JP2982397B2 - Latent heat storage material - Google Patents
Latent heat storage materialInfo
- Publication number
- JP2982397B2 JP2982397B2 JP3191039A JP19103991A JP2982397B2 JP 2982397 B2 JP2982397 B2 JP 2982397B2 JP 3191039 A JP3191039 A JP 3191039A JP 19103991 A JP19103991 A JP 19103991A JP 2982397 B2 JP2982397 B2 JP 2982397B2
- Authority
- JP
- Japan
- Prior art keywords
- heat storage
- storage material
- latent heat
- temperature
- solidification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Description
【0001】[0001]
【産業上の利用分野】本発明は、潜熱蓄熱材に関する。
更に詳しくは、凝固時の過冷却の程度を軽減し、長期の
熱サイクルに対し安定した性能を発揮する潜熱型の蓄熱
材に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a latent heat storage material.
More specifically, the present invention relates to a latent heat type heat storage material that reduces the degree of supercooling during solidification and exhibits stable performance over a long-term heat cycle.
【0002】[0002]
【従来の技術】蓄熱材としては、従来から水や砕石が用
いられてきたが、これらは蓄熱密度が小さいため(1cal/
g・deg以下)、実用に際してはかなり大きな蓄熱器を必
要とする。また、放熱に伴って、蓄熱器内の温度は徐々
に低下するので、安定な熱エネルギーを得ることは、技
術的にかなり困難である。2. Description of the Related Art Water and crushed stone have conventionally been used as heat storage materials, but these materials have a low heat storage density (1 cal /
g · deg or less), which requires a fairly large regenerator in practical use. In addition, since the temperature inside the heat accumulator gradually decreases with the heat radiation, it is technically very difficult to obtain stable thermal energy.
【0003】これに対し、近年物質の融解、凝固の際の
潜熱を蓄熱に応用する研究、開発が盛んになってきてい
る。このような潜熱型の蓄熱材の特徴は、材料の融解温
度に一致した一定温度の熱エネルギーを、数10cal/gと
いう高い蓄熱密度で安定に吸収および放出できる点にあ
る。On the other hand, in recent years, research and development for applying latent heat at the time of melting and solidification of a substance to heat storage have become active. A characteristic of such a latent heat type heat storage material is that it can stably absorb and release heat energy at a constant temperature corresponding to the melting temperature of the material at a high heat storage density of several tens cal / g.
【0004】ところで、最近太陽熱利用技術や排熱回収
技術の進展に伴ない、給湯用の熱源として90℃程度とい
った比較的高い温度での蓄熱が注目されている。このよ
うな高い温度で蓄熱を行なう際の潜熱型蓄熱材として
は、無機水和物が注目されている。[0004] By the way, with recent advances in solar heat utilization technology and waste heat recovery technology, heat storage at a relatively high temperature of about 90 ° C has attracted attention as a heat source for hot water supply. As a latent heat type heat storage material for performing heat storage at such a high temperature, an inorganic hydrate has attracted attention.
【0005】しかるに、無機水和物は、一般に凝固開始
温度が融解温度よりも低くなるという、いわゆる過冷却
現象を示す。かかる現象は、無機水和物を蓄熱材として
用いた場合、一定温度の熱エネルギーを安定して吸収お
よび放出するという蓄熱材の特徴を著しく損わせるもの
である。However, inorganic hydrates generally exhibit a so-called supercooling phenomenon in which the solidification starting temperature is lower than the melting temperature. Such a phenomenon significantly impairs the characteristic of the heat storage material that stably absorbs and releases thermal energy at a constant temperature when the inorganic hydrate is used as the heat storage material.
【0006】アンモニウム明ばんNH4Al(SO4)2・12H2O
は、融解温度が94℃であり、潜熱量が54cal/g(示差走査
熱量計による)と高いため、給湯用などの潜熱型蓄熱材
として非常に有望であるが、この無機水和物の場合にも
過冷却現象がみられる。即ち、一旦融解させたカリウム
明ばんは、約15℃前後の室温に放置しても固化しないの
である。これは、カリウム明ばんの凝固開始温度が約−
15℃であり、結局約110℃近い温度差に相当する過冷却
を生ずるためである。従って、94℃における熱の吸収・
放出が全く円滑に行われないので、これ単独では蓄熱材
として使用することができない。Ammonium alum NH 4 Al (SO 4 ) 2 .12H 2 O
Has a melting temperature of 94 ° C and a high latent heat of 54 cal / g (differential scanning calorimeter). A supercooling phenomenon is also observed. That is, the potassium alum once melted does not solidify even when left at room temperature of about 15 ° C. This is because the solidification start temperature of potassium alum is about-
It is 15 ° C., which results in overcooling corresponding to a temperature difference of about 110 ° C. Therefore, heat absorption at 94 ° C
It cannot be used alone as a heat storage material because the release is not smooth.
【0007】[0007]
【発明が解決しようとする課題】本発明の目的は、過冷
却の程度を軽減させたアンモニウム明ばん系の潜熱型の
蓄熱材を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide an ammonium alum-based latent heat type heat storage material in which the degree of supercooling is reduced.
