JPS6020091A - Latent heat storaging device - Google Patents

Latent heat storaging device

Info

Publication number
JPS6020091A
JPS6020091A JP58129716A JP12971683A JPS6020091A JP S6020091 A JPS6020091 A JP S6020091A JP 58129716 A JP58129716 A JP 58129716A JP 12971683 A JP12971683 A JP 12971683A JP S6020091 A JPS6020091 A JP S6020091A
Authority
JP
Japan
Prior art keywords
heat
heat storage
transfer medium
heat transfer
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58129716A
Other languages
Japanese (ja)
Inventor
Kazuo Yamashita
山下 和夫
Hiroshi Uno
浩 宇野
Takahito Ishii
隆仁 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58129716A priority Critical patent/JPS6020091A/en
Publication of JPS6020091A publication Critical patent/JPS6020091A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/025Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being in direct contact with a heat-exchange medium or with another heat storage material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To obtain the stable heat-exchange output at high temperature by a structure wherein latent heat storaging material, heat transfer medium, which is incompatible with said latent heat storaging material and has higher density, and high density liquid, which is compatible with said heat transfer medium and has specific weight larger than that of said heat transfer medium, are sealed in a heat storage tank. CONSTITUTION:Latent heat storaging material 3 such as triaquo-sodium acetate, heat transfer medium 4, which is incompatible with the latent heat storaging material 3 and has higher density, such as flon F-113, and high density liquid, which is compatible with the heat transfer medium 4 and has specific weight larger than that of the heat transfer medium 4 and at the same time is incompatible with the latent heat storaging material 3, such as carbon tetrafluoride are sealed in a heat storage tank 1. Due to the structure as mentioned above, the temperature drops at the upper portion in the part filled with the latent heat storaging material 3 and of the steam in a space can be prevented from developing. Consequently, the stable heat-exchange output can be obtained at high temperature.

Description

【発明の詳細な説明】 産業上の利用分野 木発1劉ば深夜電力や太陽エネルギー効″を貯え袷6)
・冷暖房なとに用いる潜熱蓄熱装置用いた潜熱蓄熱装置
に関するものである。
[Detailed description of the invention] Industrial application field 1) Storing late night electricity and solar energy efficiency 6)
・It relates to a latent heat storage device that uses a latent heat storage device for heating and cooling.

従来例のイ湖戊とその問題点 第゛1図は従来の蓄熱装置1を示したものである。Conventional example of Ikobo and its problems FIG. 1 shows a conventional heat storage device 1. As shown in FIG.

蓄熱装置1け蓄熱槽2内に蓄熱材3七熱吸収時に液体か
ら気体に、熱放出時に気体から液体に変化し、かつ、そ
の凝縮液の密度が少なくとも前記蓄熱材の相転位点近傍
に駁は不密度よりも大きい伝熱媒体4とを上方に空間部
を残して封入すると共に蓄熱するだめの熱交換器5と熱
を取り出すための熱交換器6を収納して構成している。
Heat storage device 1 Heat storage tank 2 contains a heat storage material 3 that changes from liquid to gas when heat is absorbed and from gas to liquid when heat is released, and the density of the condensed liquid is at least close to the phase transition point of the heat storage material. It is constructed by enclosing a heat transfer medium 4 which is larger than non-density, leaving a space above, and housing a heat exchanger 5 for storing heat and a heat exchanger 6 for extracting heat.

