JPS5821942B2 - Heat storage agent composition - Google Patents

Heat storage agent composition

Info

Publication number
JPS5821942B2
JPS5821942B2 JP15597278A JP15597278A JPS5821942B2 JP S5821942 B2 JPS5821942 B2 JP S5821942B2 JP 15597278 A JP15597278 A JP 15597278A JP 15597278 A JP15597278 A JP 15597278A JP S5821942 B2 JPS5821942 B2 JP S5821942B2
Authority
JP
Japan
Prior art keywords
heat
heat storage
storage agent
agent composition
copper powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15597278A
Other languages
Japanese (ja)
Other versions
JPS5582182A (en
Inventor
岡崎英生
坂上勝義
三井原彬
小熊完治
西崎倫義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Kansai Denryoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd, Kansai Denryoku KK filed Critical Sekisui Chemical Co Ltd
Priority to JP15597278A priority Critical patent/JPS5821942B2/en
Publication of JPS5582182A publication Critical patent/JPS5582182A/en
Publication of JPS5821942B2 publication Critical patent/JPS5821942B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、塩化カルシウム6水塩(CaCI2.6H2
0)又はリン酸水素二ナトリウム12水塩(Na2)f
PO4・12H20)を主体とする蓄熱剤組成物に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides calcium chloride hexahydrate (CaCI2.6H2
0) or disodium hydrogen phosphate dodecahydrate (Na2) f
This invention relates to a heat storage agent composition mainly composed of PO4.12H20).

一般的に、蓄熱を行なう方法には、物質の顕熱を利用す
る方法と潜熱を利用する方法がある。
Generally, methods for storing heat include methods that utilize the sensible heat of substances and methods that utilize latent heat.

顕熱を利用する方法の代表的な例は水である。A typical example of a method that uses sensible heat is water.

水は比熱が大きく、取扱いが容易なうえ、なによりも極
めて安価である。
Water has a large specific heat, is easy to handle, and above all, is extremely cheap.

水星外には、砂利や砕石、レンガなどが使用されている
Outside of Mercury, gravel, crushed stone, and bricks are used.

ところが、顕熱を利用して蓄熱しようとすると、蓄熱装
置の容量や重量が相当大きくなってしまう。
However, if an attempt is made to store heat using sensible heat, the capacity and weight of the heat storage device will become considerably large.

また、熱の放出に比例して蓄熱剤自身の温度が低下して
しまう欠点もある。
Another disadvantage is that the temperature of the heat storage agent itself decreases in proportion to the release of heat.

これに対し、潜熱を利用する方法には、無機水和塩や有
機の結晶性物質を用いるものが例として挙げられる。
On the other hand, examples of methods that utilize latent heat include methods that use inorganic hydrated salts and organic crystalline substances.

この方法は、原理的には一定温度でおこる融解等の相変
化現象を利用するもので、熱放出に伴う蓄熱剤の温度低
下は小さく、また融解等の相変化潜熱は一般的に大きい
のでコンパクトに蓄熱することができる。
In principle, this method utilizes phase change phenomena such as melting that occur at a constant temperature, and the temperature drop of the heat storage agent due to heat release is small, and the latent heat of phase change such as melting is generally large, making it compact. can store heat.

本発明は、この無機水利塩の融解潜熱を利用して蓄熱す
る技術、特に室温より若干高い融点を有する塩化カルシ
ウム6水塩及びリン酸水素ニナトリウム12水塩を用い
、これを蓄熱剤として用いるのに適するように改質する
技術に関するものである。
The present invention utilizes a technology for storing heat by utilizing the latent heat of fusion of this inorganic water salt, in particular calcium chloride hexahydrate and disodium hydrogen phosphate dodecahydrate, which have melting points slightly higher than room temperature, and uses these as a heat storage agent. This relates to technology for modifying materials to make them suitable for use.

元来、塩化カルシウム6水塩は、安価な蓄熱物質として
知られているが、融解潜熱の異なる2つの結晶構造をと
ったり、腐蝕性を有するという欠点もさることながら、
過冷却現象を顕著に示すという難点がある。
Calcium chloride hexahydrate is originally known as an inexpensive heat storage material, but it has two crystal structures with different latent heats of fusion and is corrosive.
It has the disadvantage that it exhibits a noticeable supercooling phenomenon.

