JPS58213190A - Heat accumulator - Google Patents

Heat accumulator

Info

Publication number
JPS58213190A
JPS58213190A JP57095331A JP9533182A JPS58213190A JP S58213190 A JPS58213190 A JP S58213190A JP 57095331 A JP57095331 A JP 57095331A JP 9533182 A JP9533182 A JP 9533182A JP S58213190 A JPS58213190 A JP S58213190A
Authority
JP
Japan
Prior art keywords
heat
heat storage
storage material
accumulating
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57095331A
Other languages
Japanese (ja)
Other versions
JPS6146755B2 (en
Inventor
Kazuo Yamashita
山下 和夫
Takahito Ishii
隆仁 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57095331A priority Critical patent/JPS58213190A/en
Publication of JPS58213190A publication Critical patent/JPS58213190A/en
Publication of JPS6146755B2 publication Critical patent/JPS6146755B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/021Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material and the heat-exchanging means being enclosed in one container
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H7/00Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release
    • F24H7/02Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid
    • F24H7/04Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid with forced circulation of the transfer fluid
    • F24H7/0408Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid with forced circulation of the transfer fluid using electrical energy supply
    • F24H7/0433Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid with forced circulation of the transfer fluid using electrical energy supply the transfer medium being water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Central Heating Systems (AREA)

Abstract

PURPOSE:To obtain a hot water tapping characteristic with high reproducibility and efficiently tap hot water at a fixed temperature, by a method wherein a latent heat type heat-accumulating material, a heat-transmitting material having a density higher than that of a melt of the heat-accumulating material at a temperature approximate to its melting point and a substance compatible with the heat-accumulating material are sealed in a heat-accumulating container. CONSTITUTION:The latent heat type heat-accumulating material 3, the heat- transmitting material 4 having a density higher than that of the melt of the material 3 at a temperature approximate to its melting point and the substance 31 compatible with the material 3 are sealed in the heat-accumulating container 2, leaving a space part 5. When accumulating heat, a non-soluble floated part of the material 3 generated at an upper part thereof is dissolved, and when releasing heat, the rise in the viscosity of the melt of the material 3 is small, and bubbles can be easily floated up. Accordingly, a hot water tapping characteristic with high reproducibility can be obtained, and hot water of a fixed temperature can be efficiently tapped.

Description

【発明の詳細な説明】 本発明は深夜電力や太陽エネルギー等を貯え給湯・冷暖
房などに用いる潜熱形蓄熱材を用゛いた蓄熱装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat storage device using a latent heat type heat storage material that stores late-night electricity, solar energy, etc. and is used for hot water supply, air conditioning, and the like.

従来、潜熱形蓄熱材を用いた蓄熱装置において、その熱
交換を迅速に行なうため、蓄熱材を伝熱媒体と共に封入
し、伝熱媒体が蓄熱材より熱を奪いその熱を気相の熱交
換器で熱交換を行なうことが行なわれていた。すなわち
、第1図において、蓄熱装置1の容器2に蓄熱材3と蓄
熱材の溶融状態における密度より大きい密度を有し、熱
吸収時に液体から気体に、熱放出時に気体から液体に相
変化する伝熱媒体4とを熱交換を行なうだめの空間部5
を残して封入する。さらに、前記蓄熱装置1には熱を加
えるだめの加熱装置6と熱を取り出すだめの熱交換器7
が設けられている。
Conventionally, in a heat storage device using a latent heat type heat storage material, in order to quickly exchange heat, the heat storage material is sealed together with a heat transfer medium, and the heat transfer medium absorbs heat from the heat storage material and transfers that heat through gas phase heat exchange. Heat exchange was performed using a container. That is, in FIG. 1, the heat storage material 3 in the container 2 of the heat storage device 1 has a density greater than the density in the molten state of the heat storage material, and the phase changes from liquid to gas when heat is absorbed, and from gas to liquid when heat is released. A space 5 for exchanging heat with the heat transfer medium 4
Leave and enclose. Furthermore, the heat storage device 1 includes a heating device 6 for adding heat and a heat exchanger 7 for taking out heat.
is provided.

通常、容器2の外周は熱放散を防ぐため断熱材で覆われ
ているが図では省略されている。
Usually, the outer periphery of the container 2 is covered with a heat insulating material to prevent heat dissipation, but this is not shown in the figure.

