸ナトリウム10
水塩を溶融状態から次第に降温させたとき、相変
化温度(32℃)を過ぎても結晶化せず放熱しない
という過冷却現象は、もし硫酸ナトリウム10水塩
に蓄熱されても所定温度で熱がとり出せないこと
を意味し、硫酸ナトリウム10水塩を蓄熱材として
用いるためにはこの過冷却現象を押えることが必
須となる。 本発明はかゝる欠点を除くために硫酸ナトリウ
ム10水塩を改質して長期使用に耐える蓄熱材とし
たものであつて、硫酸ナトリウム10水塩の放熱結
晶化における結晶核の発生を促進させる有効な発
核剤の発見に基くものである。即ち、硫酸ナトリ
ウム10水塩は無色単斜晶形の結晶で、比重1.46、
包晶点32.4℃を示し、比較的低い温度の排熱や太
陽熱の如き変動の大きい熱源から熱を回収し、蓄
熱して再利用することができる。 また硫酸ナトリウム10水塩の融解熱は約
60cal/g、単位体積あたりの融解熱は約93cal/
cm3とかなり大きい融解熱を有しており、蓄熱材と
して極めて好適な化合物である点に本発明者等は
着目し、蓄熱材として用いる場合に最も大きな問
題となる過冷却を防止する発核剤について種々検
討した。硫酸ナトリウム10水塩の発核剤としては
従来、Na2B4O7等のナトリウム塩を用いるもの、
水酸化バリウム、塩化バリウム、硝酸バリウム等
のバリウム塩や水酸化ストロンチウム、塩化スト
ロンチウム、硝酸ストロンチウム等のストロンチ
ウム塩を用いるもの等種々の提案がなされている
が、連続使用した場合なお問題をもち、効果的な
発核剤とはいえない。本発明者等は硫酸ナトリウ
ム10水塩を主剤とした蓄熱剤の発核剤を種々検討
した結果、従来知られていなかつた特定のナトリ
ウム塩、酢酸塩、プロピルベンゼン誘導体、マグ
ネシウム化合物のいずれか一種以上が極めて効果
的な発核剤であることを知り、本発明に到達し
た。 すなわち本発明は、硫酸ナトリウム10水塩に、
発核剤としてサツカリンナトリウム、バナジン酸
塩、エチレンジアミン四酢酸アルカリ土類金属
塩、リグニン、酸化マグネシウム、水酸化マグネ
シウムからなる群より選ばれる少くとも一種を配
合してなる蓄熱材に関するものである。 本発明で用いられる硫酸ナトリウム10水塩は10
水塩ちようどになつている必要はなく、10水塩に
近い組成であれば良く、結晶だけでなく、10水塩
に近い水溶液、スラリー状態のものなどすべて含
むものである。また、発核剤として用いられるバ
ナジン酸塩としてはバナジン酸ナトリウム、バナ
ジン酸アンモニウムがあげられ、エチレンジアミ
ン四酢酸のアルカリ土類金属塩としてはCa塩、
Mg塩、Ba塩などがあげられる。 これら発核剤のうち少くとも一種を添加するこ
とにより、硫酸ナトリウム10水塩の凝固時の核発
生が容易となり、また長期にわたつて過冷却を防
止することができるため経済的かつ安定な蓄熱材
によるエネルギー貯蔵システムが可能となる。本
発明に用いられるこれら発核剤の添加量は硫酸ナ
トリウム10水塩に対して少くとも0.01重量%以上
が好ましく、また1重量%以上加えても添加量に
見合う効果の向上は見られず、経済的にも得策で
はない。従つて発核剤添加量の好適範囲は硫酸ナ
トリウム10水塩に対して0.01〜1重量%であり、
少量であるため硫酸ナトリウム10水塩の本質的物
性には何ら悪影響は与えず、蓄熱材として有効に
使用できるものである。なお融解時には発核剤と
一部の硫酸ナトリウム無水塩が固体として存在す
るので、これらと液相との分離を防止し、凝固時
の10水塩への転移速度を大きくするために、雲母
粉、アルギン酸ナトリウム、ポリアクリル酸ナト
リウムやゼラチン等の増粘剤を少量添加しても良
い。以下、実施例により本発明をより詳細に説明
する。 実施例 1 硫酸ナトリウム10水塩30g(ポリアクリル酸ナ
トリウム0.6gを含む)をガラス容器中に密封し
たものAと、同じ硫酸ナトリウム10水塩30g(ポ
リアクリル酸ナトリウム0.6gを含む)にサツカ
リンナトリウム0.15g(対硫酸ナトリウム10水塩
0.5重量%)を添加し、充分混合して密封した試
料Bを用意した(両試料共熱電対を挿入した)。 両試料をまず50℃の恒温水槽に浸漬し内部温度
が50℃になるまで加温した後、別に用意した20℃
の恒温水槽に両試料を移して内部温度を測定し
た。このような加温〜冷却サイクルをくり返し
て、凝固開始温度、過冷却温度を第1表に示した
が、発核剤を含まないAでは過冷却の結果、凝固
が起こらず蓄熱材として全く不適であり、発核剤
を含むBでは過冷却は僅かで凝固が生じている。
The present invention relates to a heat storage material used in latent heat type heat storage devices and the like. As is well known, in order to cope with the deterioration of the energy situation in recent years, there is a growing momentum for the effective use of waste heat and solar heat, and sensible heat methods using water, rocks, etc. are the methods of heat storage that require a wide time range. Alternatively, a latent heat method using hydrated salt, paraffin, etc. can be considered, but the present invention utilizes hydrated salt as a latent heat type heat storage material. Among hydrated salts, sodium sulfate decahydrate has long been known as an inexpensive heat storage material with a melting point near room temperature, but it has not been put into practical use because of its pronounced supercooling phenomenon. . sodium sulfate 10
The supercooling phenomenon in which when the temperature of aqueous salt is gradually lowered from its molten state, it does not crystallize and does not release heat even after the phase change temperature (32℃) This means that the supercooling phenomenon cannot be extracted, and in order to use sodium sulfate decahydrate as a heat storage material, it is essential to suppress this supercooling phenomenon. In order to eliminate such drawbacks, the present invention modifies sodium sulfate decahydrate to make it a heat storage material that can withstand long-term use, and promotes the generation of crystal nuclei during the heat dissipation crystallization of sodium sulfate decahydrate. This is based on the discovery of an effective nucleating agent. In other words, sodium sulfate decahydrate is a colorless monoclinic crystal with a specific gravity of 1.46.
It has a peritectic point of 32.4°C, and can recover heat from relatively low-temperature exhaust heat or heat sources with large fluctuations such as solar heat, store it, and reuse it. Also, the heat of fusion of sodium sulfate decahydrate is approximately
60cal/g, heat of fusion per unit volume is approximately 93cal/