【0008】[0008]
【課題を解決するための手段】かかる目的を達成せしめ
る本発明の潜熱蓄熱材は、アンモニウム明ばんに発核剤
として硫酸セシウムCs 2 SO 4 、塩化セシウムCsCl、炭酸セ
シウムCs 2 CO 3 または硫酸マンガンアンモニウム(NH 4 ) 2 Mn
(SO 4 ) 2 〔無水物または6水和物〕を添加してなる。The latent heat storage material of the present invention, which achieves the above object, comprises cesium sulfate Cs 2 SO 4 , cesium chloride CsCl, and cesium carbonate as nucleating agents on ammonium alum.
Cs 2 CO 3 or manganese ammonium sulfate (NH 4 ) 2 Mn
(SO 4 ) 2 [anhydride or hexahydrate] .
【0009】過冷却軽減の程度は、発核剤の添加割合に
よっても異なるが、あまり多くの発核剤を添加しても期
待される程の効果が得られないばかりではなく、材料の
変質をも招くため、一般にはアンモニウム明ばんに対
し、約0.05〜20重量%、好ましくは約0.1〜10重量%の割
合で用いられる。The degree of supercooling reduction varies depending on the proportion of the nucleating agent added. However, even if too much nucleating agent is added, not only the expected effect is not obtained but also the deterioration of the material is reduced. In general, it is used at a ratio of about 0.05 to 20% by weight, preferably about 0.1 to 10% by weight, based on ammonium alum.
【0010】[0010]
【発明の効果】このような発核作用によって示される過
冷却軽減の程度は、蓄熱材の融解温度Tmと凝固開始温度
Tscとの差ΔTscによって示されるが、アンモニウム明ば
んに前記割合の発核剤を加えることにより、ΔTscの値
を顕著に低下せしめることができ、それを給湯などの蓄
熱材として用いることを可能とする。The degree of supercooling reduction exhibited by such a nucleation effect depends on the melting temperature Tm of the heat storage material and the solidification starting temperature.
Although indicated by the difference ΔTsc from Tsc, the value of ΔTsc can be significantly reduced by adding the nucleating agent in the above ratio to ammonium alum, and it is possible to use it as a heat storage material such as hot water supply. I do.
【0011】また、それに伴って、融解温度への復帰時
間も短かくなり、熱サイクル試験で長期にわたって安定
した性能を発揮することとも合まって、より効率的な蓄
熱作用を営むことができる。[0011] Along with this, the time required to return to the melting temperature is shortened, and in addition to exhibiting stable performance over a long period of time in a heat cycle test, more efficient heat storage action can be performed.
【0012】[0012]
【実施例】次に、実施例について本発明を説明する。Next, the present invention will be described with reference to examples.
【0013】実施例1 NH4Al(SO4)2・12H2O 10gにCs2SO4 0.2gを添加した混合
物を容量20mlのポリエチレン製容器に封入し、これを10
0℃で加熱したところ、94℃で融解した。融解した試料
を1℃/分の冷却速度で冷却したところ、80℃で凝固を開
始した。この凝固開始温度は、融解-凝固を20回くり返
しても、±5℃の範囲内であった。従って、この発核剤
を添加することで、融解温度と凝固開始温度との差(ΔT
sc)は、発核剤を添加しないときの約110℃から約14℃と
なり、過冷却を大幅に軽減することができた。Example 1 A mixture obtained by adding 0.2 g of Cs 2 SO 4 to 10 g of NH 4 Al (SO 4 ) 2 .12H 2 O was sealed in a polyethylene container having a capacity of 20 ml.
Upon heating at 0 ° C., it melted at 94 ° C. When the melted sample was cooled at a cooling rate of 1 ° C./min, solidification started at 80 ° C. The solidification onset temperature was in the range of ± 5 ° C. even if the melting-solidification was repeated 20 times. Therefore, by adding this nucleating agent, the difference between the melting temperature and the solidification starting temperature (ΔT
sc) was raised from about 110 ° C. when no nucleating agent was added to about 14 ° C., and supercooling was significantly reduced.
【0014】なお、Cs2SO4を0.05〜20重量%の範囲内で
添加したときのΔTscも、ほぼ10〜20℃の間に分布し
た。Note that ΔTsc when Cs 2 SO 4 was added in the range of 0.05 to 20% by weight also distributed between about 10 to 20 ° C.
【0015】 実施例2 実施例1において、Cs2SO4 0.2gの代りに、CsCl 0.1gを
用いると、そのときの凝固開始温度は70℃であり、融解
-凝固を20回くり返したときも、±4℃の範囲内であっ
た。従って、この発核剤を添加することで、ΔTscは約1
10℃から約24℃となり、過冷却を大幅に軽減することが
できた。Example 2 In Example 1, when 0.1 g of CsCl was used instead of 0.2 g of Cs 2 SO 4 , the solidification starting temperature at that time was 70 ° C.