蓄熱状態において蓄熱材充填部は蓄熱材3の融点以」二
の温度の蓄熱相溶液から成り、空間部はその温度におけ
る伝熱媒体の飽和蒸気圧より1戊っている。熱交換器6
に低温熱媒体か導入されると、空間部の伝熱媒体は熱交
換器6で熱交換し、凝縮液化するので空間部の蒸気圧は
低下する。これを補うだめに蓄熱材充填部より伝熱媒体
か蒸発し気泡7となって上昇し、空間部に達する。一方
、U縮液8は滴下し蓄熱拐充」置部に環流する。蓄熱材
充填部に滴下した凝縮液8は蓄熱材より密度か大きいた
め、蓄熱材溶液中を降下する。降下しなから大部分は蓄
熱材3より熱を奪い蒸発し気泡となって上昇する。他の
一部は蓄熱槽2底部に沈降し、そこで熱を得て再び蒸発
する。しかしなから、凝縮液の蒸発はDfj記説ヅjて
わかるように蓄熱材充填部上部か主になるため、」二部
にはげしく撹拌されるが、下部にいくにしたかい撹拌は
おだやかになる。また、凝縮液に熱を(aわれだ蓄熱材
は、その溶液が気泡により撹拌されているため、微結晶
と々って浮遊しているが液体状態より密度が大きいため
、徐々に沈降していく。このように伝熱媒体4の蒸発−
既縮サイクルにより蓄熱材充填部を撹拌し効率よく熱交
換器6で熱交換を行なうのである。然るに、蓄熱材−に
部の温度か低下する。これは、上部が滴ドする比較的低
温のぴ給液と凝縮液にその虐熱を奪われ微結晶となった
比較的低温の蓄熱材および蓄熱4A溶液とより構成され
ているので相対的に温度が低くなるためである。上部温
度が低下すると空間部の蒸気の平衡7ffl Rが低下
する。したがって熱交換器6での熱交換温度が低下する
ため低温熱媒体の温度」二昇値が低くなる。上記説明で
わかるように、従来の熱交換においては時間の経過と共
に空間部の温度が低下し、熱交換効率が低下するため導
入した低温熱媒体を一定温度の高温熱媒体として取り出
すことができなかった。
In the heat storage state, the heat storage material filling part is made of a heat storage phase solution having a temperature of 2.5 degrees higher than the melting point of the heat storage material 3, and the space is 1 degree lower than the saturated vapor pressure of the heat transfer medium at that temperature. heat exchanger 6
When a low-temperature heat medium is introduced into the space, the heat transfer medium in the space exchanges heat in the heat exchanger 6 and is condensed and liquefied, so that the vapor pressure in the space decreases. In order to compensate for this, the heat transfer medium evaporates from the heat storage material filled portion, becomes bubbles 7, rises, and reaches the space. On the other hand, the U-condensed liquid 8 drips and flows back into the heat storage and absorption section. The condensed liquid 8 dropped into the heat storage material filling part has a higher density than the heat storage material, so it descends in the heat storage material solution. Instead of falling, most of the heat absorbs heat from the heat storage material 3, evaporates, and rises in the form of bubbles. The other part settles to the bottom of the heat storage tank 2, where it gains heat and evaporates again. However, as you can see from the Dfj notes, the evaporation of the condensate occurs mainly in the upper part of the heat storage material filling part, so the second part is vigorously stirred, but the further you go to the bottom, the more gentle the stirring becomes. . In addition, when heat is applied to the condensed liquid, the solution is stirred by air bubbles, so the microcrystals are floating, but since the density is higher than in the liquid state, they gradually settle. In this way, the evaporation of the heat transfer medium 4 -
The heat storage material filled portion is agitated by the pre-condensation cycle, and heat is efficiently exchanged in the heat exchanger 6. However, the temperature of the heat storage material decreases. This is made up of a relatively low-temperature supply liquid dripping at the top, a relatively low-temperature heat storage material that has lost its heat to the condensed liquid, and has become microcrystals, and a heat storage 4A solution. This is because the temperature becomes lower. As the upper temperature decreases, the vapor equilibrium 7fflR in the space decreases. Therefore, since the heat exchange temperature in the heat exchanger 6 decreases, the temperature increase value of the low-temperature heat medium decreases. As can be seen from the above explanation, in conventional heat exchange, the temperature of the space decreases over time, and the heat exchange efficiency decreases, so the introduced low-temperature heat medium cannot be extracted as a high-temperature heat medium at a constant temperature. Ta.

発1力の「l (r、〕 本発明は前記問題点を解決し、蓄熱材上部温度低下によ
る放熱器の熱交換性能の低下を防止し、高温で安定した
熱交換出力を得ることを目的とする。
The purpose of the present invention is to solve the above-mentioned problems, prevent the deterioration of the heat exchange performance of the radiator due to the drop in the upper temperature of the heat storage material, and obtain a stable heat exchange output at high temperatures. shall be.

