JPH0222784B2 - - Google Patents

Info

Publication number
JPH0222784B2
JPH0222784B2 JP265882A JP265882A JPH0222784B2 JP H0222784 B2 JPH0222784 B2 JP H0222784B2 JP 265882 A JP265882 A JP 265882A JP 265882 A JP265882 A JP 265882A JP H0222784 B2 JPH0222784 B2 JP H0222784B2
Authority
JP
Japan
Prior art keywords
heat storage
heat
inorganic salt
alkaline earth
earth metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP265882A
Other languages
Japanese (ja)
Other versions
JPS58120093A (en
Inventor
Fujio Oomae
Nobuyuki Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP265882A priority Critical patent/JPS58120093A/en
Publication of JPS58120093A publication Critical patent/JPS58120093A/en
Publication of JPH0222784B2 publication Critical patent/JPH0222784B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、アルカリ金属またはアルカリ土類金
属の無機塩水和物を主体とする蓄熱剤組成物に関
するものである。 一般的に蓄熱を行う方法には、物質の顕熱を利
用する方法と潜熱を利用する方法とがある。顕熱
を利用する方法の代表的な例としては、水や砕石
を用いるものがあるが、この方法は蓄熱装置の容
量や重量が相当大きくなり、また熱の放出に伴い
蓄熱剤自身の温度が低下してしまう欠点がある。
これに対し、無機塩水和物や有機の結晶性物質が
おこす融解等の相変化潜熱を利用する方法は、放
熱に伴う蓄熱剤の温度低下は小さく、また融解等
の相変化潜熱は一般的に大きいので、蓄熱装置を
コンパクト化できる利点がある。 本発明は、この融解潜熱を利用して蓄熱する技
術、とくにアルカリ金属またはアルカリ土類金属
の無機塩水和物を蓄熱剤として用いるのに適する
ように改質する技術に関するものである。 元来無機塩水和物を蓄熱剤として用いる場合、
溶融状態から次第に降温させた時に本来の相変化
温度が過ぎても固化(結晶化)せず放熱しないと
いう過冷却現象が生じる。同時に不溶性物質の晶
出が融解時におこり、融解−固化のヒートサイク
ルをくり返すことにより不溶性物質が増加しつづ
け相分離現象を呈すなどの問題も生じる。 すでに本発明者らは、過冷却現象や相分離現象
の防止について発明し、特開昭57−1391705とし
て提案している。すなわち前記提案は、アルカリ
金属またはアルカリ土類金属の無機塩水和物にホ
ウ酸を添加することを要旨としている。しかし前
記提案をもつてしても、まだ改善の余地があつ
た。そこで本発明者らは、より一層過冷却現象を
防止し、単位重量あたりの有効潜熱量の大きい蓄
熱剤組成物につき鋭意研究を重ねてきた結果、本
発明を完成するに至つた。 すなわち本発明は、アルカリ土類金属の無機塩
水和物と、ホウ酸と、アルカリ土類金属の水酸化
物または無機塩無水物とからなることを特徴とす
る蓄熱剤組成物である。 本発明でいうアルカリ土類金属の無機塩水和物
としては、硫酸マグネシウム6水和物(Mg
(NO32・6H2O)、塩化マグネシウム6水和物
(MgCl2・6H2O)、塩化カルシウム6水和物
(CaCl2・6H2O)、塩化ストロンチウム・6水和
物(SrCl2・6H2O)等がある。これらは単独で使
用されるほか2種以上混合して用いてもよい。 ホウ酸の添加量は、水和物の種類によつても若
干異なるが組成物中0.1wt%以上、好ましくは
0.5wt%以上の範囲が好ましい。添加量の上限は
とくに作用効果上限定する必要はないが、多量の
添加はそれだけ蓄熱密度を減少させるので20wt
%以下、好ましくは10wt%くらいまでが実用的
である。 アルカリ土類金属の水酸化物または無機塩無水
物としては、塩化ストロンチウム(SrCl2)、弗化
ストロンチウム(SrF2)、水酸化ストロンチウム
(Sr(OH)2)、塩化バリウム(BaCl2)、弗化バリ
ウム(BaF2)、水酸化バリウム(Ba(OH)2)、塩
化マグネシウム(MgCl2)、弗化マグネシウム
(MgF2)、水酸化マグネシウム(Mg(OH)2)、塩
化カルシウム(CaCl2)、弗化カルシウム
(CaF2)、水酸化塩化カルシウム(Ca(OH)2)等
がある。このうち特に好ましいのは、塩化ストロ
ンチウム、弗化バリウム、水酸化バリウムであ
る。これらの化合物は、必要に応じて1種類また
は2種類以上が選ばれて使用される。添加量は、
組成物中0.1ないし10wt%、好ましくは0.5ないし
5wt%である。添加量が0.5%未満では過冷却防止
の改善効果が小さく、5%を超えると蓄熱密度を
減少させるので好ましくない。 また本発明の蓄熱剤組成物には、必要に応じて
他の添加剤を添加することが行われる。 実施例 1 塩化カルシウム6水和物80重量部と塩化マグネ
シウム6水和物20重量部の混合物に、塩化ストロ
ンチウムを2重量%、ホウ酸を2重量%添加した
もの(10g)を、ガラス製円筒びんに封入し40℃
に加温したのち、5℃に調整した冷水100c.c.が入
つている断熱箱中に入れ、30分後の水温を測定し
た。また水10gを入れた円筒びん(40℃)を同じ
5℃の冷水の入つている断熱箱中に入れて30分後
の水温を測定して(フランク試験)、両者の水温
差より蓄熱剤の蓄熱密度に比例した値αを求めめ
た。 α=(T2−T1)×100/10 (cal/g) T1:ブランクの水温 T2:蓄熱剤入断熱箱の水温 結果を第1表に示す。 比較例1〜6及び実施例2〜4 蓄熱剤組成物の組成を第1表に示す組成とする
以外は、実施例1と同様に行つた。 結果を第1表に示す。
The present invention relates to a heat storage agent composition mainly containing an inorganic salt hydrate of an alkali metal or an alkaline earth metal. Generally, there are two methods for storing heat: one that utilizes the sensible heat of a substance, and the other that utilizes latent heat. A typical example of a method that uses sensible heat is one that uses water or crushed stone, but this method requires a considerably large capacity and weight of the heat storage device, and the temperature of the heat storage agent itself increases as heat is released. It has the disadvantage of decreasing.
On the other hand, methods that utilize the latent heat of phase change caused by inorganic salt hydrates and organic crystalline substances, such as melting, cause a small temperature drop in the heat storage agent due to heat release, and the latent heat of phase change caused by melting, etc. Since it is large, it has the advantage that the heat storage device can be made more compact. The present invention relates to a technology for storing heat using this latent heat of fusion, and in particular to a technology for modifying an inorganic salt hydrate of an alkali metal or alkaline earth metal so that it is suitable for use as a heat storage agent. When originally using an inorganic salt hydrate as a heat storage agent,
