JP2001207163A - Heat storage tank and heat storage apparatus using the same - Google Patents

Heat storage tank and heat storage apparatus using the same

Info

Publication number
JP2001207163A
JP2001207163A JP2000007438A JP2000007438A JP2001207163A JP 2001207163 A JP2001207163 A JP 2001207163A JP 2000007438 A JP2000007438 A JP 2000007438A JP 2000007438 A JP2000007438 A JP 2000007438A JP 2001207163 A JP2001207163 A JP 2001207163A
Authority
JP
Japan
Prior art keywords
heat
heat storage
storage material
storage tank
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000007438A
Other languages
Japanese (ja)
Inventor
Masayoshi Yabe
昌義 矢部
Shoichi Chihara
彰一 千原
Hiroyuki Kakiuchi
博行 垣内
Masanori Yamazaki
正典 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2000007438A priority Critical patent/JP2001207163A/en
Publication of JP2001207163A publication Critical patent/JP2001207163A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/021Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material and the heat-exchanging means being enclosed in one container
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05316Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05316Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05325Assemblies of conduits connected to common headers, e.g. core type radiators with particular pattern of flow, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

PROBLEM TO BE SOLVED: To improve the heat storage performance of a heat storage apparatus. SOLUTION: This is a heat-storage tank of such a type that the tank is filled with a latent heat-storage material and the heat exchange between the latent heat-storage material and the heat transfer medium is carried out via the heat transfer wall and is characterized by using, as the latent heat-storage material, a substance that has the ratio of the specific gravity in the liquid phase (dL) to the specific gravity in the solid phase (dS) in the range of 0.5-1.0 (dL/dS), using the heat storage apparatus equipped with the fin structure on the side where the heat transfer wall comes into contact with the latent heat storage material and constituting the fin structure sites and the heat transfer surfaces other than the fin structure sites with a metallic substance where the ionization potential (I1) of the fin structure sites is larger than that (I2) of the heat transfer surfaces other than the fin structure sites. This heat storage tanks are used to constitute the objective heat storage apparatus.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は潜熱蓄熱材を利用し
た蓄熱槽とそれを用いた蓄熱装置に関する。詳しくは、
潜熱蓄熱材側の伝熱面を拡大することで蓄熱装置として
の性能を効果的に改良したことを特徴とする蓄熱槽とそ
れを用いた蓄熱装置に関する。かかる蓄熱槽を用いた蓄
熱装置は、深夜電力を利用した蓄熱式電気給湯器、蓄熱
式床暖房システム、寒冷地仕様の自動車エンジン用蓄熱
システム、工場廃熱回収システムあるいは蓄熱式空調シ
ステム、工場プロセス冷却用システム等の蓄熱装置とし
て好適に用いられる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage tank using a latent heat storage material and a heat storage device using the same. For more information,
The present invention relates to a heat storage tank characterized by effectively improving the performance as a heat storage device by enlarging a heat transfer surface on a latent heat storage material side, and a heat storage device using the same. A heat storage device using such a heat storage tank includes a regenerative electric water heater using midnight power, a regenerative floor heating system, a heat storage system for an automobile engine in a cold district specification, a factory waste heat recovery system or a regenerative air conditioning system, and a factory process. It is suitably used as a heat storage device such as a cooling system.

【0002】[0002]

【従来の技術】潜熱蓄熱材は、顕熱型蓄熱材に比べて蓄
熱密度が高く、相変化温度が一定であるため、熱の取り
出し温度が安定であるという利点を活かして実用化され
ている。潜熱蓄熱材として、氷、硫酸ナトリウム10水
塩、塩化カルシウム6水塩及び酢酸ナトリウム3水塩な
どが知られており、冷暖房空調用途として広く普及して
きている。
2. Description of the Related Art A latent heat storage material has a higher heat storage density and a constant phase change temperature than a sensible heat storage material, and has been put to practical use taking advantage of the advantage that the heat extraction temperature is stable. . Ice, sodium sulfate decahydrate, calcium chloride hexahydrate, sodium acetate trihydrate, and the like are known as latent heat storage materials, and are widely used for air conditioning and air conditioning.