The inventors of the present invention have focused on the fact that this compound has a fairly large heat of fusion of cm 3 and is extremely suitable as a heat storage material. Various agents were investigated. Conventionally, sodium salts such as Na 2 B 4 O 7 are used as nucleating agents for sodium sulfate decahydrate;
Various proposals have been made, including those using barium salts such as barium hydroxide, barium chloride, and barium nitrate, and strontium salts such as strontium hydroxide, strontium chloride, and strontium nitrate, but they still have problems when used continuously and are ineffective. It cannot be said to be a typical nucleating agent. As a result of various studies on nucleating agents for heat storage agents based on sodium sulfate decahydrate, the present inventors found that a specific sodium salt, acetate, a propylbenzene derivative, or a magnesium compound, which had not been previously known, was used as a nucleating agent. We have found that the above is an extremely effective nucleating agent, and have arrived at the present invention. That is, the present invention provides sodium sulfate decahydrate,
The present invention relates to a heat storage material containing at least one selected from the group consisting of saccharin sodium, vanadate, ethylenediaminetetraacetic acid alkaline earth metal salt, lignin, magnesium oxide, and magnesium hydroxide as a nucleating agent. The sodium sulfate decahydrate used in the present invention is 10
It does not have to be in the form of aqueous salt; it may have a composition close to that of decahydrate, and includes not only crystals but also aqueous solutions and slurries similar to decahydrate. Vanadate salts used as nucleating agents include sodium vanadate and ammonium vanadate, and alkaline earth metal salts of ethylenediaminetetraacetic acid include Ca salt,
Examples include Mg salt and Ba salt. Adding at least one of these nucleating agents facilitates nucleation during solidification of sodium sulfate decahydrate and prevents overcooling over a long period of time, resulting in economical and stable heat storage. An energy storage system using materials becomes possible. The amount of these nucleating agents used in the present invention is preferably at least 0.01% by weight or more based on sodium sulfate decahydrate, and even if they are added at least 1% by weight, no improvement in effect commensurate with the amount added is observed. It's not economically advantageous either. Therefore, the preferred range of the amount of nucleating agent added is 0.01 to 1% by weight based on sodium sulfate decahydrate.
Since the amount is small, it does not have any adverse effect on the essential physical properties of sodium sulfate decahydrate and can be effectively used as a heat storage material. Since the nucleating agent and some sodium sulfate anhydride exist as solids during melting, mica powder was added to prevent these from separating from the liquid phase and to increase the rate of transition to decahydrate during solidification. A small amount of thickener such as sodium alginate, sodium polyacrylate or gelatin may be added. Hereinafter, the present invention will be explained in more detail with reference to Examples. Example 1 30 g of sodium sulfate decahydrate (containing 0.6 g of sodium polyacrylate) sealed in a glass container A, and 30 g of the same sodium sulfate decahydrate (containing 0.6 g of sodium polyacrylate) containing saccharin Sodium 0.15g (vs. sodium sulfate decahydrate)
Sample B was prepared by adding 0.5% by weight), thoroughly mixing and sealing (a thermocouple was inserted in both samples). Both samples were first immersed in a constant temperature water bath at 50°C and heated until the internal temperature reached 50°C, and then heated to a separately prepared 20°C water bath.
Both samples were transferred to a constant temperature water bath and the internal temperature was measured. After repeating this heating-cooling cycle, the solidification start temperature and supercooling temperature are shown in Table 1. As a result of supercooling, A, which does not contain a nucleating agent, does not solidify and is completely unsuitable as a heat storage material. In B containing the nucleating agent, supercooling was slight and solidification occurred.