When the temperature is gradually lowered from the molten state, a supercooling phenomenon occurs in which the material does not solidify (crystallize) and does not release heat even after the original phase change temperature has passed. At the same time, crystallization of insoluble substances occurs during melting, and as the heat cycle of melting and solidification is repeated, the amount of insoluble substances continues to increase, causing problems such as a phase separation phenomenon. The present inventors have already invented a method for preventing supercooling phenomena and phase separation phenomena, and proposed it in Japanese Patent Application Laid-Open No. 1391705/1983. That is, the gist of the above proposal is to add boric acid to an inorganic salt hydrate of an alkali metal or an alkaline earth metal. However, even with the above proposal, there was still room for improvement. Therefore, the present inventors have conducted extensive research into a heat storage agent composition that further prevents the supercooling phenomenon and has a large amount of effective latent heat per unit weight, and as a result, has completed the present invention. That is, the present invention is a heat storage agent composition comprising an inorganic salt hydrate of an alkaline earth metal, boric acid, and an alkaline earth metal hydroxide or inorganic salt anhydride. In the present invention, the inorganic salt hydrate of alkaline earth metal includes magnesium sulfate hexahydrate (Mg
(NO 3 ) 2・6H 2 O), magnesium chloride hexahydrate (MgCl 2・6H 2 O), calcium chloride hexahydrate (CaCl 2・6H 2 O), strontium chloride hexahydrate (SrCl 2・6H 2 O), etc. These may be used alone or in combination of two or more. The amount of boric acid added varies slightly depending on the type of hydrate, but is preferably 0.1 wt% or more in the composition.
A range of 0.5wt% or more is preferable. The upper limit of the amount added does not need to be particularly limited in terms of effectiveness, but adding a large amount will reduce the heat storage density accordingly, so 20wt
% or less, preferably up to about 10 wt%, is practical. Examples of alkaline earth metal hydroxides or inorganic salt anhydrides include strontium chloride (SrCl 2 ), strontium fluoride (SrF 2 ), strontium hydroxide (Sr(OH) 2 ), barium chloride (BaCl 2 ), and strontium fluoride (SrF 2 ). Barium chloride (BaF 2 ), barium hydroxide (Ba(OH) 2 ), magnesium chloride (MgCl 2 ), magnesium fluoride (MgF 2 ), magnesium hydroxide (Mg(OH) 2 ), calcium chloride (CaCl 2 ) , calcium fluoride (CaF 2 ), calcium hydroxide chloride (Ca(OH) 2 ), etc. Among these, particularly preferred are strontium chloride, barium fluoride, and barium hydroxide. One or more of these compounds may be selected and used as required. The amount added is
0.1 to 10 wt% in the composition, preferably 0.5 to 10 wt%
It is 5wt%. If the amount added is less than 0.5%, the effect of improving supercooling prevention will be small, and if it exceeds 5%, the heat storage density will be reduced, which is not preferable. Further, other additives may be added to the heat storage agent composition of the present invention as necessary. Example 1 A mixture of 80 parts by weight of calcium chloride hexahydrate and 20 parts by weight of magnesium chloride hexahydrate, to which 2% by weight of strontium chloride and 2% by weight of boric acid were added (10g), was placed in a glass cylinder. Sealed in a bottle at 40℃
After heating it to 5°C, it was placed in an insulated box containing 100cc of cold water adjusted to 5°C, and the water temperature was measured 30 minutes later. In addition, a cylindrical bottle (40℃) containing 10g of water was placed in an insulated box containing cold water at 5℃ and the water temperature was measured 30 minutes later (Frank test). The value α proportional to the heat storage density was determined. α=(T 2 −T 1 )×100/10 (cal/g) T 1 : Water temperature of blank T 2 : Water temperature of insulated box containing heat storage agent The results are shown in Table 1. Comparative Examples 1 to 6 and Examples 2 to 4 The same procedure as in Example 1 was conducted except that the composition of the heat storage agent composition was changed to the composition shown in Table 1. The results are shown in Table 1.

【表】 実施例 5 塩化カルシウム6水和物90重量部と塩化ストロ
ンチウム6水和物(SrCl2・6H2O)10重量部の混
合物に、塩化ストロンチウム2重量%およびホウ
酸2重量%を添加したものについて、実施例1と
同様に行つた。その結果αは32cal/gであつた。
[Table] Example 5 To a mixture of 90 parts by weight of calcium chloride hexahydrate and 10 parts by weight of strontium chloride hexahydrate (SrCl 2 6H 2 O), 2% by weight of strontium chloride and 2% by weight of boric acid were added. The same procedure as in Example 1 was conducted for the sample. As a result, α was 32 cal/g.

Claims (1)

【特許請求の範囲】[Claims] 1 アルカリ土類金属の無機塩水和物と、ホウ酸
と、アルカリ土類金属の水酸化物または無機塩無
水物とからなることを特徴とする蓄熱剤組成物。
1. A heat storage agent composition comprising an alkaline earth metal inorganic salt hydrate, boric acid, and an alkaline earth metal hydroxide or inorganic salt anhydride.
JP265882A 1982-01-13 1982-01-13 Composition of heat accumulating agent Granted JPS58120093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP265882A JPS58120093A (en) 1982-01-13 1982-01-13 Composition of heat accumulating agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP265882A JPS58120093A (en) 1982-01-13 1982-01-13 Composition of heat accumulating agent

Publications (2)

Publication Number Publication Date
JPS58120093A JPS58120093A (en) 1983-07-16
JPH0222784B2 true JPH0222784B2 (en) 1990-05-21

Family

ID=11535437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP265882A Granted JPS58120093A (en) 1982-01-13 1982-01-13 Composition of heat accumulating agent

Country Status (1)

Country Link
JP (1) JPS58120093A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6264854B1 (en) * 1995-09-07 2001-07-24 Claude Q. C. Hayes Heat absorbing temperature control devices and method
CN108822802B (en) * 2018-04-23 2021-02-26 西北大学 Aluminum-encapsulated quaternary disodium hydrogen phosphate dodecahydrate-based phase-change heat storage material

Also Published As

Publication number Publication date
JPS58120093A (en) 1983-07-16

Similar Documents

Publication Publication Date Title
JPH0225947B2 (en)
US4189394A (en) Heat storage material comprising calcium chloride-hexahydrate and a nucleating agent
JPS6351477B2 (en)
KR850001786B1 (en) Reversible liquid/solid phase change compositions
JPH0222784B2 (en)
US4540502A (en) Heat storage material
KR850000506A (en) Reversible Phase Transfer Composition for Energy Storage
JPS59168085A (en) Heat regenerating material
JPH08245953A (en) Composition for thermal storage
JPS57180684A (en) Heat accumulating material
EP0807150B1 (en) Reversible hydrated magnesium chloride phase change compositions for storing energy
US4604223A (en) Heat storage material
EP0092199B1 (en) Heat storage material
JPS58136684A (en) Thermal energy storage material
JPH0292987A (en) Cold-storing material composition
JPH0157157B2 (en)
JPH0134477B2 (en)
JPH0141672B2 (en)
JPS588712B2 (en) Heat storage agent composition
JPS6151079A (en) Thermal energy storage material
JPS6142958B2 (en)
JPH0134476B2 (en)
JPH0134475B2 (en)
JPS5941668B2 (en) heat storage material
JPS581714B2 (en) Heat storage agent composition