塩化カルシウム6水塩を、溶融状態から次第に降温させ
た時、本来の相変化温度(29℃)を過ぎても固化(結
晶化)せず放熱しないという過冷却現象は、仮に一旦塩
化カルシウム6水塩に蓄熱しても所定の温度で熱を取り
出すことができないという実用上の不都合を生じさせる
When the temperature of calcium chloride hexahydrate is gradually lowered from its molten state, it does not solidify (crystallize) or release heat even after the original phase change temperature (29°C), which is the supercooling phenomenon. This causes a practical inconvenience in that even if heat is stored in the salt, the heat cannot be extracted at a predetermined temperature.

従って塩化カルシウム6水塩を蓄熱剤として用いるため
には、この過冷却現象を抑えることが肝要である。
Therefore, in order to use calcium chloride hexahydrate as a heat storage agent, it is important to suppress this supercooling phenomenon.

リン酸水素二す) IJウム12水塩は、融解熱が63
cal/gで、密度が15:11/!であるから、単位
体積当りの融解熱は97 cal lcr&と無機水利
塩の内でも大きい方に属し、よりコンパクトに蓄熱する
ことができる大変安価な蓄熱剤である。
IJium dodecahydrate has a heat of fusion of 63
Cal/g, density 15:11/! Therefore, the heat of fusion per unit volume is 97 cal lcr&, which is one of the largest among inorganic water salts, and it is a very inexpensive heat storage agent that can store heat more compactly.

しかし、リン酸水素二ナトリウム12水塩は、溶融状態
から次第に降温させた時、本来の相変化温度(34℃)
を過ぎても固化(結晶化)せず放熱しないという過冷却
現象を呈する欠点がある。
However, when the temperature of disodium hydrogen phosphate dodecahydrate is gradually lowered from the molten state, the original phase change temperature (34°C)
It has the disadvantage of exhibiting a supercooling phenomenon in which it does not solidify (crystallize) and does not dissipate heat even after the temperature has passed.

この過冷却現象は、仮に一旦蓄熱剤に蓄熱されても、所
定の温度で熱を取り出す事ができないという実用上の不
都合を生じさせる。
This supercooling phenomenon causes a practical inconvenience in that even if heat is once stored in the heat storage agent, the heat cannot be taken out at a predetermined temperature.

従って、リン酸水素ニナトリウム12水塩を蓄熱剤とし
て用いるためには、この過冷却現象を抑えることが肝要
である。
Therefore, in order to use disodium hydrogen phosphate dodecahydrate as a heat storage agent, it is important to suppress this supercooling phenomenon.

本発明は、上述した塩化カルシウム6水塩及びリン酸水
素二ナトリウム12水塩の過冷却現象を防止し、安価で
、吸放熱性能の安定した、蓄熱密度の高い蓄熱剤組成物
を提供することを目的とする0 本発明者らは、かかる塩化カルシウム6水塩及びリン酸
水素二ナトリウム12水塩の過冷却現象を抑制すべく、
塩化カルシウム6水塩及びリン酸水素二ナトリウム12
水塩の放熱結晶化過程における結晶核の生成を促進させ
る核形成剤の研究を鋭意性なった結果、塩化カルシウム
6水塩及びリン酸水素二ナトリウム12水塩に対して有
効な核形成剤を発見し、本発明を完成するに至ったので
ある。
The present invention prevents the supercooling phenomenon of the above-mentioned calcium chloride hexahydrate and disodium hydrogen phosphate dodecahydrate, and provides a heat storage agent composition that is inexpensive, has stable heat absorption and radiation performance, and has a high heat storage density. The present inventors aimed to suppress the supercooling phenomenon of calcium chloride hexahydrate and disodium hydrogen phosphate dodecahydrate,
Calcium chloride hexahydrate and disodium hydrogen phosphate 12
As a result of intensive research into nucleating agents that promote the formation of crystal nuclei during the heat dissipation crystallization process of aqueous salts, we have discovered a nucleating agent that is effective against calcium chloride hexahydrate and disodium hydrogen phosphate dodecahydrate. This discovery led to the completion of the present invention.