【表】 また第1図には、第1表のBの凝固開始温度
(1)、過冷却温度(2)を折れ線グラフで示した。 これらの結果から明らかなように、発核剤を添
加することにより過冷却は僅かとなり、くり返し
使用してもその特性は殆んど変化なく、蓄熱材と
して実用可能である。 第2図は蓄熱材を1度だけ50℃に加熱した後20
℃の恒温水槽に移した場合の内部温度を示す。こ
の図におけるA,B両曲線の違いは、発核剤を含
まないAでは顕熱のみの利用しかできないのに対
し、発核剤を含有するBでは、フラツト部におい
て凝固する間に潜熱を放出するものである。潜熱
は顕熱より著しく多量なので装置の小型化に有利
であるし、一定温度で潜熱の放出が行われるので
装置の運転面で有利である。 実施例2〜6、比較例1〜3 実施例1と同様操作で発核剤としてバナジン酸
ナトリウム16水塩、エチレンジアミン四酢酸バリ
ウム、リグニン、酸化マグネシウム、水酸化マグ
ネシウム及び比較例として硝酸ナトリウム、酢酸
アンモニウム、水酸化カルシウムをそれぞれ0.15
g(対硫酸ナトリウム10水塩0.5重量%)添加し
て凝固開始温度と過冷却温度を測定した。 その結果を第2表に示すが、実施例2〜6のも
のはいずれも過冷却は僅かであり、凝固温度もほ
とんど変化なく長期くり返し使用に耐え得るもの
であつた。これに対し比較例1〜3のものはいず
れも凝固せず、潜熱の回収はできなかつた。
[Table] Figure 1 also shows the solidification start temperature of B in Table 1.
(1) and supercooling temperature (2) are shown in a line graph. As is clear from these results, by adding a nucleating agent, supercooling becomes slight, and its properties hardly change even after repeated use, making it practical as a heat storage material. Figure 2 shows the temperature at 20℃ after heating the heat storage material once to 50℃.
Indicates the internal temperature when transferred to a constant temperature water bath at °C. The difference between curves A and B in this figure is that in curve A, which does not contain a nucleating agent, only sensible heat can be utilized, whereas in curve B, which contains a nucleating agent, latent heat is released during solidification at the flat part. It is something to do. Since latent heat is significantly larger than sensible heat, it is advantageous in miniaturizing the device, and since latent heat is released at a constant temperature, it is advantageous in terms of device operation. Examples 2 to 6, Comparative Examples 1 to 3 The same procedure as in Example 1 was carried out using sodium vanadate hexahydrate, barium ethylenediaminetetraacetate, lignin, magnesium oxide, magnesium hydroxide as a nucleating agent, and sodium nitrate and acetic acid as comparative examples. 0.15 each of ammonium and calcium hydroxide
g (0.5% by weight of sodium sulfate decahydrate) was added, and the solidification initiation temperature and supercooling temperature were measured. The results are shown in Table 2, and the samples of Examples 2 to 6 all showed slight supercooling, almost no change in solidification temperature, and could withstand repeated use over a long period of time. On the other hand, in Comparative Examples 1 to 3, none solidified, and latent heat could not be recovered.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は硫酸ナトリウム10水塩に増粘剤と発核
剤を加えた試料を加温融解させた後冷却する操作
をくり返した場合の過冷却の状態を示すグラフ
(凝固開始温度、過冷却温度と操作回数との関係)
であり、第2図は同様の試料および発核剤を加え
ない試料について温度降下の状態を示すグラフ
(温度と時間の関係)である。
Figure 1 is a graph showing the state of supercooling when a sample prepared by adding a thickener and a nucleating agent to sodium sulfate decahydrate is heated and melted, and then cooled repeatedly. (Relationship between temperature and number of operations)
FIG. 2 is a graph (relationship between temperature and time) showing the state of temperature drop for a similar sample and a sample to which no nucleating agent was added.

