JPS6146755B2 - - Google Patents

Info

Publication number
JPS6146755B2
JPS6146755B2 JP57095331A JP9533182A JPS6146755B2 JP S6146755 B2 JPS6146755 B2 JP S6146755B2 JP 57095331 A JP57095331 A JP 57095331A JP 9533182 A JP9533182 A JP 9533182A JP S6146755 B2 JPS6146755 B2 JP S6146755B2
Authority
JP
Japan
Prior art keywords
heat storage
heat
storage material
water
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57095331A
Other languages
Japanese (ja)
Other versions
JPS58213190A (en
Inventor
Kazuo Yamashita
Takahito Ishii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57095331A priority Critical patent/JPS58213190A/en
Publication of JPS58213190A publication Critical patent/JPS58213190A/en
Publication of JPS6146755B2 publication Critical patent/JPS6146755B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/021Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material and the heat-exchanging means being enclosed in one container
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H7/00Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release
    • F24H7/02Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid
    • F24H7/04Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid with forced circulation of the transfer fluid
    • F24H7/0408Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid with forced circulation of the transfer fluid using electrical energy supply
    • F24H7/0433Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid with forced circulation of the transfer fluid using electrical energy supply the transfer medium being water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Central Heating Systems (AREA)

Description

【発明の詳細な説明】 本発明は深夜電力や太陽エネルギー等を貯え給
湯・冷暖房などに用いる潜熱形蓄熱材を用いた蓄
熱装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat storage device using a latent heat storage material that stores late-night power, solar energy, etc. and is used for hot water supply, air conditioning, and the like.

従来、潜熱形蓄熱材を用いた蓄熱装置におい
て、その熱交換を迅速に行なうため、蓄熱材を伝
熱媒体と共に封入し、伝熱媒体が蓄熱材より熱を
奪いその熱を気相の熱交換器で熱交換を行なうこ
とが行なわれていた。すなわち、第1図におい
て、蓄熱装置1の容器2に蓄熱材3と蓄熱材の溶
融状態における密度より大きい密度を有し、熱吸
収時に液体から気体に、熱放出時に気体から液体
に相変化する伝熱媒体4とを熱交換を行なうため
の空間部5を残して封入する。さらに、前記蓄熱
装置1には熱を加えるための加熱装置6と熱を取
り出すための熱交換器7が設けられている。
Conventionally, in a heat storage device using a latent heat type heat storage material, in order to quickly exchange heat, the heat storage material is sealed together with a heat transfer medium, and the heat transfer medium absorbs heat from the heat storage material and transfers that heat through gas phase heat exchange. Heat exchange was performed using a container. That is, in FIG. 1, the heat storage material 3 in the container 2 of the heat storage device 1 has a density greater than the density in the molten state of the heat storage material, and the phase changes from liquid to gas when heat is absorbed, and from gas to liquid when heat is released. The heat transfer medium 4 is sealed leaving a space 5 for heat exchange. Furthermore, the heat storage device 1 is provided with a heating device 6 for adding heat and a heat exchanger 7 for taking out heat.

通常、容器2の外周は熱放散を防ぐため断熱材
で覆われているが図では省略されている。
Usually, the outer periphery of the container 2 is covered with a heat insulating material to prevent heat dissipation, but this is not shown in the figure.