蓄熱状態において熱交換器7に低温水を導入すると、空
間部5を占めている作動液の蒸気が熱交換器にその潜熱
を与え凝縮液化する。そのため、空間部の蒸気圧が低下
し、新たに作動液4が蓄熱     ゛材3から熱を奪
い蒸発し気泡8となって蓄熱材充填部を上昇し気圧の低
下を補う。一方、凝縮した作動液4はその密度が蓄熱材
の密度より高いため、蓄熱材3中を沈降する。この蒸発
−凝縮のサイクルにより蓄熱材3中に自己攪拌が生じ熱
をさらに有効に取り出すことができる。この方法で安定
した熱交換を行なうには前記蒸発−凝縮のサイクルが安
定に行なわれる必要がある。しかるに前記従来の蓄熱装
置においては、蓄熱も溶融時に蓄熱材上部に第2図に示
すように不溶性の物質材が浮遊し、気泡の蒸発を阻害す
る。まだ、放熱時、潜熱を放出した蓄熱材は微細な結晶
となる。これは溶融蓄熱材より密度が大きいため一部は
沈降するが、他の一部は前記攪拌作用により溶融蓄熱材
と混合する。これにより溶融蓄熱材層の見かけ上の粘度
が高くなり攪拌作用が阻害されると共に前記気泡が蓄熱
材中を上昇し気相に達するのが阻害された。
When low-temperature water is introduced into the heat exchanger 7 in the heat storage state, the steam of the working fluid occupying the space 5 imparts its latent heat to the heat exchanger and is condensed and liquefied. Therefore, the vapor pressure in the space decreases, and the working fluid 4 newly takes heat from the heat storage material 3 and evaporates, forming bubbles 8 and rising through the heat storage material filled portion to compensate for the drop in air pressure. On the other hand, since the condensed working fluid 4 has a higher density than the heat storage material, it settles in the heat storage material 3. This evaporation-condensation cycle causes self-agitation in the heat storage material 3, allowing heat to be extracted more effectively. In order to perform stable heat exchange with this method, it is necessary that the evaporation-condensation cycle be performed stably. However, in the conventional heat storage device, when the heat storage material melts, an insoluble substance floats on top of the heat storage material as shown in FIG. 2, which inhibits the evaporation of air bubbles. However, during heat dissipation, the heat storage material that has released latent heat becomes fine crystals. Since this has a higher density than the molten heat storage material, part of it settles, but the other part mixes with the molten heat storage material by the stirring action. This increased the apparent viscosity of the molten heat storage material layer, inhibited the stirring action, and also prevented the bubbles from rising through the heat storage material and reaching the gas phase.

したがって、従来の蓄熱装置においては再現性が悪く、
一定温度の出湯を得難だかった。
Therefore, conventional heat storage devices have poor reproducibility;
It was difficult to obtain hot water at a constant temperature.

本発明は上記問題点を解決し熱交換を迅速かつ効率よく
行うことができる蓄熱装置を提供することを目的として
いる。
SUMMARY OF THE INVENTION An object of the present invention is to provide a heat storage device that can solve the above problems and perform heat exchange quickly and efficiently.

本発明は潜熱形番熱材とその融点近傍における融液の密
度より大きい密度を有し、かつ、熱吸収時に液体から気
体に熱放出時に気体から液体に相変化する伝熱媒体と前
記蓄熱材と相溶性を有する物質とを空間部を残して蓄熱
容器に封入した構成よりなっている。本発明においては
二つの構成が存する。第一の構成は蓄熱材と相溶性を有
する物質の量を蓄熱材の重量比で3係以下加えることで
あるっこれにより、蓄熱時、蓄熱材上部に生ずる不溶性
の蓄熱材浮遊物が溶解するだめ、気液界面は融液のみと
なり気泡は容易に空間部に飛散していく。第二の構成は
蓄熱材と相溶性を有する物質の量を蓄熱材の重量比で3
〜20%加えることである。これにより、蓄熱時、蓄熱
材上部に生ずる不溶性の蓄熱材浮遊物が溶解すると共に
放熱時、蓄熱材融液の粘度増大が少なく、気泡を容易に
上昇せしめることができるだめ、一定の温度の出湯を得
ることができる。
The present invention relates to a latent heat type thermal material, a heat transfer medium which has a density greater than the density of the melt near its melting point, and whose phase changes from liquid to gas when absorbing heat and from gas to liquid when releasing heat, and the heat storage material. and a substance that is compatible with the heat storage container are sealed in a heat storage container leaving a space. There are two configurations in the present invention. The first configuration is to add an amount of a substance that is compatible with the heat storage material by a factor of 3 or less in terms of the weight ratio of the heat storage material.This will dissolve the insoluble floating material of the heat storage material that forms on the top of the heat storage material during heat storage. No, the gas-liquid interface becomes only the melt, and the bubbles easily scatter into the space. The second configuration is such that the amount of the substance that is compatible with the heat storage material is 3 in terms of the weight ratio of the heat storage material.
~20%. As a result, during heat storage, insoluble heat storage material floating matter that occurs on the top of the heat storage material is dissolved, and during heat dissipation, there is little increase in the viscosity of the heat storage material melt, and bubbles can easily rise. can be obtained.