発明の構成 □ 110記目的を達成するために、本発明ば1潜熱蓄熱材
と、2前記潜熱蓄熱材に対してほとんど非相溶性であり
、熱吸収時に液体から気体に、熱放出時に気体から液体
になる伝熱媒体と、3旧記潜熱蓄熱材と非相溶性で前記
伝熱媒体と相溶性で前記伝熱媒体より比重の大きい高密
度液体とを内部上方に空間部を残して蓄熱槽内に一体に
封入したものである。
Structure of the Invention □ In order to achieve the 110th object, the present invention provides (1) a latent heat storage material, and (2) a latent heat storage material that is almost incompatible with the latent heat storage material, and that changes from a liquid to a gas when absorbing heat, and from a gas when releasing heat. A heat transfer medium that becomes a liquid and a high-density liquid that is incompatible with the latent heat storage material described in the previous paragraph, is compatible with the heat transfer medium, and has a higher specific gravity than the heat transfer medium are placed inside a heat storage tank with a space left above. It is enclosed in one piece.

との構成により、熱取り出し時に生ずる蓄熱材充填部」
二部の温度低下および空間部蒸気の温度低下を防き、高
温で安定した熱交換出力を得ることができる。
Due to the structure, the heat storage material filling part that occurs when heat is taken out.
It is possible to prevent a temperature drop in the second part and in the space steam, and obtain stable heat exchange output at high temperatures.

実施例の説明 以下本発明の一実施例を第2図の図面を用いて説明する
。なお第2図中、第1図と同一のものについては同一番
号ヲ付しテイル。
DESCRIPTION OF THE EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. 2. Items in Figure 2 that are the same as those in Figure 1 are given the same numbers.

第2図において、蓄熱装置1は断熱槽が設けられてい6
蓄熱槽2と熱交換器5.6とを有する構造となっている
。蓄熱槽2内には酢酸ナトリクム3水塩(融点58℃、
融点近傍での溶融液の密度1、28 g /cnl )
のごとき蓄熱材3と、フロン113(58℃での密度1
.48 g /cyl )のごとき蓄熱材と非相溶性で
密度の大きい伝熱媒体、および、綿化炭素(例えば、テ
□ボン社、タライ)−ツクスR5B℃ての密度、1.8
5g/cffl)のごとき伝熱媒体と相溶性をイ〕し、
伝熱媒体より比重が大きくかつ、蓄熱4)Jと非相溶性
の高密度液体とが封入されている。前記高密度液体は伝
熱媒体4に溶解し、その溶解液ン1比屯が大きいため、
蓄熱槽2下部にたまる。
In FIG. 2, the heat storage device 1 is provided with a heat insulating tank 6.
It has a structure including a heat storage tank 2 and a heat exchanger 5.6. In the heat storage tank 2, sodium acetate trihydrate (melting point 58°C,
Density of the melt near the melting point 1,28 g/cnl)
A heat storage material 3 such as
.. A heat transfer medium that is incompatible with the heat storage material and has a high density such as
compatibility with a heat transfer medium such as 5g/cffl),
A high-density liquid that has a higher specific gravity than the heat transfer medium and is incompatible with heat storage 4) J is enclosed. The high-density liquid dissolves in the heat transfer medium 4, and the ratio of the dissolved liquid is large.
Accumulates at the bottom of heat storage tank 2.

い寸、蓄熱装置1か蓄熱状態にある時熱交換器6に低l
$1の熱媒体が流入すると、第1図で説明したように伝
熱媒体4の蒸発−凝縮サイクルにより蓄熱材充填部が撹
拌されると共に熱交換器6にて伝熱媒体、は熱交換を行
い放熱する。この時、前記説明のごとく蓄熱材充填部の
上部の温度低下をきたす。本実施例においては、凝縮液
に前記高密度液体が溶解し、凝縮液の見掛は上の密度が
増大し蓄熱材中をすげやく沈降するため、蓄熱材上部の
温度低下を防いでいる。
When the heat storage device 1 is in the heat storage state, the heat exchanger 6 is
When $1 of heat medium flows in, the heat storage material filling part is stirred by the evaporation-condensation cycle of the heat transfer medium 4 as explained in FIG. 1, and the heat transfer medium undergoes heat exchange in the heat exchanger 6. and dissipate heat. At this time, as explained above, the temperature of the upper part of the heat storage material filling section is lowered. In this embodiment, the high-density liquid is dissolved in the condensed liquid, and the apparent density of the condensed liquid increases and quickly settles in the heat storage material, thereby preventing a drop in temperature at the upper part of the heat storage material.