蓄熱状態において熱交換器7に低温水を導入す
ると、空間部5を占めている作動液の蒸気が熱交
換器にその潜熱を与え凝縮液化する。そのため、
空間部の蒸気圧が低下し、新たに作動液4が蓄熱
材3から熱を奪い蒸発し気泡8となつて蓄熱材充
填部を上昇し気圧の低下を補う。一方、凝縮した
作動液4はその密度が蓄熱材の密度より高いた
め、蓄熱材3中を沈降する。この蒸発−凝縮のサ
イクルにより蓄熱材3中に自己撹拌が生じ熱をさ
らに有効に取り出すことができる。この方法で安
定した熱交換を行なうには前記蒸発−凝縮のサイ
クルが安定に行なわれる必要がある。しかるに前
記従来の蓄熱装置においては、蓄熱も溶融時に蓄
熱材上部に第2図に示すように不溶性の物質材が
浮遊し、気泡の蒸発を阻害する。また、放熱時、
潜熱を放出した蓄熱材は微細な結晶となる。これ
は溶融蓄熱材より密度が大きいため一部は沈降す
るが、他の一部は前記撹拌作用により溶融蓄熱材
と混合する。これにより溶融蓄熱材層の見かけ上
の粘度が高くなり撹拌作用が阻害されると共に前
記気泡が蓄熱材中を上昇し気相に達するのが阻害
された。したがつて、従来の蓄熱装置においては
再現性が悪く、一定温度の出湯を得難たかつた。
When low-temperature water is introduced into the heat exchanger 7 in the heat storage state, the steam of the working fluid occupying the space 5 imparts its latent heat to the heat exchanger and is condensed and liquefied. Therefore,
The vapor pressure in the space decreases, and the working fluid 4 newly removes heat from the heat storage material 3 and evaporates, forming bubbles 8 and rising through the heat storage material filled portion to compensate for the drop in air pressure. On the other hand, since the condensed working fluid 4 has a higher density than the heat storage material, it settles in the heat storage material 3. This evaporation-condensation cycle causes self-agitation in the heat storage material 3, allowing heat to be extracted more effectively. In order to perform stable heat exchange with this method, it is necessary that the evaporation-condensation cycle be performed stably. However, in the conventional heat storage device, when the heat storage material melts, an insoluble substance floats on top of the heat storage material as shown in FIG. 2, which inhibits the evaporation of air bubbles. Also, when dissipating heat,
The heat storage material that releases latent heat becomes fine crystals. Since this has a higher density than the molten heat storage material, part of it settles, but the other part mixes with the molten heat storage material by the stirring action. This increased the apparent viscosity of the molten heat storage material layer, inhibiting the stirring action and preventing the bubbles from rising through the heat storage material and reaching the gas phase. Therefore, conventional heat storage devices have poor reproducibility, making it difficult to obtain hot water at a constant temperature.

本発明は上記問題点を解決し熱交換を迅速かつ
効率よく行うことができる蓄熱装置を提供するこ
とを目的としている。
SUMMARY OF THE INVENTION An object of the present invention is to provide a heat storage device that can solve the above problems and perform heat exchange quickly and efficiently.

本発明は潜熱形蓄熱材とその融点近傍における
融液の密度より大きい密度を有し、かつ、熱吸収
時に液体から気体に熱放出時に気体から液体に相
変化する伝熱媒体と前記蓄熱材と相溶性を有する
物質とを空間部を残して蓄熱容器に封入した構成
よりなつている。本発明においては二つの構成が
存ずる。第一の構成は蓄熱材と相溶性を有する物
質の量を蓄熱材の重量比で3%以下加えることで
ある。これにより、蓄熱時、蓄熱材上部に生ずる
不溶性の蓄熱材浮遊物が溶解するため、気液界面
は融液のみとなり気泡は容易に空間部に飛散して
いく。第二の構成は蓄熱材と相容性を有する物質
の量を蓄熱材の重量比で3〜20%加えることであ
る。これにより、蓄熱時、蓄熱材上部に生ずる不
溶性の蓄熱材浮遊物が溶解すると共に放熱時、蓄
熱材融液の粘度増大が少なく、気泡を容易に上昇
せしめることができるため、一定の温度の出湯を
得ることができる。
The present invention provides a latent heat type heat storage material, a heat transfer medium which has a density greater than the density of the melt near its melting point and whose phase changes from liquid to gas when absorbing heat and from gas to liquid when releasing heat, and the heat storage material. It has a structure in which a compatible substance is sealed in a heat storage container leaving a space. There are two configurations in the present invention. The first configuration is to add a substance that is compatible with the heat storage material in an amount of 3% or less by weight of the heat storage material. As a result, during heat storage, insoluble floating materials of the heat storage material that are generated on the top of the heat storage material are dissolved, so that the gas-liquid interface becomes only the melt, and air bubbles easily scatter into the space. The second configuration is to add a substance compatible with the heat storage material in an amount of 3 to 20% by weight of the heat storage material. As a result, during heat storage, insoluble heat storage material floating matter that occurs on the top of the heat storage material is dissolved, and during heat dissipation, there is little increase in the viscosity of the heat storage material melt, and bubbles can be easily raised, so hot water can be discharged at a constant temperature. can be obtained.

以下、本発明の一実施例を第3図で説明する。
第1の構成の説明を行う1は蓄熱装置である。蓄
熱容器2に蓄熱材例えば酢酸ナトリウム3水塩に
蓄熱材と相溶性のある物質例えば水を加えた蓄熱
材組成物31を充填し、さらに前記蓄熱材の融点
近傍における融液の密度より大きい密度を有し、
熱吸収時に液体から気体に、熱放出時に気体に相
変化する伝熱媒体4例えばトリクロロトリフルオ
ロエタンフロン113を空間部5を残して封入す
る。さらに蓄熱容器2には加熱装置6と熱を取り
出すための熱交換器7が設けられている。前記の
場合、化学量論以上の水分が含まれているため、
蓄熱時に酢酸ナトリウム3水塩は、無水酢酸ナト
リウムのような不溶性の物質が蓄熱容器内の気液
界面(第2図9相当)に生ずることがない。した
がつて熱交換器7に低温水を導入するとフロン1
13は熱交換器7で潜熱を放出し凝縮する。これ
により空間部5の蒸気圧は低下するが、これは蓄
熱材中にあるフロン113の蒸発により補なわれ
る。この場合前述したごとく、気液界面に不溶性
物質が存在しないため、蒸発−凝縮サイクルは順
調に行なわれる。また、前記蒸発−凝縮サイクル
をさまたげるものもないため再現性の良いものと
なる。前述した不溶性の物質が生じないようにす
るには前述のごとく蓄熱材と相溶性のある物質を
加えればよく、その量は通常蓄熱材の重量に比し
1〜2重量パーセントでよく、3重量パーセント
加えれば充分である。
An embodiment of the present invention will be described below with reference to FIG.
Reference numeral 1 in the description of the first configuration is a heat storage device. The heat storage container 2 is filled with a heat storage material composition 31 made of a heat storage material such as sodium acetate trihydrate and a substance compatible with the heat storage material, such as water, and further has a density greater than the density of the melt near the melting point of the heat storage material. has
A heat transfer medium 4, such as trichlorotrifluoroethane fluorocarbon 113, which changes phase from liquid to gas when heat is absorbed and to gas when heat is released, is sealed leaving a space 5. Furthermore, the heat storage container 2 is provided with a heating device 6 and a heat exchanger 7 for extracting heat. In the above case, since the water content is greater than the stoichiometric amount,
During heat storage, sodium acetate trihydrate does not cause insoluble substances such as anhydrous sodium acetate to form at the gas-liquid interface (corresponding to FIG. 2, 9) in the heat storage container. Therefore, when low temperature water is introduced into the heat exchanger 7, Freon 1
13 is a heat exchanger 7 which releases latent heat and condenses it. As a result, the vapor pressure in the space 5 decreases, but this is compensated for by the evaporation of the freon 113 in the heat storage material. In this case, as described above, since no insoluble substances exist at the gas-liquid interface, the evaporation-condensation cycle is carried out smoothly. Furthermore, since there is nothing that disturbs the evaporation-condensation cycle, the reproducibility is good. In order to prevent the formation of the above-mentioned insoluble substances, it is sufficient to add a substance that is compatible with the heat storage material as described above, and the amount thereof is usually 1 to 2% by weight compared to the weight of the heat storage material, and 3% by weight. Adding a percentage is sufficient.

第2の構成について説明する。第2の構成は第
1の構成とほゞ同じであり、蓄熱材組成物中の蓄
熱材と相溶性のある物質例えば水の量が異なるだ
けである。すなわち第2の構成においては蓄熱材
重量に対して3〜20重量パーセントの水を加えた
ことを特徴としている。これにより、蓄熱容器の
気液境界に不溶性物質が生じないようにすると共
に、出湯時(放熱時)蓄熱材の粘度上昇を防ぎ、
効率よく熱を取り出すことができる。
The second configuration will be explained. The second configuration is substantially the same as the first configuration, and differs only in the amount of a substance compatible with the heat storage material, such as water, in the heat storage material composition. That is, the second configuration is characterized in that 3 to 20 weight percent of water is added to the weight of the heat storage material. This prevents insoluble substances from forming at the gas-liquid boundary of the heat storage container, and also prevents the viscosity of the heat storage material from increasing when hot water is tapped (during heat dissipation).
Heat can be extracted efficiently.