Claims (1)

【特許請求の範囲】[Claims] 1 硫酸ナトリウム10水塩に発核剤としてサツカ
リンナトリウム、バナジン酸塩、エチレンジアミ
ン四酢酸アルカリ土類金属塩、リグニン、酸化マ
グネシウム、水酸化マグネシウムからなる群より
選ばれる少くとも一種を配合してなる蓄熱材。
1 Sodium sulfate decahydrate is blended with at least one member selected from the group consisting of saccharin sodium, vanadate, alkaline earth metal salt of ethylenediaminetetraacetic acid, lignin, magnesium oxide, and magnesium hydroxide as a nucleating agent. Heat storage material.
JP3082A 1982-01-05 1982-01-05 Thermal energy storage material Granted JPS58117277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3082A JPS58117277A (en) 1982-01-05 1982-01-05 Thermal energy storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3082A JPS58117277A (en) 1982-01-05 1982-01-05 Thermal energy storage material

Publications (2)

Publication Number Publication Date
JPS58117277A JPS58117277A (en) 1983-07-12
JPH0134477B2 true JPH0134477B2 (en) 1989-07-19

Family

ID=11462958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3082A Granted JPS58117277A (en) 1982-01-05 1982-01-05 Thermal energy storage material

Country Status (1)

Country Link
JP (1) JPS58117277A (en)

Also Published As

Publication number Publication date
JPS58117277A (en) 1983-07-12

Similar Documents

Publication Publication Date Title
EP0103450B1 (en) Latent heat storage and supply system and method
JPH0225947B2 (en)
JPS58136997A (en) Heat accumulating material
JPS6324555B2 (en)
JPH0341185A (en) Preparation of heat-storage composition
JPS59168085A (en) Heat regenerating material
JPH0134477B2 (en)
JPH0134475B2 (en)
EP0092199B1 (en) Heat storage material
JPH0134476B2 (en)
JPS6151079A (en) Thermal energy storage material
JPS5952920B2 (en) Latent heat storage material
JPH0141672B2 (en)
JPH0222784B2 (en)
JPS588712B2 (en) Heat storage agent composition
JPS63137982A (en) Heat storage material composition
JPS6022031B2 (en) Heat storage agent composition
JPS581714B2 (en) Heat storage agent composition
JPH03128987A (en) Latent heat storage material
JPS58133597A (en) Heat accumulating material for heating
JPS6351478B2 (en)
JPS61278588A (en) Heat storing material
JPH021195B2 (en)
JPH0753865B2 (en) Latent heat storage agent composition
JPS6058480A (en) Heat storage material