JPS6153385A - Heat-storing material - Google Patents
Heat-storing materialInfo
- Publication number
- JPS6153385A JPS6153385A JP17375384A JP17375384A JPS6153385A JP S6153385 A JPS6153385 A JP S6153385A JP 17375384 A JP17375384 A JP 17375384A JP 17375384 A JP17375384 A JP 17375384A JP S6153385 A JPS6153385 A JP S6153385A
- Authority
- JP
- Japan
- Prior art keywords
- supercooling
- heat
- heat storage
- weight
- sodium carbonate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Abstract
Description
【発明の詳細な説明】
〔発明の属する技術分野〕
本発明は、CH3COONa@3H2Oを主成分とする
蓄熱材に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a heat storage material containing CH3COONa@3H2O as a main component.
一般的に蓄熱材には、物質の顕熱を利用したものと、潜
熱を利用したものが知られている。In general, there are two types of heat storage materials known: those that utilize the sensible heat of substances and those that utilize latent heat.
潜熱を利用した蓄熱材は、顕熱を利用した蓄熱材に比べ
て、単位重量肖り、あるいは単位体積当りの蓄熱量が大
きく、かつ相変化点において一定温度の熱を取り出せる
特徴を有する。従つて潜熱蓄熱材を使用することにより
、小型で、効率良く熱エネルギーを利用できる蓄熱シス
テムが可能となる。A heat storage material that uses latent heat has a feature that it has a larger amount of heat storage per unit weight or unit volume than a heat storage material that uses sensible heat, and can extract heat at a constant temperature at a phase change point. Therefore, by using a latent heat storage material, it is possible to create a compact heat storage system that can efficiently utilize thermal energy.
潜熱蓄熱材として、有機物系、無機物系の数多(の物質
が検討されている。なかでも水和塩は、その結晶中の水
分子の関与により、相変化。A large number of organic and inorganic substances are being considered as latent heat storage materials. Among them, hydrated salts undergo a phase change due to the involvement of water molecules in their crystals.
特に融解・凝固の際の潜熱が大きく、蓄熱材として有望
視されている。In particular, it generates a large amount of latent heat during melting and solidification, making it a promising material for heat storage.
ところが一般的に、水和塩は過冷却現象を示し、かつそ
の度合が太きいために、所望の温度での相変化を長期間
にわたって確実に行なわせることが非常に困難であった
。However, in general, hydrated salts exhibit a supercooling phenomenon and the degree of supercooling is large, making it extremely difficult to reliably cause a phase change at a desired temperature over a long period of time.
本発明の蓄熱材の主成分であるCHa COON a・
3H2Oも、水和塩の蓄熱材の主成分であるCH3CO
ONa・3H2Oも、水和塩型の浦熱蓄熱材として優れ
ているものであるが、蓄熱材として実用化する際には上
述の過冷却を防止することが必要である。CHa COON a, which is the main component of the heat storage material of the present invention
3H2O is also CH3CO, which is the main component of hydrated salt heat storage material.
ONa.3H2O is also excellent as a hydrated salt type heat storage material, but when it is put to practical use as a heat storage material, it is necessary to prevent the above-mentioned supercooling.
すなわち、CHs C00N a 93 H2Oは融解
−eN固の相変化温度が58°Cであり、その際の暦熱
が約340 J/ar?+ と大きいため、暖房用ある
いは給湯用などの蓄熱システムで使用する蓄熱材として
適している。That is, CHs C00N a 93 H2O has a melting-eN solid phase change temperature of 58°C, and the calendar heat at that time is about 340 J/ar? Because it has a large + value, it is suitable as a heat storage material for use in heat storage systems for heating or hot water supply.
しかしCH3COONa ・3H2Oは過冷却の度合が
大きく、加熱により完全に融解した後に冷却した場合、
0℃付近まで容易に過冷却して凝固しない性質を有する
。この過冷却現象は、仮に一旦CH3COONa @3
H2Oに蓄熱しても、所定の温度の熱を取り出せないと
いう不都合を生じさせる。従ってCHs C00N a
・3H2Oを蓄熱材として使用する場合には、この過冷
却を防止することが実用化に際して重要な課題となる。However, CH3COONa 3H2O has a large degree of supercooling, and if it is completely melted by heating and then cooled,
It has the property of not being easily supercooled to around 0°C and solidifying. This supercooling phenomenon may occur once CH3COONa@3
Even if heat is stored in H2O, the problem arises that the heat at a predetermined temperature cannot be taken out. Therefore CHs C00N a
- When using 3H2O as a heat storage material, preventing this supercooling is an important issue for practical use.