-Even when coagulation was repeated 20 times, it was within the range of ± 4 ° C. Therefore, by adding this nucleating agent, ΔTsc becomes about 1
From 10 ° C to about 24 ° C, supercooling was greatly reduced.
【0016】なお、CsClを0.05〜20重量%の範囲内で添
加したときのΔTscも、ほぼ20〜30℃の間に分布した。The ΔTsc when CsCl was added in the range of 0.05 to 20% by weight also distributed between about 20 to 30 ° C.
【0017】 実施例3 実施例1において、Cs2SO4 0.2gの代りに、Cs2CO3 0.3g
を用いると、そのときの凝固開始温度は76℃であり、融
解-凝固を20回くり返したときも、±6℃の範囲内であっ
た。従って、この発核剤を添加することで、ΔTscは約1
10℃から約20℃となり、過冷却を大幅に軽減することが
できた。Example 3 In Example 1, 0.3 g of Cs 2 CO 3 was used instead of 0.2 g of Cs 2 SO 4.
Was used, the solidification initiation temperature at that time was 76 ° C., and the temperature was within ± 6 ° C. even when melting-solidification was repeated 20 times. Therefore, by adding this nucleating agent, ΔTsc becomes about 1
From 10 ° C to about 20 ° C, supercooling was greatly reduced.
【0018】なお、Cs2CO3を0.05〜20重量%の範囲内で
添加したときのΔTscも、ほぼ15〜30℃の間に分布し
た。The ΔTsc when Cs 2 CO 3 was added in the range of 0.05 to 20% by weight also distributed between about 15 to 30 ° C.
【0019】 実施例4 実施例1において、Cs2SO4 0.2gの代りに(NH4)2Mn(SO4)
2・6H2O 0.3gを用いると、そのときの凝固開始温度は75
℃であり、融解-凝固を20回くり返したときも、±4℃の
範囲内であった。従って、この発核剤を添加すること
で、ΔTscは約110℃から約20℃となり、過冷却を大幅に
軽減することができた。Example 4 In Example 1, (NH 4 ) 2 Mn (SO 4 ) was used instead of 0.2 g of Cs 2 SO 4.
With 2 · 6H 2 O 0.3g, solidification starting temperature at this time is 75
° C, and when melting and coagulation were repeated 20 times, it was also within the range of ± 4 ° C. Therefore, by adding this nucleating agent, ΔTsc was changed from about 110 ° C. to about 20 ° C., and supercooling was significantly reduced.
Claims (1)
酸セシウム、塩化セシウム、炭酸セシウムまたは硫酸マ
ンガンアンモニウムを添加してなる潜熱蓄熱材。1. An ammonium alum and sulfuric acid as a nucleating agent.
Cesium acid, cesium chloride, cesium carbonate or sulfuric acid
Latent heat storage material with gangnan ammonium added.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3191039A JP2982397B2 (en) | 1990-07-13 | 1991-07-05 | Latent heat storage material |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2-183995 | 1990-07-13 | ||
JP18399590 | 1990-07-13 | ||
JP5800291 | 1991-02-28 | ||
JP3-58002 | 1991-02-28 | ||
JP3191039A JP2982397B2 (en) | 1990-07-13 | 1991-07-05 | Latent heat storage material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04356583A JPH04356583A (en) | 1992-12-10 |
JP2982397B2 true JP2982397B2 (en) | 1999-11-22 |
Family
ID=27296455
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3191039A Expired - Fee Related JP2982397B2 (en) | 1990-07-13 | 1991-07-05 | Latent heat storage material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2982397B2 (en) |
-
1991
- 1991-07-05 JP JP3191039A patent/JP2982397B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04356583A (en) | 1992-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4702853A (en) | Phase change thermal energy storage material | |
JP2800039B2 (en) | Latent heat storage material | |
JP2982397B2 (en) | Latent heat storage material | |
JP2982409B2 (en) | Latent heat storage material | |
JP2800329B2 (en) | Latent heat storage material | |
JPS59109578A (en) | Heat storage material | |
JP2932774B2 (en) | Latent heat storage material | |
JP2805968B2 (en) | Latent heat storage material | |
JPH0450955B2 (en) | ||
JPH0347889A (en) | Latent heat-accumulating material | |
JPH0215598B2 (en) | ||
JPS58225181A (en) | Heat storage material | |
JPH0226160B2 (en) | ||
JPS61197668A (en) | Thermal energy storage material | |
JPH02395B2 (en) | ||
JPH0347888A (en) | Heat-accumulating material | |
JPS5913898A (en) | Heat accumulating material | |
JPS588712B2 (en) | Heat storage agent composition | |
JPH04168191A (en) | Latent heat storage material | |
JPS63256683A (en) | Heat storage material | |
JPH0472378A (en) | Latent heat storage material | |
JPH0434583B2 (en) | ||
JPS5821942B2 (en) | Heat storage agent composition | |
JPS581714B2 (en) | Heat storage agent composition | |
JPH07103365B2 (en) | Pretreatment method for heat storage material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |