JPS58225181A - Heat storage material - Google Patents

Heat storage material

Info

Publication number
JPS58225181A
JPS58225181A JP57107196A JP10719682A JPS58225181A JP S58225181 A JPS58225181 A JP S58225181A JP 57107196 A JP57107196 A JP 57107196A JP 10719682 A JP10719682 A JP 10719682A JP S58225181 A JPS58225181 A JP S58225181A
Authority
JP
Japan
Prior art keywords
heat storage
storage material
borax
latent heat
supercooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57107196A
Other languages
Japanese (ja)
Other versions
JPH0151517B2 (en
Inventor
Hiroyuki Watanabe
裕之 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nippon Oil Seal Industry Co Ltd
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Seal Industry Co Ltd, Nok Corp filed Critical Nippon Oil Seal Industry Co Ltd
Priority to JP57107196A priority Critical patent/JPS58225181A/en
Publication of JPS58225181A publication Critical patent/JPS58225181A/en
Publication of JPH0151517B2 publication Critical patent/JPH0151517B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a latent heat-type heat storage material, capable of reducing the degree of supercooling during its solidification, by adding, as nucleating agent(s), sodium tetraborate and/or borax to disodium hydrogenphosphate. CONSTITUTION:The objective heat storage material can be obtained by adding to (A) disodium hydrogenphosphate (Na2PO4.12H2O), (B) pref. 0.5-10 (especially 1-5)wt% of sodium tetraborate (Na2B4O7) and/or borax (Na2B4O7.10H2O).

Description

【発明の詳細な説明】 本発明は、蓄熱材に関する。更に詳しくは、凝固時の過
冷却の程度を軽減した潜熱型の蓄熱材に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat storage material. More specifically, the present invention relates to a latent heat type heat storage material that reduces the degree of supercooling during solidification.

蓄熱材としては、従来から水や砕石が用いられてきたが
、これらは蓄熱密度が小さいため(1cnt/g4eg
以下)、実用に際してはかなり大きな蓄熱器を必要とす
る。また放熱に伴って、蓄熱器内の温度は徐々に低下す
るので、安定な熱エネルギーを得ることは、技術的にか
なり困難である。
Water and crushed stone have traditionally been used as heat storage materials, but these have low heat storage density (1cnt/g4eg
(below), a fairly large heat storage device is required for practical use. Furthermore, as the heat is dissipated, the temperature inside the heat storage device gradually decreases, so it is technically quite difficult to obtain stable thermal energy.

これに対し、近年物質の融解、凝固の際の潜熱を蓄熱に
応用する研究、開発が盛んになってきている。このよう
な潜熱型の蓄熱材の特徴は、材料の融解温度に一致した
一定温度の熱エネルギーを、数10aIVgという高い
蓄熱密度で安定に吸収および放出できる点にある。
In response, research and development on applying latent heat during melting and solidification of substances to heat storage has become active in recent years. A feature of such a latent heat type heat storage material is that it can stably absorb and release thermal energy at a constant temperature corresponding to the melting temperature of the material at a high heat storage density of several 10aIVg.

ところで、最近太陽熱利用技術や排熱回収技術の進展に
伴ない、給湯用および暖房用の熱源として30〜50℃
といった比較的低い温度での蓄熱が注目されている。こ
のような低い温度で蓄熱を行なう際の潜熱型蓄熱材とし
ては、パラフィンなどの有機物や無機水和物などが注目
されている。
By the way, with recent advances in solar heat utilization technology and waste heat recovery technology, temperatures of 30 to 50 degrees Celsius have been used as a heat source for hot water supply and space heating.
Heat storage at relatively low temperatures is attracting attention. Organic substances such as paraffin and inorganic hydrates are attracting attention as latent heat type heat storage materials for storing heat at such low temperatures.

潜熱型蓄熱材としての有機物は、融解、凝固時における
安定性は良好であるものの、材料自身の熱伝導が悪いた
め、熱の吸収および放出を行なう上で問題がある。また
、比重が小さいため、蓄熱器も比較的大きなものとなっ
てくる。
Although organic materials as latent heat storage materials have good stability during melting and solidification, they have problems in absorbing and releasing heat because the material itself has poor thermal conductivity. Furthermore, since the specific gravity is small, the heat storage device is also relatively large.

−・方、無機水和物は、有機物蓄熱材と比較して熱伝導
率は約2倍稈よく、比重も1.5〜2.0種度と大きい
ため、蓄熱器も小さくすることができる。
- On the other hand, inorganic hydrates have about twice the thermal conductivity as organic heat storage materials, and have a high specific gravity of 1.5 to 2.0 degrees, so the heat storage device can also be made smaller. .

しかるに、無機水和物は、一般に凝固開始温度が融解湿
度よりも低くなるという、いわゆる過冷却現象を示す。
However, inorganic hydrates generally exhibit a so-called supercooling phenomenon in which the solidification initiation temperature becomes lower than the melting humidity.

かかる現象は、無機水和物を蓄熱材として用いた場合、
一定温度の熱エネルギーを安定して吸収および放出する
という潜熱型蓄熱材の特徴を著しく損わせるものである
This phenomenon occurs when inorganic hydrates are used as heat storage materials.
This significantly impairs the feature of the latent heat storage material, which is to stably absorb and release thermal energy at a constant temperature.

リン酸水素二ナトリウム(N a 2HPOa ・12
H20)は、融解温度が35℃であり、潜熱量が49c
m/g (示差走査熱量計による)と高いため、給湯用
や暖房用の潜熱型蓄熱材として非常に有望であるが、こ
の無機水和物の場合にも過冷却現象がみられる。即ち、
一旦融解させたリン酸水素二ナトリウムは、約25℃前
後の室温に放置しても固化しないのである。これは、リ
ン酸水素二ナトリウムの凝固開始温度が21℃であり、
結局14℃の温度差に相当する過冷却を生ずるためであ
る。従って、この無機水和物の潜熱量を有効に取り出す
ためには、10数℃という冷水を用いなければならず、
実際上清熱材としては使用できなかったのである。
Disodium hydrogen phosphate (N a 2HPOa ・12
H20) has a melting temperature of 35°C and a latent heat of 49c.
m/g (measured by differential scanning calorimeter), it is very promising as a latent heat storage material for hot water supply and space heating, but supercooling phenomena are also observed in the case of this inorganic hydrate. That is,
Once melted, disodium hydrogen phosphate does not solidify even if it is left at room temperature around 25°C. This is because the solidification start temperature of disodium hydrogen phosphate is 21°C,
This is because supercooling corresponding to a temperature difference of 14° C. occurs after all. Therefore, in order to effectively extract the latent heat of this inorganic hydrate, it is necessary to use water as cold as 10-odd degrees Celsius.
In fact, it could not be used as a super-cleaning material.

本発明者は、リン酸水素二ナトリウムの過冷却の程度を
軽減させ得る発核剤を求めて種々検討の結果、四ホウ酸
ナトリウム(N a 2 B 407 )およびホウー
砂(Na2B40.・1oH2o )が非常に有効であ
ることを見出した。
As a result of various studies in search of a nucleating agent that can reduce the degree of supercooling of disodium hydrogen phosphate, the present inventor found sodium tetraborate (Na 2 B 407 ) and borax (Na2B40.・1oH2o ). was found to be very effective.

従って、本発明は過冷却の程度を軽減させた潜熱型の蓄
熱材に係り、この蓄熱材は、リン酸二ナトリウムに四ホ
ウ酬ナトリウムおよびホウ砂の1種または2種を添加し
てなる。
Therefore, the present invention relates to a latent heat type heat storage material that reduces the degree of supercooling, and this heat storage material is made by adding one or two of sodium tetraboron and borax to disodium phosphate.

過冷却軽減の程度は、用いられる発核剤の添加割合によ
って異なるが、あまり多くの割合の発核剤を添加しても
期待される程の効果は得られないので、一般にリン酸水
素二ナトリウムに対して約0.5〜10爪11%、好ま
しくは約1〜5重量%の割   11合で用いられる。
The degree of supercooling reduction depends on the addition ratio of the nucleating agent used, but adding too much of the nucleating agent will not produce the expected effect, so disodium hydrogen phosphate is generally used. It is used at a ratio of about 0.5 to 10% by weight, preferably about 1 to 5% by weight.