本発明は水和塩であるCHsCOONa ・3H2Oの
過冷却を防止し、実用性に優れた蓄熱材を提供すること
を目的としている。The present invention aims to prevent overcooling of CHsCOONa 3H2O, which is a hydrated salt, and to provide a heat storage material with excellent practicality.
本発明の特徴はCHs COONa ” 3H2Oを蓄
熱材の主成分とし、過冷却の防止のために炭酸ナトリウ
ムを添加する炭酸ナトリウムとしては無水塩(Na2C
03)又は1水塩(NazCO3’H2O)又は10水
塩(Na2COs @ 10H2O) のいずれでも
良い。The feature of the present invention is that CHsCOONa 3H2O is the main component of the heat storage material, and sodium carbonate is added to prevent supercooling.As the sodium carbonate, anhydrous salt (Na2C
03) or monohydrate salt (NazCO3'H2O) or decahydrate salt (Na2COs@10H2O).
CHs C00N a ・3 H2OにNa2COs又
はNa2COs”H2Oを加えてなる混合物を30℃以
上に昇温するとCHsCOONa−3H2Oは58℃で
融解するが、N12COsやNa2CO3”H2Oは融
解せずに固体として残り、底部に沈殿する。完全にCH
3CO0N a・3H2Oが融解した後、この混合物を
冷却すると約57℃まで冷却されると同時に、底部に沈
殿している粒子表面からCH3COONa・3H2Oの
結晶が成長し始め、この結晶が成長している間、混合物
の温度は約58℃に保たれる。またNazCOs @
10H2Oは、35℃以上の温度では9分子の水がとれ
、Na2CO3・H2Oに変化するため、Na2CO3
−10H2Oを添加した場合と同様な過冷却防止効果を
得ることができる。When a mixture of CHsCOONa-3H2O and Na2COs or Na2COs''H2O is heated to 30℃ or higher, CHsCOONa-3H2O melts at 58℃, but N12COs and Na2CO3''H2O do not melt and remain as solids. It settles to the bottom. Completely CH
After 3COONa・3H2O is melted, this mixture is cooled to about 57°C, and at the same time, CH3COONa・3H2O crystals begin to grow from the surface of the particles precipitated at the bottom, and these crystals are growing. During this time, the temperature of the mixture is maintained at approximately 58°C. Also NazCOs @
10H2O loses 9 molecules of water at temperatures above 35°C and changes to Na2CO3・H2O, so Na2CO3
The same supercooling prevention effect as when -10H2O is added can be obtained.
Na2COs” はCHsCOONa−3H2Oの融
液には、はとんど溶解しないため、CHsCOONa・
3H2O100重量部に対し[Na2CO3を0.00
1重量部以上添加することにより、確実な過冷却防止効
果を得ることができる。またNa2COa・H2OはC
H3COONa@3H2Oの融液に若干溶解するため、
確実な過冷却防止効果を祷るためにはCH3COONa
・3Hz0100重量部に対してα05重量部以上添加
する必要がある。さらにまたNazCOs # 10H
2Oは、先に述べた様にNagCOs・H2Oに変化し
た後、過冷却防止機能を発揮するもので、NazCOs
”H2Oを添加する場合の約2倍、すなわちCHsC
OONa・5H2O100重量部に対してNa2CO3
410H2Oを0.1重量部以上添加する必要がある。Since "Na2COs" hardly dissolves in the melt of CHsCOONa-3H2O, CHsCOONa・
3H2O 100 parts by weight [Na2CO3 0.00
By adding 1 part by weight or more, a reliable supercooling prevention effect can be obtained. Also, Na2COa/H2O is C
Because it dissolves slightly in the melt of H3COONa@3H2O,
For reliable supercooling prevention effect, use CH3COONa.
- It is necessary to add α05 parts by weight or more to 3Hz0100 parts by weight. Furthermore, NazCOs #10H
As mentioned earlier, 2O exhibits a supercooling prevention function after changing to NagCOs/H2O, and NazCOs
``About twice as much as when adding H2O, that is, CHsC
Na2CO3 per 100 parts by weight of OONa.5H2O
It is necessary to add 0.1 part by weight or more of 410H2O.
これらの炭酸ナトリウムを上記の最低添加量に対して、
大過剰な量を加えても、もちろん過冷却防止効果を有す
るものであるが、あまり多量に加えることは、単位体積
白りのCHs COONa・3H2Oの比率が低下する
ため、蓄熱材全体として見た場合の蓄熱量の減少をまね
くので、あまり好ましくはない。従りて実用的な見地か
らは、CH3COONa’3H2O100重量部に対し
”C30重量部以下の添加が望ましい。For the above minimum addition amount of sodium carbonate,
Of course, even if a large excess amount is added, it will have the effect of preventing supercooling, but if too much is added, the ratio of CHs COONa 3H2O in the unit volume will decrease, which will affect the heat storage material as a whole. This is not very preferable because it leads to a decrease in the amount of heat stored in the case. Therefore, from a practical standpoint, it is desirable to add 30 parts by weight or less of C to 100 parts by weight of CH3COONa'3H2O.
CHsCOONa・3H2Oの過冷却防止材として炭酸
ナトリウムを用いるにあたっては、他のCHsCOON
a・3H2Oの過冷却防止材と併用しても良い。When using sodium carbonate as a supercooling prevention material for CHsCOONa・3H2O, other CHsCOON
It may be used in combination with a supercooling prevention material such as a.3H2O.
またNa2CO3をCHsCOONm・5H2Oの融液
中に均一に分散させるために、カルボキシメチルセルロ
ースなどのゲル化材をさらに添加したり、あるいは凝固
発#S温度調節材などの他の添加物と併用しても、確実
な過冷却防止効果が認められる。In addition, in order to uniformly disperse Na2CO3 in the melt of CHsCOONm・5H2O, a gelling agent such as carboxymethyl cellulose may be further added, or it may be used in combination with other additives such as a solidification temperature regulating material. , a reliable supercooling prevention effect is recognized.
ところでCH3COONa@3H2Oを30℃以上に昇
温した際に生ずる融液の組成はCHsCOONaの30
.35重量%の水溶液と同一のものである。By the way, the composition of the melt produced when CH3COONa@3H2O is heated to 30°C or higher is 30% of CHsCOONa.
.. It is the same as a 35% by weight aqueous solution.
従ってCH3C00N aを6α35m11部とH2O
を39.65重量部の割合で混合し、30℃以上に昇温
して得らnる水溶液にNaxCOsを添加した混合物を
冷却しても、これまで述べてきたようなCHs COO
Na ・3Hz OとNa2COsの混合物を30℃以
上に昇温して得らnた融液を冷却した場合と全(同じ凝
固発熱の挙動が認められることは言うまでもない。Therefore, CH3C00N a is mixed with 6α35m11 parts and H2O
Even if the mixture obtained by adding NaxCOs to the aqueous solution obtained by mixing 39.65 parts by weight of NaxCOs and raising the temperature to 30°C or higher is cooled, the CHsCOO as described above does not change.
It goes without saying that the same solidification exothermic behavior is observed when the melt obtained by heating a mixture of Na 3 Hz O and Na 2 COs to 30° C. or higher is cooled.
実施例1゜
CHsCOONa’3Hz02O gとNa2CO3α
[12gを内径18rnrD長さ180rnrDの試験
管に入れ、その中央部に熱電対(C,C)を挿入し、上
端をゴム栓で密封した。そしてこの試験管を70℃の恒
温槽に入れ、CHa C00N a・5H2Oが完全に
融解してその温度が70℃になるまで十分に加熱した。Example 1゜CHsCOONa'3Hz02Og and Na2CO3α
[12 g was placed in a test tube with an inner diameter of 18 rnrD and a length of 180 rnrD, a thermocouple (C, C) was inserted into the center, and the upper end was sealed with a rubber stopper. The test tube was then placed in a constant temperature bath at 70°C and sufficiently heated until CHa COON a.5H2O was completely melted and the temperature reached 70°C.
次にこの試験管を2O℃の恒温槽に移して冷却し、その
際の試験管内の温度変化を測定した。その結果を第1図
に示す。CHsCOONaφ3H2OとNa2COsの
混合物を入れた試験管の中央部の温度が57℃まで低下
した時点で、試験管の低部よりCHsCOONa・3H
2Oの結晶が成長し始め、それとともに試験管中央部の
温度は58℃まで上昇した。さらにその後の約30分間
にわたり、試験管中央部の温度は58℃を保った。次に
上記の加熱と冷却の熱サイクルを連続して1000回行
った。この1000回にわたる熱サイクルの繰り返しの
間に見られる試験管中央部での冷却時の温度変化は第1
図に示したものとほぼ同じであり、CHsCOONa・
3H2Oの過冷却は56〜i7℃以上の温度で確実に破
れ、58℃で凝固発熱を繰り返すことができた。Next, this test tube was transferred to a constant temperature bath at 20° C. and cooled, and the temperature change inside the test tube at that time was measured. The results are shown in FIG. When the temperature at the center of the test tube containing the mixture of CHsCOONaφ3H2O and Na2COs drops to 57°C, CHsCOONa 3H is added from the lower part of the test tube.