【0003】一方、高い相変化温度が望まれる給湯、太
陽エネルギー、ボイラーや自動車の廃熱を利用するシス
テムに関しても、これまでに様々な潜熱蓄熱材を用いた
検討がなされている。100℃付近の温度範囲に融点を
有する素材としては、無機水和塩では、水酸化バリウム
8水塩(融点78℃、融解潜熱量63.8cal/g)、硝
酸マグネシウム6水塩(融点89℃、融解潜熱量38.
2cal/g)等が挙げられる。ところが、硝酸マグネシウ
ム6水塩は金属への腐食性の問題があり、水酸化バリウ
ム8水塩は日本国内では劇物指定であるなど蓄熱材とし
て実用化されていない。また、有機物ではパラフィンワ
ックスや脂肪酸などが考えらているが、いずれも容積あ
たりの蓄熱量が35.0〜45.0cal/ml程度と小さ
く、実用例が制限されているのが現状である。
On the other hand, systems using hot water supply, solar energy, and waste heat of boilers and automobiles, for which a high phase change temperature is desired, have been studied so far using various latent heat storage materials. Materials having a melting point in the temperature range around 100 ° C. include barium hydroxide octahydrate (melting point 78 ° C., latent heat of fusion 63.8 cal / g) and magnesium nitrate hexahydrate (melting point 89 ° C.) as inorganic hydrates. , Latent heat of fusion
2 cal / g) and the like. However, magnesium nitrate hexahydrate has a problem of corrosiveness to metals, and barium hydroxide octahydrate has not been put to practical use as a heat storage material because it is designated as a deleterious substance in Japan. In addition, paraffin wax, fatty acid, and the like are considered as organic substances, but the heat storage amount per volume is as small as about 35.0 to 45.0 cal / ml, and practical examples are currently limited.

【0004】更に、近年、糖アルコールの中に大きな蓄
熱量を有するものが存在することが見出され、蓄熱材と
しての利用が検討されており、キシリトール(融点94
〜95℃;特開昭54−65864号公報参照)、エリ
スリトール(融点119℃;特表昭63−500946
号公報、特開平5−32963号公報参照)等が注目さ
れている。これらは食品添加物であるため、安全であ
り、潜熱量も高く、金属腐食性も極めて低いなどの利点
がある。また、1995年の第16回日本熱物性シンポ
ジウム講演集221頁では、エリスリトールにペンタエ
リスリトール、トリメチロールエタンおよびネオペンチ
ルグリコールを添加することで、エリスリトールの相転
移温度が数十度低下することが報告されている。
Further, in recent years, it has been found that some sugar alcohols have a large amount of heat storage, and their use as heat storage materials has been studied.
9595 ° C .; see JP-A-54-65864; erythritol (melting point 119 ° C .; JP-T-63-500946)
And Japanese Patent Application Laid-Open No. 5-32963). Since these are food additives, they have the advantages of being safe, having high latent heat, and having extremely low metal corrosivity. In addition, in the pp. 221 of the 16th Japan Thermophysical Symposium, 1995, it was reported that the addition of pentaerythritol, trimethylolethane and neopentyl glycol to erythritol lowers the phase transition temperature of erythritol by several tens of degrees. Have been.

【0005】以上の潜熱蓄熱材は素材として評価した場
合、優れた蓄熱密度を有し、一定温度の潜熱を放出する
が、蓄熱装置に組み込んだ場合に伝熱面上で潜熱を放出
した蓄熱材が固化し、次々に積層していくことで熱媒体
との熱交換性能が序々に低下していく現象があり、結果
として出熱温度が一定せず、経時的に低下するため、蓄
えた熱量を使い切れないという問題がある。
When the latent heat storage material described above is evaluated as a material, it has an excellent heat storage density and emits latent heat at a constant temperature. However, when incorporated in a heat storage device, the heat storage material that releases latent heat on a heat transfer surface is used. Is solidified and the heat exchange performance with the heat medium gradually decreases as the layers are stacked one after another.As a result, the heat output temperature is not constant and decreases over time. There is a problem that can not be used up.

【0006】この問題を解決する方法として、シェルア
ンドチューブ型氷蓄熱槽の伝熱管の管長方向に平行に伝
熱フィンをハンダ付けした研究例が報告されている(第
35回日本伝熱シンポジウム講演論文集(889p)、講演番
号G322)。しかしながら、伝熱フィンをハンダもしくは
電気溶接などで取り付けることは蓄熱槽ひいては蓄熱シ
ステムの製造コスト高を招くだけでなく、肉厚フィンを
つけることによる装置の重量増、接続部分の耐食性低下
やピンホール発生の危険性が増すことになる。また、水
は固相状態の比重(dS)が液相状態の比重(dL)より
も小さく、伝熱面上で凝固した際に膨張するために、蓄
熱槽内の水を全て固めることができず、蓄熱装置として
見た場合、やはり蓄熱密度の低下や運転効率の低下を招
くといった課題が残る。
As a method for solving this problem, there has been reported a research example in which heat transfer fins are soldered in parallel to the length direction of the heat transfer tubes of a shell-and-tube type ice storage tank (35th Japan Heat Transfer Symposium Lecture). Proceedings (889p), Lecture number G322). However, attaching the heat transfer fins by soldering or electric welding not only increases the manufacturing cost of the heat storage tank and thus the heat storage system, but also increases the weight of the device by attaching thick fins, lowers the corrosion resistance of the connection part, and reduces pinholes. The risk of occurrence will increase. In addition, since water has a specific gravity in the solid state (d S ) smaller than the specific gravity in the liquid state (d L ) and expands when it solidifies on the heat transfer surface, all the water in the heat storage tank must be solidified. However, when viewed as a heat storage device, there still remains a problem of lowering the heat storage density and lowering the operation efficiency.

【0007】また、蓄熱式セラミックヒーター(シャー
プ(株)社製、HX−SE5−B、1996年製)とし
て、パラフィンワックスを板状カプセルに封入し、内外
にフィンを有する蓄熱槽を用いている例がある。しかし
ながら、フィン部位とフィン部位以外の伝熱面が同じ材
質で成形されているため、内部の蓄熱材が酸化されて酸
性物質などの腐食源が生成した際、あるいは元々酸性あ
るいは酸化性を有する蓄熱材を使用した場合、カプセル
本体に腐食が及ぶ危険性を有する。また、送風伝熱より
もはるかに大きな熱交換性能が要求される場合、同様の
肉厚な伝熱フィンでは装置重量が嵩む割には伝熱特性が
上がらないため、汎用的な技術とは考えられない。
As a regenerative ceramic heater (HX-SE5-B, manufactured by Sharp Corp., manufactured in 1996), a paraffin wax is sealed in a plate-like capsule, and a heat storage tank having fins inside and outside is used. There are examples. However, since the fin portion and the heat transfer surface other than the fin portion are formed of the same material, the internal heat storage material is oxidized to generate a corrosion source such as an acidic substance, or the heat storage having an acidic or oxidative property. When a material is used, there is a risk that the capsule body may be corroded. Also, when heat exchange performance that is much larger than that of blast heat transfer is required, heat transfer characteristics are not improved for similar thicker heat transfer fins, although the equipment weight increases, so this is considered a general-purpose technology. I can't.

【0008】一方、ゴミ焼却設備やガス冷暖房設備、火
力発電設備あるいは自動車等からの未利用エネルギーと
しての廃熱を利用する試みが徐々に為されているもの
の、その多くは土中あるいは大気中に放出されているの
が現状である。これら廃熱の有効利用率を改善すること
は世界的規模で進行するエネルギー枯渇や地球温暖化傾
向等の危機的状況を改善していく上で非常に重要な要素
であるが、100℃を越える熱を効率よく蓄わえ、ある
いは放出でき、かつ要求される安全性を満足できるシス
テムが見出されていないのが現状である。
On the other hand, although attempts have been made gradually to utilize waste heat as unused energy from garbage incineration facilities, gas cooling / heating facilities, thermal power generation facilities, automobiles, etc., most of them are in soil or in the air. It is currently being released. Improving the effective utilization rate of these waste heats is a very important factor in improving crisis situations such as energy depletion and global warming trend that are progressing on a worldwide scale, but exceeding 100 ° C. At present, there is no system capable of efficiently storing or releasing heat and satisfying required safety.