過冷却軽減の程度は、蓄熱器の融解温度と凝固開始温度
との差ΔTscによって示されるが、リン酸水緊二ナト
リウムに前記割合の発核剤を添加することにより、△T
scの値を無添加の場合の約%程度迄低下させることが
できる。また、それに伴って、融解温度への復帰時間も
短かくなり(グラフ参照)、より効率的な蓄熱作用を営
なむことができる。
The degree of supercooling reduction is indicated by the difference ΔTsc between the melting temperature of the heat storage device and the solidification start temperature.
It is possible to reduce the value of sc to about % of that without additives. In addition, the time required to return to the melting temperature is also shortened (see graph), allowing for more efficient heat storage.

次に、実施例について本発明の詳細な説明する。Next, the present invention will be described in detail with reference to examples.

実施例 リン酸水素二ナトリウムに対し、それぞれ所定割合の四
ホウ酸ナトリウムまたはホウ砂を添加し、それらの△T
scの値を次の方法に従って測定した。
Example A predetermined proportion of sodium tetraborate or borax was added to disodium hydrogen phosphate, and their △T
The value of sc was measured according to the following method.

リン酸水素二ナトリウム10 ’II’を容量20−の
ガラス容器にとり、それに発核剤の所定量を添加し、密
栓する。これを、70℃の恒温槽内に約1時間放置し、
完全に融解させる。次に、融解した試料混合物を入れた
ガラス容器を10℃の水中に放置し、磁気槽、拌機で攪
拌しながら冷却する。試料混合物は、ある温度迄過冷却
して、固化するに至る。
10 'II' of disodium hydrogen phosphate is placed in a 20-capacity glass container, a predetermined amount of nucleating agent is added thereto, and the container is tightly sealed. This was left in a constant temperature bath at 70°C for about 1 hour.
Allow to completely thaw. Next, the glass container containing the molten sample mixture is placed in 10° C. water and cooled while stirring with a magnetic tank and a stirrer. The sample mixture is supercooled to a certain temperature, leading to solidification.

この降温時における湿度変化を熱雷対で測定し、過冷却
の程度Δガ。を調べた。得られた結果は、次の表1に示
される。
The humidity change during this temperature drop was measured using a thermal lightning pair, and the degree of supercooling ΔGa was determined. I looked into it. The results obtained are shown in Table 1 below.

表1 1   なし             142  四
ホウ酸ナトリウム      0.5        
   103                  1
.0            84       /I
            5.0          
  75                 10.0
6  ホウ砂     1.0 なお、A1およびA3の場合の冷却過程における経時的
な湿度変化をグラフに示した。
Table 1 1 None 142 Sodium tetraborate 0.5
103 1
.. 0 84 /I
5.0
75 10.0
6 Borax 1.0 The graph shows the change in humidity over time during the cooling process for A1 and A3.

比較例 リン醸水素二ナトリウムに、それに対して1重量%の他
の種々の発核剤を添加し、それの過冷却の程度へTea
を測定した。得られた結果は、次の表2に示される。
Comparative Example Various other nucleating agents were added to phosphorous disodium hydrogen in an amount of 1% by weight, and Tea was added to the degree of supercooling.
was measured. The results obtained are shown in Table 2 below.

表2 屋      発  核  剤          △
T80 (deg)1 氷晶石(1Ja3AI!F6)
        132 活性炭 3  水酸化ストロンチウム〔Sr(OH)2・8H2
0〕124  硝酸バリウム(Ba(No、)2]  
       13
Table 2 Nucleating agent △
T80 (deg)1 Cryolite (1Ja3AI!F6)
132 Activated carbon 3 Strontium hydroxide [Sr(OH)2.8H2
0]124 Barium nitrate (Ba(No,)2]
13

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、実施例のA1および應3の場合の冷却過程にお
ける経時的な湿度変化を示すグラフである。 代理人 弁理士 吉 1)俊 夫 時間
The drawing is a graph showing changes in humidity over time during the cooling process for Examples A1 and 3. Representative Patent Attorney Yoshi 1) Toshio Time

Claims (1)

【特許請求の範囲】 1、リン酸水素二ナトリウム−(Na2apo、・12
H20)に四ホウ酸ナトリウム(Na2B40. )お
よびホウ砂(Na2B40y40H20)の1種または
2種を添加してなる潜熱型の蓄熱材。 2、四ホウ酸ナトリウムおよび/またはホウ砂がリン酸
水素二ナトリウムに対し約0.5〜10重量%の割合で
添加された特許請求の範囲第1項記載の潜熱型の蓄熱材
。 3、加熱目的に用いられる特許請求の範囲第1項記載の
潜熱型の蓄熱材。
[Claims] 1. Disodium hydrogen phosphate-(Na2apo, .12
A latent heat type heat storage material made by adding one or both of sodium tetraborate (Na2B40.) and borax (Na2B40y40H20) to H20). 2. The latent heat type heat storage material according to claim 1, wherein sodium tetraborate and/or borax are added in a proportion of about 0.5 to 10% by weight based on disodium hydrogen phosphate. 3. A latent heat type heat storage material according to claim 1, which is used for heating purposes.
JP57107196A 1982-06-22 1982-06-22 Heat storage material Granted JPS58225181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57107196A JPS58225181A (en) 1982-06-22 1982-06-22 Heat storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57107196A JPS58225181A (en) 1982-06-22 1982-06-22 Heat storage material

Publications (2)

Publication Number Publication Date
JPS58225181A true JPS58225181A (en) 1983-12-27
JPH0151517B2 JPH0151517B2 (en) 1989-11-02

Family

ID=14452908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57107196A Granted JPS58225181A (en) 1982-06-22 1982-06-22 Heat storage material

Country Status (1)

Country Link
JP (1) JPS58225181A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0693542A1 (en) 1994-07-20 1996-01-24 Sumitomo Chemical Company, Limited Method for preventing supercooling of a latent heat storage composition and a latent heat storage equipment utilizing the same
JP2000328049A (en) * 1999-04-09 2000-11-28 Modine Mfg Co Phase-change material containing inhibitor and preparation thereof
WO2015076095A1 (en) * 2013-11-25 2015-05-28 シャープ株式会社 Heat storage material and refrigerator provided with same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0693542A1 (en) 1994-07-20 1996-01-24 Sumitomo Chemical Company, Limited Method for preventing supercooling of a latent heat storage composition and a latent heat storage equipment utilizing the same
US5827915A (en) * 1994-07-20 1998-10-27 Sumitomo Chemical Company, Limited Method for preventing supercooling of a latent heat storage composition and a latent heat storage equipment utilizing the same
JP2000328049A (en) * 1999-04-09 2000-11-28 Modine Mfg Co Phase-change material containing inhibitor and preparation thereof
WO2015076095A1 (en) * 2013-11-25 2015-05-28 シャープ株式会社 Heat storage material and refrigerator provided with same
JPWO2015076095A1 (en) * 2013-11-25 2017-03-16 シャープ株式会社 Heat storage material and refrigerator equipped with the same

Also Published As

Publication number Publication date
JPH0151517B2 (en) 1989-11-02

Similar Documents

Publication Publication Date Title
JPS58225181A (en) Heat storage material
JPS60243189A (en) Heat storage material
JPS59543B2 (en) heat storage material
JP2001031956A (en) Latent heat storage material composition
JPS5899695A (en) Heat-accumulating material
JP2800039B2 (en) Latent heat storage material
JPS5952920B2 (en) Latent heat storage material
JPH0215598B2 (en)
JPS61197668A (en) Thermal energy storage material
JPH0141672B2 (en)
JPH07103365B2 (en) Pretreatment method for heat storage material
JP2982409B2 (en) Latent heat storage material
JP2800329B2 (en) Latent heat storage material
JPS60203689A (en) Thermal energy storage material
JP2932774B2 (en) Latent heat storage material
JPH02395B2 (en)
JPS6228995B2 (en)
JPS588712B2 (en) Heat storage agent composition
JPH0347889A (en) Latent heat-accumulating material
JP2805968B2 (en) Latent heat storage material
JPH0450956B2 (en)
JPS5821942B2 (en) Heat storage agent composition
JPH0347888A (en) Heat-accumulating material
JPS581714B2 (en) Heat storage agent composition
JPH0434583B2 (en)