Crystals of 2O began to grow, and the temperature at the center of the test tube rose to 58°C. Furthermore, for about 30 minutes thereafter, the temperature at the center of the test tube was maintained at 58°C. Next, the above thermal cycle of heating and cooling was continuously performed 1000 times. The temperature change observed during cooling in the center of the test tube during this 1000-time thermal cycle is the first.
It is almost the same as shown in the figure, and CHsCOONa・
The supercooling of 3H2O was reliably broken at a temperature of 56 to i7°C or higher, and the solidification exotherm could be repeated at 58°C.
実施例2゜
CHsCOONa・5Hz02O gとNazCOs
’H2Oα2gを入nた試験管を、実施例1に記した条
件で1000サイクルの加熱と冷却を繰り返した。Example 2゜CHsCOONa・5Hz02Og and NazCOs
A test tube containing 2 g of H2Oα was heated and cooled for 1000 cycles under the conditions described in Example 1.
この試験管中央部の温度変化のパターンは実施例1の場
合と全く同じであり、CHsCOONa・5H2Oの過
冷却は56〜57℃以上の温度で確実に破れ、1000
サイクルの熱サイクルにわたり58℃での凝固発熱を繰
り返すことができた。The pattern of temperature change in the center of this test tube is exactly the same as in Example 1, and the supercooling of CHsCOONa.5H2O is reliably broken at a temperature of 56 to 57°C or higher, and 1000
The solidification exotherm at 58° C. could be repeated over the thermal cycle of the cycle.
実施例&
CH3COONa・3H2O2OgとNa2COse1
0)i2Oα2gを入れた試験管を実施例1と同じ条件
で1000サイクルの加熱と冷却を繰り返した結果、実
施例1の場合と同様に58℃での凝固発熱を繰り返すこ
とができた。Examples & CH3COONa・3H2O2Og and Na2COse1
0) As a result of repeating 1000 cycles of heating and cooling of a test tube containing 2 g of i2Oα under the same conditions as in Example 1, it was possible to repeat the solidification exotherm at 58° C. as in Example 1.
実施例4゜
CHsCOONa i 2.1 gとH2O7,9gと
Na2CO2O12gを実施例1で用いた試験管に入れ
、試験管中央部の温度が70℃になるまで加熱した後、
試験管内の混合物を十分に攪拌した。Example 4 2.1 g of CHsCOONa i, 7.9 g of H2O, and 12 g of Na2CO2O were placed in the test tube used in Example 1, and heated until the temperature at the center of the test tube reached 70°C.
The mixture in the test tube was thoroughly stirred.
その後実施例1の場合と同じ条件で1000回サイクル
の加熱と冷却を繰り返した。その結果、実施列1での結
果と全く同様な冷却時における確実な凝固発熱が100
0回の加熱と冷却の熱サイクルにわたり認められた。Thereafter, heating and cooling cycles were repeated 1000 times under the same conditions as in Example 1. As a result, the solidification heat generation during cooling was 100%, which was exactly the same as the result in Example 1.
Observed over 0 heating and cooling thermal cycles.
実施例で示したように、過冷却の度合の大きいCHxC
OONa@3H2Oに、過冷却防止材として炭酸ナトリ
ウムを添加することにより、56〜57℃以上の温度で
確実に過冷却を破ることができ、58℃での安定した放
熱I#性を有する実用性にInだ潜熱利用蓄熱材を提供
することが可能となった。As shown in the examples, CHxC with a large degree of supercooling
By adding sodium carbonate as a supercooling prevention agent to OONa@3H2O, supercooling can be reliably broken at temperatures above 56-57℃, and practicality with stable heat dissipation I# properties at 58℃ It has now become possible to provide a heat storage material that utilizes the latent heat of In.
第1図は実施例1で述べたCHaCOONaφ3H2O
にNaxCOsを添加した混合物を入れた試験管の冷却
時における試験管中央部の温度変化を示す図である。Figure 1 shows CHaCOONaφ3H2O described in Example 1.
FIG. 3 is a diagram showing the temperature change at the center of a test tube during cooling of a test tube containing a mixture of NaxCOs and NaxCOs.