【0009】これまで200℃付近の廃熱利用を目的と
する蓄熱システムとしては、例えばスターラーを内蔵す
るシェル内にペンタエリスリトール粉末を共存性の良い
炭化水素系熱媒体と混合したスラリーを充填し、熱媒体
を通すための銅製のスパイラル状チューブが該スラリー
につかっているシェル&チューブ型潜熱蓄熱装置が提案
されている(Abe,Y.et al.:Proc.19th IECEC,p.1120(19
84))。しかしながら、これでは蓄熱密度が低下してし
まうだけでなく、ペンタエリスリトールの粘着によるス
ラリーの不安定化によって安定した蓄熱特性が発揮でき
なかったり、大型の撹拌ユニットを使用することによる
装置設計上の大きな制約等の問題がある。
Heretofore, as a heat storage system for the purpose of utilizing waste heat at around 200 ° C., for example, a slurry in which pentaerythritol powder is mixed with a hydrocarbon heat medium having good coexistence is filled in a shell containing a stirrer. A shell and tube type latent heat storage device has been proposed in which a copper spiral tube for passing a heat medium is connected to the slurry (Abe, Y. et al .: Proc. 19th IECEC, p. 1120 (19).
84)). However, this not only reduces the heat storage density, but also makes it impossible to exhibit stable heat storage characteristics due to the instability of the slurry due to the sticking of pentaerythritol, or a large device design due to the use of a large stirring unit. There are problems such as restrictions.

【0010】[0010]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、以上の従来技術の問題点を解決すべく、潜
熱蓄熱材を用い、熱出力が一定で、かつエクセルギー効
率、運転効率の優れた蓄熱槽およびそれを用いた蓄熱装
置を提供することにある。
The problem to be solved by the present invention is to solve the above-mentioned problems of the prior art by using a latent heat storage material, having a constant heat output, exergy efficiency and operation efficiency. And a heat storage device using the same.

【0011】[0011]

【課題を解決するための手段】本発明者らは、上記課題
に鑑み鋭意検討した結果、特定の潜熱蓄熱材を収蔵し、
潜熱蓄熱材と熱媒体間の熱交換が伝熱壁を介して行われ
る形式の蓄熱槽であって、伝熱面にフィン構造を有し、
且つ、特定金属部材で構成された蓄熱槽によれば、高密
度に熱を蓄え、効率よく蓄えた熱を供給でき、且つ、装
置の長期信頼性をも確保できることを見出し、本発明に
到達した。即ち、本発明は、潜熱蓄熱材を収蔵し、潜熱
蓄熱材と熱媒体間の熱交換が伝熱壁を介して行われる形
式の蓄熱槽であって、前記潜熱蓄熱材として固相状態に
おける比重(dS)に対する液相状態における比重
(dL)との比率(dL/dS)が0.5〜1.0の範囲
にあるものを用いること、前記伝熱壁が潜熱蓄熱材と接
触する側においてフィン構造を有する蓄熱槽であるこ
と、及び、該フィン構造部位と該フィン構造部位以外の
伝熱面がいずれも金属製であり該フィン構造部位のイオ
ン化傾向(I1)が該フィン構造部位以外の伝熱面のイ
オン化傾向(I2)より大きいことを特徴とする蓄熱槽
及びそれを用いた蓄熱装置に関する。
Means for Solving the Problems The present inventors have made intensive studies in view of the above problems, and as a result, have stored a specific latent heat storage material,
A heat storage tank of a type in which heat exchange between the latent heat storage material and the heat medium is performed through a heat transfer wall, and has a fin structure on a heat transfer surface,
In addition, according to the heat storage tank formed of the specific metal member, the inventors have found that the heat can be stored at high density, the stored heat can be efficiently supplied, and the long-term reliability of the device can be ensured. . That is, the present invention relates to a heat storage tank of a type in which a latent heat storage material is stored and heat exchange between the latent heat storage material and the heat medium is performed through a heat transfer wall. (d S) ratio of the specific gravity (d L) in the liquid phase state (d L / d S) is possible to use those in the range of 0.5 to 1.0 relative to the heat transfer wall and latent heat storage material The heat storage tank having a fin structure on the contacting side, and the fin structure portion and the heat transfer surface other than the fin structure portion are both made of metal, and the ionization tendency (I 1 ) of the fin structure portion is as follows. The present invention relates to a heat storage tank characterized by having a larger ionization tendency (I 2 ) on a heat transfer surface other than the fin structure portion, and a heat storage device using the same.