即ち、本発明の要旨は、塩化カルシウム6水塩又はリン
酸水素二ナトリウム12水塩に銅粉末及び増粘剤が添加
されてなる蓄熱剤組成物に存する。
That is, the gist of the present invention resides in a heat storage agent composition in which copper powder and a thickener are added to calcium chloride hexahydrate or disodium hydrogen phosphate dodecahydrate.

銅粉末は、その表面が塩化カルシウム6水塩又はリン酸
水素二ナトリウム12水塩と接触して核形成剤として有
効に作用するのである。
The surface of the copper powder comes into contact with calcium chloride hexahydrate or disodium hydrogen phosphate dodecahydrate and effectively acts as a nucleating agent.

したがって、本発明に用いられる銅粉末としては、粗角
が細カイ方が塩化カルシウム6水塩又はリン酸水素二ナ
トリウム12水塩とその表面が効率よく接触し、該塩化
カルシウム6水塩又はリン酸水素ニナトリウム12水塩
の結晶核の生成が促進され好ましい。
Therefore, as for the copper powder used in the present invention, the surface of the copper powder with rough edges and fine edges is in efficient contact with calcium chloride hexahydrate or disodium hydrogen phosphate decahydrate, and the calcium chloride hexahydrate or phosphate This is preferable because the formation of crystal nuclei of disodium oxyhydrogen dodecahydrate is promoted.

本発明に用いられる銅粉末の好ましい粒径としでは、1
00ミクロン以下であり、更に好ましくは30ミクロン
以下である。
The preferred particle size of the copper powder used in the present invention is 1
00 microns or less, more preferably 30 microns or less.

本発明に用いられる銅粉末の添加量は、銅粉末の粒径に
依存する。
The amount of copper powder used in the present invention depends on the particle size of the copper powder.

即ち、銅粉末の粒径が小さいと添加量は少なくてよく、
粒径が大きくなると添加量は増大する。
In other words, if the particle size of the copper powder is small, the amount added may be small;
The amount added increases as the particle size increases.

本発明に用いられる銅粉末の好ましい添加量としては、
上述のとおりその粒径に依存するが、塩化カルシウム6
水塩又はリン酸水素二ナトリウム12水塩100重量部
に対して0.001重量部〜20重量部の範囲であり、
更に好ましくは0.1重量部〜10重量部の範囲である
The preferred amount of copper powder used in the present invention is as follows:
As mentioned above, depending on the particle size, calcium chloride 6
The amount ranges from 0.001 parts by weight to 20 parts by weight per 100 parts by weight of hydrate or disodium hydrogen phosphate decahydrate;
More preferably, it is in the range of 0.1 parts by weight to 10 parts by weight.

本発明は、上述のように塩化カルシウム6水塩又はリン
酸水素ニナトリウム12水塩に銅粉末を加えて、過冷却
現象を呈さない蓄熱剤を提供するものであるけれども、
塩化カルシウム6水塩とリン酸水素二ナトリウム12水
塩の混合物に銅粉末を加えても過冷却現象を呈さないの
はもちろんである。
As described above, the present invention provides a heat storage agent that does not exhibit a supercooling phenomenon by adding copper powder to calcium chloride hexahydrate or disodium hydrogen phosphate dodecahydrate;
Of course, even if copper powder is added to a mixture of calcium chloride hexahydrate and disodium hydrogen phosphate dodecahydrate, no supercooling phenomenon will occur.

また、蓄熱剤がさらされる温度にも依るが、溶融時にお
ける塩化カルシウム4水塩や2水塩又はリン酸水素二ナ
トリウム7水塩や2水塩あるいは銅粉末の沈降、凝集を
防ぐために、更にカルボキシメチルセルロース、シリカ
微粉末等の増粘剤を添加する。
In addition, depending on the temperature to which the heat storage agent is exposed, additional measures may be taken to prevent precipitation or aggregation of calcium chloride tetrahydrate or dihydrate, disodium hydrogen phosphate heptahydrate or dihydrate, or copper powder during melting. Add a thickener such as carboxymethyl cellulose or fine silica powder.