放熱時、蓄熱材溶液は伝熱媒体に熱エネルギー
を与え固定していく。この場合、前述のごとく蓄
熱材は伝熱媒体によりはげしく撹拌されているた
め、固化した蓄熱材は微結晶となり蓄熱材融液中
に一部混合され、蓄熱材融液の粘度を増大する。
しかし、本発明においては実使用時非凝固性の水
が含まれているため粘度増大を防ぐことができ
る。さらに固化した蓄熱材の一部は蓄熱容器の下
部に沈降していく。したがつて蓄熱材溶液は蓄熱
容器の上部にたまつてくると共に容器内の水量は
一定であるため、前記溶液中に含まれる水の割合
は増大することになり、これは溶液の粘度の増大
を紡ぐことになる。このため、蓄熱材溶液中に発
生した伝熱媒体の気泡8は容易に溶液中を上昇し
気相部へ飛散していくことができる。第4図は本
発明の効果を示す一例である。実質容量100の
蓄熱容器に酢酸ナトリウム3水塩とフロン113
を混入し水の封入量を変え60℃で蓄熱し、15℃の
冷水を熱交換器7に導入した場合、50℃以上の出
湯がどの位置得られるかを示したものである。第
4図より水量が3%以下の時の出湯量はほとんど
変わらない。これはこの程度の水量では粘度増大
阻止の効果がほとんどないためである。また、水
量が20重量パーセントを越えるとやはり50℃以上
の出湯量が少なくなる。これは、蓄熱容器に占め
る顕熱の割合(水量)が多くなり、蓄熱密度が低
下するからである。したがつて、水量としては実
用的には3〜20重量パーセントが好ましい。
During heat dissipation, the heat storage material solution imparts thermal energy to the heat transfer medium and fixes it. In this case, since the heat storage material is vigorously stirred by the heat transfer medium as described above, the solidified heat storage material becomes microcrystals and is partially mixed into the heat storage material melt, increasing the viscosity of the heat storage material melt.
However, in the present invention, since water that is non-coagulable during actual use is contained, an increase in viscosity can be prevented. Furthermore, a part of the solidified heat storage material settles to the lower part of the heat storage container. Therefore, since the heat storage material solution accumulates at the top of the heat storage container and the amount of water in the container is constant, the proportion of water contained in the solution increases, which causes an increase in the viscosity of the solution. will be woven. Therefore, the bubbles 8 of the heat transfer medium generated in the heat storage material solution can easily rise in the solution and scatter into the gas phase. FIG. 4 is an example showing the effect of the present invention. Sodium acetate trihydrate and Freon 113 in a heat storage container with an actual capacity of 100
This figure shows where hot water of 50°C or higher can be obtained when cold water of 15°C is introduced into the heat exchanger 7, with heat stored at 60°C by varying the amount of water enclosed. From Figure 4, the amount of hot water that comes out when the water amount is 3% or less does not change much. This is because this amount of water has almost no effect on inhibiting viscosity increase. Furthermore, if the amount of water exceeds 20% by weight, the amount of hot water above 50°C will decrease. This is because the ratio of sensible heat (amount of water) occupying the heat storage container increases, and the heat storage density decreases. Therefore, the amount of water is practically preferably 3 to 20% by weight.

以上の説明では蓄熱材として酢酸ナトリウム3
水塩、蓄熱材相溶性物質として水、および伝熱媒
体としてフロン113を用いた場合を説明した
が、これに限定されるものではなく、前記物質と
同等の性質を有する他の物質でもよいのは勿論で
ある。また、前記説明においては熱交換器が空間
部(気相部)にある場合を説明したが、気液両相
に熱交換器が存しても同様の結果を得ることがで
きる。
In the above explanation, sodium acetate 3 is used as a heat storage material.
Although we have explained the case where water salt, water as a heat storage material compatible substance, and Freon 113 as a heat transfer medium are used, the present invention is not limited to this, and other substances having properties equivalent to the above substances may also be used. Of course. Further, in the above description, the case where the heat exchanger is located in the space part (gas phase part) has been described, but the same result can be obtained even if the heat exchanger is located in both the gas and liquid phases.