【0012】[0012]

【発明の実施の形態】本発明における潜熱蓄熱材とは、
固相−液相間の相変化に伴う潜熱を利用する蓄熱材を指
す。また、蓄熱材が固化する際に、液相状態よりも体積
が増加する場合、蓄熱槽内の蓄熱材を全て凝固させてし
まうと伝熱壁や蓄熱槽内壁に応力がかかって装置の破損
を招くため、潜熱蓄熱材の固相状態における比重
(dS)に対する液相状態における比重(dL)との比率
(dL/dS)の上限が1.0以下である必要がある。ま
た、蓄熱材が固化する際の体積収縮が大きすぎると固化
に伴って液相状態の蓄熱材の液位が激しく低下し、伝熱
壁上に蓄熱材が均一に存在し得なくため、比率(dL
S)の下限が0.5以上、好ましくは0.7以上、特
に好ましくは0.8以上である。
BEST MODE FOR CARRYING OUT THE INVENTION The latent heat storage material in the present invention is:
Refers to a heat storage material that utilizes latent heat associated with a phase change between a solid phase and a liquid phase. Also, when the heat storage material is solidified and its volume is larger than the liquid phase, if the heat storage material in the heat storage tank is solidified, stress will be applied to the heat transfer wall and the inner wall of the heat storage tank, causing damage to the device. lead is therefore necessary upper limit of the ratio of the specific gravity (d L) in liquid state for a specific gravity (d S) of the solid state of the latent heat storage material (d L / d S) is 1.0 or less. Also, if the volumetric shrinkage when the heat storage material is solidified is too large, the liquid level of the heat storage material in the liquid phase drops drastically with the solidification, and the heat storage material cannot uniformly exist on the heat transfer wall. (D L /
The lower limit of d S ) is 0.5 or more, preferably 0.7 or more, and particularly preferably 0.8 or more.

【0013】本発明における潜熱蓄熱材は、必要に応じ
て任意の材料を単独もしくは2種以上組み合わせて使用
することができる。主たる蓄熱材の例としては、1,2
−ブタンジオール、1,4−ブタンジオール、エチレン
グリコール、ジエチレングリコール、ポリエチレングリ
コール、グリセロール、トリメチロールエタン、トリメ
チロールプロパンなどのポリアルコール類;ポリアルコ
ール類のエーテル化物;ポリアルコール類のエステル化
物;パラフィン、ポリエチレン、ポリプロピレンなどの
脂肪族系炭化水素類;酢酸ナトリウム水和物、硫酸ナト
リウム水和物などの有機酸塩水和物類;トリメチロール
エタン水和物などの有機水和物類;などが好ましく挙げ
られるが、より好ましくは糖アルコールを含む潜熱蓄熱
材である。
As the latent heat storage material of the present invention, any desired material can be used alone or in combination of two or more as needed. Examples of main heat storage materials include 1, 2
-Polyalcohols such as butanediol, 1,4-butanediol, ethylene glycol, diethylene glycol, polyethylene glycol, glycerol, trimethylolethane, and trimethylolpropane; etherified polyalcohols; esterified polyalcohols; paraffin; Preferred are aliphatic hydrocarbons such as polyethylene and polypropylene; organic acid salt hydrates such as sodium acetate hydrate and sodium sulfate hydrate; organic hydrates such as trimethylolethane hydrate; However, a latent heat storage material containing a sugar alcohol is more preferable.