以下、本発明の一実施例を第3図で説明する。An embodiment of the present invention will be described below with reference to FIG.

第1の構成の説明を行う1は蓄熱装置である。蓄熱容器
2に蓄熱材例えば酢酸す) IJウム3水塩に蓄熱材と
相溶性のある物質例えば水を加えた蓄熱材組成物31を
充填し、さらに前記蓄熱材の融点近傍における融液の密
度より大きい密度を有し、熱吸収時に液体から気体に、
熱放出時に気体に相変化する伝熱媒体4例えばトリクロ
ロトリフルオロエタンフロン113を空間部5を残して
封入する。さらに蓄熱容器2には加熱装置6と熱を取り
出すだめの熱交換器7が設けられている。前記の場合、
化学量論以上の水分が含まれているだめ、蓄熱時に酢酸
ナトリウム3水塩は、無水酢酸ナトリウムのような不溶
性の物質が蓄熱容器内の気液界面(第2図9相当)に生
ずることがない。したがって熱交換器7に低温水を導入
するとフロン113は熱交換器7で潜熱を放出し凝縮す
る。これにょシ空間部5の蒸気圧は低下するが、これは
蓄熱材中にあるフロン113の蒸発により補なわれる。
Reference numeral 1 in the description of the first configuration is a heat storage device. The heat storage container 2 is filled with a heat storage material composition 31 in which a heat storage material such as acetic acid (IJum trihydrate) is added with a substance compatible with the heat storage material, such as water, and the density of the melt near the melting point of the heat storage material is further increased. It has a greater density and changes from liquid to gas when absorbing heat,
A heat transfer medium 4, such as trichlorotrifluoroethanefluorocarbon 113, which changes its phase to gas when heat is released, is sealed leaving a space 5. Furthermore, the heat storage container 2 is provided with a heating device 6 and a heat exchanger 7 for extracting heat. In the above case,
Because it contains more than the stoichiometric amount of water, insoluble substances such as anhydrous sodium acetate may form at the gas-liquid interface (corresponding to Figure 2, 9) in the heat storage container when sodium acetate trihydrate is used for heat storage. do not have. Therefore, when low-temperature water is introduced into the heat exchanger 7, the freon 113 releases latent heat and condenses in the heat exchanger 7. As a result, the vapor pressure in the space 5 decreases, but this is compensated for by the evaporation of the fluorocarbon 113 in the heat storage material.

この場合前述したごとく、気液界面に不溶性物質が存在
しないため、蒸発−凝縮サイクルは順調に行なわれる。
In this case, as described above, since no insoluble substances exist at the gas-liquid interface, the evaporation-condensation cycle is carried out smoothly.

まだ、前記蒸発−凝縮サイクルをさまたげるものもない
ため再現性の良いものとなる。
Since there is nothing that disturbs the evaporation-condensation cycle, the reproducibility is good.

前述に示した不溶性の物質が生じないようにするには前
述のごとく蓄熱材と相溶性のある物質を加えればよく、
その量は通常蓄熱材の重量に比し1〜2重量パーセント
でよく、3重量パーセント加えれば充分である。
In order to prevent the formation of the insoluble substances mentioned above, it is sufficient to add substances that are compatible with the heat storage material as mentioned above.
The amount thereof may normally be 1 to 2% by weight compared to the weight of the heat storage material, and it is sufficient to add 3% by weight.

第2の構成について説明する。第2の構成は第1の構成
とはソ同じであり、蓄熱材組成物中の蓄熱材と相溶性の
ある物質例えば水の量が異なるたけである。すなわち第
2の構成においては蓄熱材重量に対して3〜20重量パ
ーセントの水を加えたことを特徴としている。これによ
り、蓄熱容器の気液境界に不溶性物質が生じないように
すると共に、出湯時(放熱時)蓄熱材の粘度上昇を防ぎ
、効率よく熱を取り出すことができる。
The second configuration will be explained. The second configuration is the same as the first configuration, except that the amount of a substance compatible with the heat storage material, such as water, in the heat storage material composition is different. That is, the second configuration is characterized in that 3 to 20 weight percent of water is added to the weight of the heat storage material. This prevents the formation of insoluble substances at the gas-liquid boundary of the heat storage container, prevents the viscosity of the heat storage material from increasing during tapping (during heat dissipation), and efficiently extracts heat.