以上の説明でわかるごとく、本発明の蓄熱装置
を用いれば再現性のよい出湯特性が得られると共
に一定温度の出湯を効率よく得ることができる。
As can be seen from the above description, by using the heat storage device of the present invention, hot water discharge characteristics with good reproducibility can be obtained, and hot water at a constant temperature can be efficiently obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来の蓄熱装置の断面図、第
3図は本発明の蓄熱装置の断面図、第4図は蓄熱
容器含有水量と出湯特性との関係を示した図であ
る。 1……蓄熱装置、3……蓄熱材、4……伝熱媒
体、31……蓄熱材組成物。
FIGS. 1 and 2 are cross-sectional views of a conventional heat storage device, FIG. 3 is a cross-sectional view of a heat storage device of the present invention, and FIG. 4 is a diagram showing the relationship between the amount of water contained in the heat storage container and the hot water output characteristics. 1... Heat storage device, 3... Heat storage material, 4... Heat transfer medium, 31... Heat storage material composition.

Claims (1)

【特許請求の範囲】 1 潜熱形蓄熱材とこの蓄熱材の融点近傍におけ
る融液の密度より大きい密度を有する伝熱媒体と
前記蓄熱材と相溶性を有する物質とを空間部を残
して蓄熱容器に密封した蓄熱装置。 2 前記蓄熱材と相溶性を有する物質が水であり
前記蓄熱材に対する重量比が3%以下である特許
請求の範囲第1項記載の蓄熱装置。 3 前記蓄熱材と相溶性を有する物質が水であ
り、前記蓄熱材に対する重量比が3〜20%である
特許請求の範囲第1項記載の蓄熱装置。
[Scope of Claims] 1 A latent heat type heat storage material, a heat transfer medium having a density higher than the density of the melt near the melting point of the heat storage material, and a substance having compatibility with the heat storage material are placed in a heat storage container leaving a space. A sealed heat storage device. 2. The heat storage device according to claim 1, wherein the substance having compatibility with the heat storage material is water, and the weight ratio to the heat storage material is 3% or less. 3. The heat storage device according to claim 1, wherein the substance having compatibility with the heat storage material is water, and the weight ratio to the heat storage material is 3 to 20%.
JP57095331A 1982-06-02 1982-06-02 Heat accumulator Granted JPS58213190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57095331A JPS58213190A (en) 1982-06-02 1982-06-02 Heat accumulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57095331A JPS58213190A (en) 1982-06-02 1982-06-02 Heat accumulator

Publications (2)

Publication Number Publication Date
JPS58213190A JPS58213190A (en) 1983-12-12
JPS6146755B2 true JPS6146755B2 (en) 1986-10-15

Family

ID=14134733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57095331A Granted JPS58213190A (en) 1982-06-02 1982-06-02 Heat accumulator

Country Status (1)

Country Link
JP (1) JPS58213190A (en)

Also Published As

Publication number Publication date
JPS58213190A (en) 1983-12-12

Similar Documents

Publication Publication Date Title
US4696338A (en) Latent heat storage and transfer system and method
US4561493A (en) Heat-storing apparatus
KR20110106942A (en) Ebullient cooling apparatus
JPS6146755B2 (en)
JPH0229960B2 (en)
JPH0245114B2 (en)
HU204299B (en) Latent heat receiver
JPH0215598B2 (en)
JPH0238116B2 (en)
HU188494B (en) High-capacity heat accumulator
JPS6020091A (en) Latent heat storaging device
JPS58221386A (en) Latent heat accumulating device
JPS59200192A (en) Latent heat type heat accumulating device
JPS6251396B2 (en)
JPS5929989A (en) Latent heat accumulating device
JPS59134488A (en) Latent heat type heat accumulator
JPS625278B2 (en)
JPS59125643A (en) Liquid-cooled electronic device
JP2805968B2 (en) Latent heat storage material
JPS5845499A (en) Heat accumulating material
JPS6086386A (en) Heat accumulating device
JPS6089689A (en) Regenerator
JPH0151517B2 (en)
JPS58120083A (en) Heat accumulating tank
JP2932774B2 (en) Latent heat storage material