Claims (1)
_2O)あるいは酢酸ナトリウム3水塩を40重量%以
上含む組成物に、炭酸ナトリウムを加えてなる混合物で
あることを特徴とする蓄熱材。 2、炭酸ナトリウムが無水塩(Na_2CO_3)、1
水塩(Na_2CO_3・H_2O)、10水塩(Na
_2CO_3・10H_2O)のうちの一種、あるいは
それらのうちの任意の混合物であることを特徴とする特
許請求範囲第1項記載の蓄熱材。 3、酢酸ナトリウム3水塩100重量部に対して炭酸ナ
トリウムを、無水塩の場合は0.001〜30重量部、
1水塩の場合は0.05〜30重量部、10水塩の場合
は0.1〜30重量部の範囲で混合することを特徴とす
る特許請求範囲第1項記載の蓄熱材。[Claims] 1. Sodium acetate trihydrate (CH_3COONa・3H
A heat storage material characterized in that it is a mixture obtained by adding sodium carbonate to a composition containing 40% by weight or more of sodium acetate trihydrate or sodium acetate trihydrate. 2. Sodium carbonate is an anhydrous salt (Na_2CO_3), 1
Water salt (Na_2CO_3・H_2O), Decahydrate salt (Na
_2CO_3.10H_2O) or any mixture thereof. 3. Sodium carbonate per 100 parts by weight of sodium acetate trihydrate, 0.001 to 30 parts by weight in the case of anhydrous salt,
The heat storage material according to claim 1, wherein the amount of the monohydrate is 0.05 to 30 parts by weight, and the amount of the decahydrate is 0.1 to 30 parts by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17375384A JPS6153385A (en) | 1984-08-21 | 1984-08-21 | Heat-storing material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17375384A JPS6153385A (en) | 1984-08-21 | 1984-08-21 | Heat-storing material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6153385A true JPS6153385A (en) | 1986-03-17 |
Family
ID=15966492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17375384A Pending JPS6153385A (en) | 1984-08-21 | 1984-08-21 | Heat-storing material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6153385A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH058928A (en) * | 1991-07-03 | 1993-01-19 | Nitto Denko Corp | Separator exfoliating device for adhesive tape |
US5393822A (en) * | 1991-12-16 | 1995-02-28 | Nitto Boseki Co., Ltd. | Chopped carbon fiber strands coated with resin and molding obtained therefrom |
-
1984
- 1984-08-21 JP JP17375384A patent/JPS6153385A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH058928A (en) * | 1991-07-03 | 1993-01-19 | Nitto Denko Corp | Separator exfoliating device for adhesive tape |
US5393822A (en) * | 1991-12-16 | 1995-02-28 | Nitto Boseki Co., Ltd. | Chopped carbon fiber strands coated with resin and molding obtained therefrom |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4292189A (en) | Thermal energy storage composition comprising sodium sulfate decahydrate; sodium carbonate decahydrate; and sodium tetraborate decahydrate | |
US4288338A (en) | Static solar heat storage composition | |
JPS6153385A (en) | Heat-storing material | |
EP0011357A1 (en) | The use of a collocation containing hydrates to store heat at a steady temperature, and a heat storage device containing this collocation | |
JPS59543B2 (en) | heat storage material | |
JPS6325038B2 (en) | ||
JPS6153386A (en) | Heat-storing material | |
JPS6153383A (en) | Heat-storing material | |
JPH0450955B2 (en) | ||
JPS5947239B2 (en) | Latent heat storage material | |
JPS61197668A (en) | Thermal energy storage material | |
RU2790484C1 (en) | Method for producing heat storage material based on calcium-potassium nitrate double salt trihydrate (versions) | |
JPH0215598B2 (en) | ||
JPH0141672B2 (en) | ||
JPH0347888A (en) | Heat-accumulating material | |
JP3857781B2 (en) | Heat storage device capable of controlling heat dissipation and heat dissipation control method for heat storage device | |
JPH03285985A (en) | Latent heat-accumulating material | |
Feilchenfeld et al. | The Stability of Hydrates of Inorganic Salts in Cooling—Heating Cycles | |
JPS58225181A (en) | Heat storage material | |
JPS6121579B2 (en) | ||
JPS5942034B2 (en) | heat storage material | |
JPS5838780A (en) | Heat-accumulation material | |
JPS601279A (en) | Composition for thermal energy storage material | |
JPS588712B2 (en) | Heat storage agent composition | |
JPS63137982A (en) | Heat storage material composition |