放熱時、蓄熱材溶液は伝熱媒体に熱エネルギーを与え固
定していく。この場合、前述のごとく蓄熱材は伝熱媒体
によりはげしく攪拌されているため、固化した蓄熱材は
微結晶となり蓄熱材融液中に一部混合され、蓄熱材融液
の粘度を増大する。
During heat dissipation, the heat storage material solution imparts thermal energy to the heat transfer medium and fixes it. In this case, since the heat storage material is vigorously stirred by the heat transfer medium as described above, the solidified heat storage material becomes microcrystals and is partially mixed into the heat storage material melt, increasing the viscosity of the heat storage material melt.

しかし、本発明においては実使用時非凝固性の水力r含
まれているため粘度増大を防ぐことかできる。
However, in the present invention, since a hydraulic agent which is non-coagulable during actual use is included, an increase in viscosity can be prevented.

さらに固化した蓄熱材の一部は蓄熱容器の下部に沈降し
ていく。したがって蓄熱材溶液は蓄熱容器の上部にたま
ってくると共に容器内の水量は一定であるため、前記溶
液中に含まれる水の割合は増大することになり、これは
溶液の粘度の増大を紡ぐことになる。このため、蓄熱材
溶液中に発生した伝熱媒体の気泡8は容易に溶液中を上
昇し気相部へ飛散していくことができる。第4図は本発
明の効果を示す一例である。実質容量100Lの蓄熱容
器に酢酸ナトリウム3水塩とフロン113を混入し水の
封入量を変え60°Cで蓄熱し、16°Cの冷水を熱交
換器7に導入した場合、50°C以上の出湯がどの位置
得られるかを示しだものである。
Furthermore, a part of the solidified heat storage material settles to the lower part of the heat storage container. Therefore, since the heat storage material solution accumulates at the top of the heat storage container and the amount of water in the container is constant, the proportion of water contained in the solution increases, which causes an increase in the viscosity of the solution. become. Therefore, the bubbles 8 of the heat transfer medium generated in the heat storage material solution can easily rise in the solution and scatter into the gas phase. FIG. 4 is an example showing the effect of the present invention. When sodium acetate trihydrate and Freon 113 are mixed in a heat storage container with an actual capacity of 100L, heat is stored at 60°C by varying the amount of water filled, and 16°C cold water is introduced into the heat exchanger 7, the temperature will exceed 50°C. It shows where the hot water can be obtained.

第4図より水量が3%以下の時の出湯量はほとんど変わ
らない。これはこの程度の水量では粘度増大阻止の効果
がほとんどないためである。また、水量が20重量パー
セントを越えるとやはり50°C以上の出湯量が少なく
なる。これは、蓄熱容器に占める顕減の割合(水量)が
多くなり、蓄熱密度が低下するからである。したがって
、水量としては実用的には3〜20重量パーセントが好
ましいO 以上の説明では蓄熱材として酢酸ナトリウム3水塩、蓄
熱材相溶性物質として水、および伝熱媒体としてフロン
113を用いた場合を説明したが、これに限定されるも
のではなく、前記物質と同等の性質を有する他の物質で
もよいのは勿論である。
From Figure 4, the amount of hot water that comes out when the water amount is 3% or less does not change much. This is because this amount of water has almost no effect on inhibiting viscosity increase. Furthermore, if the amount of water exceeds 20% by weight, the amount of hot water delivered above 50°C will decrease. This is because the ratio of sensible loss (amount of water) occupying the heat storage container increases, and the heat storage density decreases. Therefore, the amount of water is practically preferably 3 to 20% by weight. The above explanation assumes that sodium acetate trihydrate is used as the heat storage material, water is used as the material compatible with the heat storage material, and Freon 113 is used as the heat transfer medium. Although described above, the material is not limited to this, and it goes without saying that other materials having properties equivalent to the above materials may be used.

また、前記説明においては熱交換器が空間部(気相部)
にある場合を説明したが、気液両相に熱交換器が存して
も同様の結果を得る・ことができる。
In addition, in the above explanation, the heat exchanger is a space part (gas phase part)
Although we have explained the case where there is a gas-liquid phase, similar results can be obtained even if heat exchangers exist for both gas and liquid phases.