又、固化放熱温度の調節剤等の添加剤を適宜加えてもよ
い。
Additionally, additives such as a solidification heat release temperature regulator may be added as appropriate.

而して本発明蓄熱剤組成物は、通常に加熱していくと、
先ず、固相状態で顕熱として熱を蓄積し、次に固相から
液相に変わる時に、融解の潜熱として多量の熱を蓄積し
、完全に液相に変化すると、更に顕熱として熱を蓄積す
るのである。
Therefore, when the heat storage agent composition of the present invention is heated normally,
First, heat is accumulated as sensible heat in the solid phase state, and then when the solid phase changes from the liquid phase, a large amount of heat is accumulated as the latent heat of melting, and when the phase completely changes to the liquid phase, heat is further accumulated as sensible heat. It accumulates.

熱を放出する場合は、高温の液相状態から凝固温度まで
は通常に顕熱を放出し、凝固温度においては、過冷却現
象をおこすことなく、該温度で先に融解の潜熱として蓄
積した熱を、固化(結晶化)の潜熱として、長時間に亘
って放熱し、完全に固相に変化すると、更に蓄熱剤自身
の温度を低下しつつ顕熱として熱を放出するのである。
When releasing heat, sensible heat is normally released from the high-temperature liquid phase state to the solidification temperature, and at the solidification temperature, the heat that was previously accumulated as latent heat of melting at that temperature is released without causing supercooling phenomenon. is released as latent heat of solidification (crystallization) over a long period of time, and when it completely changes to a solid phase, it releases heat as sensible heat while further lowering the temperature of the heat storage agent itself.

上述のように、本発明の蓄熱剤組成物は、塩化カルシウ
ム6水塩又はリン酸水素二ナトリウム12水塩に銅粉末
及び増粘剤が添加されてなるから、安価で過冷却をおこ
すことのない安定した吸放熱性能を有し、且つ蓄熱密度
の高いものとなっている。
As mentioned above, the heat storage agent composition of the present invention is made by adding copper powder and a thickener to calcium chloride hexahydrate or disodium hydrogen phosphate dodecahydrate, so it is inexpensive and does not cause supercooling. It has extremely stable heat absorption and radiation performance, and has a high heat storage density.

また、本発明の蓄熱剤組成物は、熱伝導性のよい銅粉末
が添加されているから、伝熱性がよく、熱の出し入れの
容易なものとなっている。
Further, since the heat storage agent composition of the present invention contains copper powder having good thermal conductivity, it has good heat conductivity and can easily transfer heat in and out.

本発明の蓄熱剤組成物は、室温より若干高めの融点を有
しているため、太陽熱あるいは他の熱源と組合せること
によって、例えば床暖房や壁暖房といった住宅用機器や
、その他種々の蓄熱用途に使用し得るものとなっている
Since the heat storage agent composition of the present invention has a melting point slightly higher than room temperature, it can be used in residential equipment such as floor heating and wall heating, and various other heat storage applications by combining it with solar heat or other heat sources. It can be used for.

以下本発明の実施例を示す。Examples of the present invention will be shown below.

実施例 l 塩化カルシウム6水塩100重量部に対して微粉末シリ
カ(アエロジル+380;日本アエロジル■製)3重量
部を添加し、攪拌混合して尿試料を調製した。
Example 1 To 100 parts by weight of calcium chloride hexahydrate, 3 parts by weight of finely powdered silica (Aerosil +380; manufactured by Nippon Aerosil ■) was added and stirred and mixed to prepare a urine sample.

この尿試料30Fに銅粉末(中位径12ミクロン;沈降
法による測定)0.:lを添加し、攪拌混合したものを
、内径1371m、長さ180屡の試験管に入れ、その
中央部に熱電対を挿入し、上端をゴム栓で密封した。
Copper powder (median diameter 12 microns; measured by sedimentation method) was added to this urine sample 30F. The mixture was stirred and mixed into a test tube with an inner diameter of 1371 m and a length of 180 m, a thermocouple was inserted into the center of the tube, and the upper end was sealed with a rubber stopper.

そして、この試験管を45℃の恒温水槽に浸漬して、内
部が溶融して45℃になるまで充分加熱した。
Then, this test tube was immersed in a constant temperature water bath at 45°C and sufficiently heated until the inside was melted and the temperature reached 45°C.

次に、この試験管を15℃の恒温水槽に浸漬して放熱さ
せ、試験管内の蓄熱剤組成物の温度変化を測定した。
Next, this test tube was immersed in a constant temperature water bath at 15° C. to radiate heat, and the temperature change of the heat storage agent composition in the test tube was measured.

放熱曲線は、第1図の1のようになり、この蓄熱剤組成
物が過冷却をおこすことなく。
The heat release curve becomes as shown in 1 in FIG. 1, and this heat storage agent composition does not cause supercooling.

29℃で長時間固化放熱を行なっていることが確認され
た。
It was confirmed that solidification heat was dissipated for a long time at 29°C.

比較例 1 実施例1で調整した銅粉末の添加されていない尿試料3
0gの放熱挙動を、実施例1と全く同様にして測定した
Comparative Example 1 Urine sample 3 prepared in Example 1 without the addition of copper powder
The heat dissipation behavior at 0 g was measured in exactly the same manner as in Example 1.

放熱曲線は第1図の2のようになり、この尿試料が過冷
却をおこし、はとんど固化放熱しないことが確認された
The heat release curve was as shown in 2 in Figure 1, confirming that this urine sample was supercooled and hardly solidified and did not release heat.

実施例 2 リン酸水素二ナトリウム12水塩100重量部に対して
微粉末シリカ(アエロジル≠380;日本アエロジル■
製)3重量部を添加し、攪拌混合して尿試料を調製した
Example 2 Finely powdered silica (Aerosil≠380; Nippon Aerosil■
A urine sample was prepared by adding 3 parts by weight of the product (manufactured by Alumni Co., Ltd.) and stirring and mixing.

この尿試料30.!i’に銅粉末(中位径12ミクロン
;沈降法による測定)0.3&を添加し、攪拌混合した
ものを、内径18麿、長さisomの試験管に入れ、そ
の中央部に熱電対を挿入し、上端をゴム栓で密封した。
This urine sample 30. ! Add 0.3 mm of copper powder (median diameter: 12 microns; measured by sedimentation method) to i', stir and mix, and place the mixture in a test tube with an inner diameter of 18 mm and a length of isom, and a thermocouple is attached to the center of the tube. It was inserted and the top end was sealed with a rubber stopper.

そして、この試験管を60℃の恒温水槽に浸漬して、内
部が溶融して60℃になるまで充分加熱した。
Then, this test tube was immersed in a constant temperature water bath at 60°C and sufficiently heated until the inside was melted and the temperature reached 60°C.

次に、この試験管を15℃の恒温水槽に浸漬して放熱さ
せ、試験管内の蓄熱剤組成物の温度変化を測定した。
Next, this test tube was immersed in a constant temperature water bath at 15° C. to radiate heat, and the temperature change of the heat storage agent composition in the test tube was measured.

放熱曲線は、第2図の1のようになり、この蓄熱剤組成
物が過冷却をおこすことなく、35℃で長時間固化放熱
を行なっていることが確認された。
The heat dissipation curve was as shown in 1 in FIG. 2, and it was confirmed that this heat storage agent composition solidified and dissipated heat for a long time at 35° C. without causing supercooling.

比較例 2 実施例2で調整した銅粉末の添加されていない尿試料3
(lの放熱挙動を、実施例2と全く同様にして測定した
Comparative Example 2 Urine sample 3 prepared in Example 2 without the addition of copper powder
(The heat dissipation behavior of 1 was measured in exactly the same manner as in Example 2.

放熱曲線は第2図の2のようになり、この尿試料が過冷
却をおこし、はとんど固化放熱しないことが確認された
The heat release curve was as shown in 2 in Figure 2, confirming that this urine sample was supercooled and hardly solidified and did not release heat.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は塩化カルシウム6水塩を用いた本発明蓄熱剤組
成物及び銅粉末の添加されていない従来の蓄熱剤組成物
の放熱挙動を示すグラフであり、第2図はリン酸水素ニ
ナ) IJウム12水塩を用いた本発明蓄熱剤組成物及
び銅粉末の添加されていない従来の蓄熱剤組成物の放熱
挙動を示すグラフである。
Fig. 1 is a graph showing the heat dissipation behavior of the heat storage agent composition of the present invention using calcium chloride hexahydrate and a conventional heat storage agent composition to which no copper powder is added, and Fig. 2 is a graph showing the heat dissipation behavior of the heat storage agent composition of the present invention using calcium chloride hexahydrate. 1 is a graph showing the heat dissipation behavior of a heat storage agent composition of the present invention using IJum dodecahydrate and a conventional heat storage agent composition to which no copper powder is added.