すなわち、出熱時価熱媒体4は気泡7となり上昇し、空
間部に蒸発していく。この時、高密度液体も伝熱媒体と
共に蓄熱材中全上昇するが高密度液体は蒸発しないため
、蓄熱材上部に取り残される。蓄熱材はOfj記理由に
よりはげしく撹拌されているため、前記取り残された高
密度液体は蓄熱槽上部に細かい分散体10として存する
。蒸発した伝熱媒体は熱交換器6で熱交換し凝縮液8と
なって蓄熱材3中にもどる。この時、蓄熱材上部は前記
高密度液体の分散体10が凝縮液8に溶は込み、混合溶
液9となる。この混合溶液は伝熱媒体の密度より大きい
ため、直ちに蓄熱材中を沈降する。
That is, the heat output current value heat medium 4 becomes bubbles 7, rises, and evaporates into the space. At this time, the high-density liquid also rises in the heat storage material along with the heat transfer medium, but the high-density liquid does not evaporate and is left behind at the top of the heat storage material. Since the heat storage material is vigorously stirred for the reason mentioned above, the high-density liquid left behind exists as a fine dispersion 10 in the upper part of the heat storage tank. The evaporated heat transfer medium exchanges heat with the heat exchanger 6 and returns to the heat storage material 3 as a condensate 8. At this time, the high-density liquid dispersion 10 dissolves in the condensate 8 and forms a mixed solution 9 in the upper part of the heat storage material. Since this mixed solution has a density higher than that of the heat transfer medium, it immediately settles in the heat storage material.

沈降しながら熱を奪い伝熱媒体−再び蒸発していく。混
合溶液9は伝熱媒体に比し密度が大きいため、蓄熱材上
部に滞留している時間が短い。すなわち、蓄熱材上部よ
り取得する熱量が少ない。また、混合溶液9は密度が大
きいため、蓄熱槽下部まで十分に沈降し、下部の熱をも
取りだすことができる。
As it sinks, it absorbs heat and the heat transfer medium evaporates again. Since the mixed solution 9 has a higher density than the heat transfer medium, it stays in the upper part of the heat storage material for a short time. That is, the amount of heat acquired from the upper part of the heat storage material is smaller. Moreover, since the mixed solution 9 has a high density, it can sufficiently settle to the lower part of the heat storage tank, and the heat from the lower part can also be taken out.

1]11記説l:lljでは伝熱媒体の密度が蓄熱材の
密度より大きい場合について説明したが、伝熱媒体と高
密度液体との混合溶液の密度が蓄熱材の密度より人であ
71.ば、同様な効果が得られる。
1] In Note 11 l:llj, we explained the case where the density of the heat transfer medium is higher than the density of the heat storage material. .. A similar effect can be obtained.

寸だ、前記説明では高密度液体は伝熱媒体と相溶性全イ
〕しているか、非相溶性であっても第3物質の介在によ
り、伝熱媒体と相溶性にすることができる々ら口゛同様
の効果が得られる。
In the above explanation, either the high-density liquid is completely compatible with the heat transfer medium, or even if it is incompatible, it can be made compatible with the heat transfer medium through the intervention of a third substance. A similar effect can be obtained.

ず酬!l’Jの効果 本発明によれば、凝縮液化した伝熱媒体に、高密度液体
か溶解し見掛け」−の比重が増大するため(イ)凝縮液
か蓄熱槽−1一部で滞留している時間が短い。
Zu reward! Effect of L'J According to the present invention, high-density liquid dissolves in the condensed and liquefied heat transfer medium, increasing the apparent specific gravity. The time is short.

(ロ)凝縮液は−F部まで沈降するととがてきるので蓄
熱槽全体がよく撹拌される。
(b) Since the condensate becomes sharp when it settles to the -F part, the entire heat storage tank is well stirred.