以上の説明でわかるごとく、本発明の蓄熱装置を用いれ
ば再現性のよい出湯特性が得られると共に一定温度の出
湯を効率よく得ることができる。
As can be seen from the above description, by using the heat storage device of the present invention, hot water discharge characteristics with good reproducibility can be obtained, and hot water at a constant temperature can be efficiently obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来の蓄熱装置の断面図、第3図は本
発明の蓄熱装置の断面図、第4図は蓄熱容器含有水量と
出湯特性との関係を示した図である0 1・・・・・・蓄熱装置、3・・・・・・蓄熱材、4・
・・・・・伝熱媒体、31・・・・・・蓄熱材組成物。 第 1 図 第2図 第3図 第4図 H20量vtt%
1 and 2 are cross-sectional views of a conventional heat storage device, FIG. 3 is a cross-sectional view of a heat storage device of the present invention, and FIG. 4 is a diagram showing the relationship between the amount of water contained in the heat storage container and the hot water output characteristics. 1... Heat storage device, 3... Heat storage material, 4.
... Heat transfer medium, 31 ... Heat storage material composition. Figure 1 Figure 2 Figure 3 Figure 4 H20 amount vtt%

Claims (3)

【特許請求の範囲】[Claims] (1)潜熱形蓄熱材とこの蓄熱材の融点近傍における融
液の密度より大きい密度を有する伝熱媒体と前記蓄熱材
と相溶性を有する物質とを空間部を残して蓄熱容器に密
封した蓄熱装置。
(1) Heat storage in which a latent heat type heat storage material, a heat transfer medium having a density higher than the density of the melt near the melting point of the heat storage material, and a substance having compatibility with the heat storage material are sealed in a heat storage container leaving a space. Device.
(2)前記蓄熱材と相溶性を有する物質が水であり前記
蓄熱材に対する重量比が3%以下である特許請求の範囲
第1項記載の蓄熱装置。
(2) The heat storage device according to claim 1, wherein the substance having compatibility with the heat storage material is water, and the weight ratio to the heat storage material is 3% or less.
(3)  前記蓄熱材と相溶性を有する物質が水であり
、前記蓄熱材に対する重量比が3〜20チである特許請
求の範囲第1項記載の蓄熱装置。
(3) The heat storage device according to claim 1, wherein the substance having compatibility with the heat storage material is water, and the weight ratio to the heat storage material is 3 to 20 inches.
JP57095331A 1982-06-02 1982-06-02 Heat accumulator Granted JPS58213190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57095331A JPS58213190A (en) 1982-06-02 1982-06-02 Heat accumulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57095331A JPS58213190A (en) 1982-06-02 1982-06-02 Heat accumulator

Publications (2)

Publication Number Publication Date
JPS58213190A true JPS58213190A (en) 1983-12-12
JPS6146755B2 JPS6146755B2 (en) 1986-10-15

Family

ID=14134733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57095331A Granted JPS58213190A (en) 1982-06-02 1982-06-02 Heat accumulator

Country Status (1)

Country Link
JP (1) JPS58213190A (en)

Also Published As

Publication number Publication date
JPS6146755B2 (en) 1986-10-15

Similar Documents

Publication Publication Date Title
Huang et al. Advances and applications of phase change materials (PCMs) and PCMs-based technologies
Farid et al. A review on phase change energy storage: materials and applications
CN201252709Y (en) Heat pipe and phase-change material combined thermal control device
JP2001207163A (en) Heat storage tank and heat storage apparatus using the same
JPS58213190A (en) Heat accumulator
JPH0245114B2 (en)
HU204299B (en) Latent heat receiver
JPH0215598B2 (en)
Narayanan et al. 4 Physical and Thermal Properties with Measurement Methods for Phase Change Materials
JPS5849894A (en) Heat accumulating device utilizing latent heat
JPS6020091A (en) Latent heat storaging device
JP2805968B2 (en) Latent heat storage material
CN204678743U (en) Evaporimeter and Split hot heat exchange of heat pipe
JPS60203689A (en) Thermal energy storage material
JPS59200192A (en) Latent heat type heat accumulating device
JPS5821942B2 (en) Heat storage agent composition
UTAKA et al. A Method of Efficient Ice Cool Energy Storage Using Heat Transfer of Direct Contact Phase Change Between Working Medium and PCM in an Enclosure
JPS58221386A (en) Latent heat accumulating device
CN117720886A (en) High-enthalpy phase change cooling material and preparation method and application thereof
JPS58106393A (en) Heat accumulator
JP2932774B2 (en) Latent heat storage material
JPH101663A (en) Regenerative material composition
CN117535036A (en) Composite high-enthalpy thermal interface material and preparation method and application thereof
JPS60163989A (en) Phase transition heat storing material
JPS6351479B2 (en)