Claims (1)

【特許請求の範囲】 1 塩化カルシウム6水塩又はリン酸水素二ナトリウム
12水塩に銅粉末及び増粘剤が添加されてなる蓄熱剤組
成物。 2 銅粉末の粒径が100ミクロン以下である特許請求
の範囲第1項記載の蓄熱剤組成物。 3 塩化カルシウム6水塩又はリン酸水素二ナトリウム
12水塩100重量部に対して、銅粉末がo、ooi重
量部〜20重量部の範囲で添加されてなる特許請求の範
囲第1項又は第2項記載の蓄熱剤組成物。
[Scope of Claims] 1. A heat storage agent composition prepared by adding copper powder and a thickener to calcium chloride hexahydrate or disodium hydrogen phosphate dodecahydrate. 2. The heat storage agent composition according to claim 1, wherein the copper powder has a particle size of 100 microns or less. 3. Copper powder is added in the range of o, ooi parts by weight to 20 parts by weight to 100 parts by weight of calcium chloride hexahydrate or disodium hydrogen phosphate decahydrate. The heat storage agent composition according to item 2.
JP15597278A 1978-12-14 1978-12-14 Heat storage agent composition Expired JPS5821942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15597278A JPS5821942B2 (en) 1978-12-14 1978-12-14 Heat storage agent composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15597278A JPS5821942B2 (en) 1978-12-14 1978-12-14 Heat storage agent composition

Publications (2)

Publication Number Publication Date
JPS5582182A JPS5582182A (en) 1980-06-20
JPS5821942B2 true JPS5821942B2 (en) 1983-05-04

Family

ID=15617549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15597278A Expired JPS5821942B2 (en) 1978-12-14 1978-12-14 Heat storage agent composition

Country Status (1)

Country Link
JP (1) JPS5821942B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348833U (en) * 1989-09-19 1991-05-10

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4617548B2 (en) * 2000-08-15 2011-01-26 Jfeエンジニアリング株式会社 Hydrate slurry production method, hydrate slurry production apparatus and aqueous solution
CN106723344A (en) * 2016-12-05 2017-05-31 湖南中烟工业有限责任公司 Application of the disodium hydrogen phosphate in main flume temperature is reduced and it is added with the cigarette filter of disodium hydrogen phosphate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348833U (en) * 1989-09-19 1991-05-10

Also Published As

Publication number Publication date
JPS5582182A (en) 1980-06-20

Similar Documents

Publication Publication Date Title
US4503838A (en) Latent heat storage and supply system and method
JPS63101473A (en) Heat energy storage composition
CN106221675A (en) A kind of phase-change and energy-storage medium
US4288338A (en) Static solar heat storage composition
JPS5821942B2 (en) Heat storage agent composition
JPS581714B2 (en) Heat storage agent composition
JPS588712B2 (en) Heat storage agent composition
JPS581715B2 (en) Heat storage agent composition
JP3880677B2 (en) Latent heat storage material composition
JPH0347889A (en) Latent heat-accumulating material
JPS6022031B2 (en) Heat storage agent composition
JPS61197668A (en) Thermal energy storage material
JP2805968B2 (en) Latent heat storage material
JPS6121579B2 (en)
JPH0215598B2 (en)
JPS60203689A (en) Thermal energy storage material
JPS59170178A (en) Heat storage material
JP2982409B2 (en) Latent heat storage material
JPH0347888A (en) Heat-accumulating material
JPS6228995B2 (en)
JPS6351478B2 (en)
JPS58225181A (en) Heat storage material
JPS5941382A (en) Heat storage material
JPS6147190B2 (en)
JPS6049081A (en) Heat storage material