前記理由により蓄熱材上部の温度低下がないため、伝熱
媒体蒸気の温度は低下することなく高温に保たれる。し
たがって、放熱器の熱交換性能の低下を防止し高温で安
定した熱交換出力を得ることができる。
For the above reason, the temperature of the upper part of the heat storage material does not decrease, so the temperature of the heat transfer medium vapor does not decrease and is maintained at a high temperature. Therefore, it is possible to prevent the heat exchange performance of the radiator from deteriorating and to obtain stable heat exchange output at high temperatures.

また、伝熱媒体と高密度液体との混合溶液は蓄熱材より
密度が大きいだめ蓄熱槽下部に?!:に留する。
Also, is the mixed solution of heat transfer medium and high-density liquid located at the bottom of the heat storage tank because it has a higher density than the heat storage material? ! : Stay within.

この混合溶液の中又は近傍に加熱用(蓄熱用)熱交換器
5を設けると加熱時液体のB1シ留により熱が拡散され
るので、効率よく加熱することができる。
If a heating (heat storage) heat exchanger 5 is provided in or near this mixed solution, heat will be diffused by B1 distillation of the liquid during heating, so that efficient heating can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の潜熱蓄熱装置の断面図、@2図は本発明
の一実施例を示す潜熱蓄熱装置の断面図である。 ↓・ 潜熱蓄熱装置、2 ・ 蓄熱槽、3−・ 蓄熱材
、4・・・・伝熱媒体
FIG. 1 is a sectional view of a conventional latent heat storage device, and FIG. 2 is a sectional view of a latent heat storage device showing an embodiment of the present invention. ↓・Latent heat storage device, 2・Heat storage tank, 3−・Heat storage material, 4・・・・Heat transfer medium

Claims (1)

【特許請求の範囲】[Claims] 潜熱蓄熱材と、前記潜熱蓄熱4:A’に対してほとんと
非相溶性であり、熱吸収時に液体から気体に、熱放出1
1りliに気体から液体になる伝熱媒体と、前記iM熱
蓄熱(オと非相溶性で前記伝熱媒体と相溶性で前記伝熱
媒体より密度の大きい液体とを内部上方に空間部を残し
て蓄熱槽内に封入した潜熱蓄熱装置。
It is almost incompatible with the latent heat storage material and the latent heat storage 4:A', and when heat is absorbed, the liquid changes into a gas, and the heat is released 1.
A space is formed above the inside of the heat transfer medium, which changes from a gas to a liquid, and a liquid that is incompatible with the iM heat storage medium, is compatible with the heat transfer medium, and has a higher density than the heat transfer medium. The latent heat storage device is sealed inside the heat storage tank.
JP58129716A 1983-07-15 1983-07-15 Latent heat storaging device Pending JPS6020091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58129716A JPS6020091A (en) 1983-07-15 1983-07-15 Latent heat storaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58129716A JPS6020091A (en) 1983-07-15 1983-07-15 Latent heat storaging device

Publications (1)

Publication Number Publication Date
JPS6020091A true JPS6020091A (en) 1985-02-01

Family

ID=15016440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58129716A Pending JPS6020091A (en) 1983-07-15 1983-07-15 Latent heat storaging device

Country Status (1)

Country Link
JP (1) JPS6020091A (en)

Similar Documents

Publication Publication Date Title
CN201252709Y (en) Heat pipe and phase-change material combined thermal control device
US4332866A (en) Method of temperature regulation
JPS6020091A (en) Latent heat storaging device
US4285389A (en) Thermal energy storage apparatus
JPH0245114B2 (en)
JPH0229960B2 (en)
JPS58178149A (en) Latent heat type heat storage-cold heat storage system
JPS5929989A (en) Latent heat accumulating device
JPS6251396B2 (en)
JPH0343563Y2 (en)
JPS59200192A (en) Latent heat type heat accumulating device
JPS54146054A (en) Heat accumulator
JPH0115783B2 (en)
JPS6146755B2 (en)
Bhagwat et al. Thermal Performance of Heat Pipe with PCM Jacket
JPS61173085A (en) Latent heat storage device
JPS58219394A (en) Latent heat accumulating apparatus
US1723453A (en) Refrigeration
JPS5866A (en) Absorption type cooling device
JPH0117079B2 (en)
JPS59115991A (en) Heat storage device
JPS6115424Y2 (en)
JPS58102097A (en) Heat accumulator
JPS58221386A (en) Latent heat accumulating device
JPS625278B2 (en)