【0014】上記の糖アルコールを含む潜熱蓄熱材とし
ては、糖アルコールが通常10重量%以上、好ましくは
30重量%以上の範囲で含まれる組成物が挙げられる。
この糖アルコールとしては、meso-エリスリトール、l
−エリスリトール、d−エリスリトール、dl−エリス
リトールなどのエリスリトール類;ペンタエリスリトー
ル、ジペンタエリスリトールなどのペンタエリスリトー
ル類;リビトール;キシリトール;D−アラビトール、
L−アラビトール、DL−アラビトールなどのアラビト
ール類;アリトール;ダルシトール;D−ソルビトー
ル;L−グルシトール、DL−グルシトールなどのグル
シトール類;D−マンニトール、L−マンニトール、D
L−マンニトールなどのマンニトール類;D−イディト
ール、L−イディトールなどのイディトール類;D−タ
リトール、L−タリトール、DL−タリトールなどのタ
リトール類;ペルセイトール;ボレミトール;グリセロ
−グロ−へプチトール、D−グリセロ−D−イド−ヘプ
チトールなどのヘプチトール類;D−エリスロ−D−ガ
ラクト−オクチトール等が例示できる。中でも100℃
付近に融点を持ち、蓄熱密度が高く、結晶性に優れた安
価な材料として、エリスリトール類が一層好ましく、中
でも三菱化学フーズ(株)社製エリスリトールなどとし
て入手可能なmeso-エリスリトールが最も好ましく例示
される。なお、蓄熱材副成分としては主成分となる化合
物に相溶し、共晶可能なものであれば特に制限はない
が、添加量としては主成分の蓄熱材性能を著しく損なわ
ない範囲で使用することができる。また、蓄熱材への添
加剤として、過冷却防止剤、熱安定剤、難燃剤、増粘
剤、ゲル化剤、酸化防止剤、熱伝導性改良材、着色剤、
防臭剤、防カビ剤等を適宜使用することができる。
The latent heat storage material containing a sugar alcohol includes a composition containing the sugar alcohol in an amount of usually at least 10% by weight, preferably at least 30% by weight.
This sugar alcohol includes meso-erythritol, l
Erythritols such as erythritol, d-erythritol, dl-erythritol; pentaerythritols such as pentaerythritol and dipentaerythritol; ribitol; xylitol; D-arabitol;
Arabitols such as L-arabitol and DL-arabitol; allitol; darcitol; D-sorbitol;
Mannitols such as L-mannitol; Iditols such as D-iditol and L-iditol; Thalitols such as D-thalitol, L-talitol and DL-thalitol; Persitol; Heptitols such as -D-id-heptitol; D-erythro-D-galacto-octitol; Above all, 100 ° C
As an inexpensive material having a melting point in the vicinity, a high heat storage density, and excellent crystallinity, erythritols are more preferable, and among them, meso-erythritol available as Mitsubishi Chemical Foods Co., Ltd. erythritol is most preferable. You. The heat storage material auxiliary component is not particularly limited as long as it is compatible with the compound serving as the main component and can be eutectic. However, the amount to be used is within a range that does not significantly impair the heat storage material performance of the main component. be able to. In addition, as additives to the heat storage material, a supercooling inhibitor, a heat stabilizer, a flame retardant, a thickener, a gelling agent, an antioxidant, a thermal conductivity improving material, a coloring agent,
Deodorants, fungicides and the like can be used as appropriate.

【0015】本発明における熱媒体とは、潜熱蓄熱材と
の間で伝熱壁を介して熱交換をして、熱を移動させる媒
介となる物質を言う。熱媒体としては、既知のものを任
意の組成にて使用することができるが、具体的には、流
動パラフィン等の飽和炭化水素系オイル、ハロゲン化ビ
フェニル等の芳香族炭化水素系オイル、空気、窒素、ア
ルゴン、水、スチーム、グリコール水溶液などが挙げら
れる。中でも汎用配管を利用でき、高い顕熱密度を有す
ることから熱交換効率も優れた水系熱媒体が特に好まし
い。付け加えるならば、給湯装置として利用する場合、
水を熱媒体とすることでシステム構成の単純化がはかれ
るという利点もある。
The heat medium in the present invention refers to a substance that serves as a medium for transferring heat by performing heat exchange with a latent heat storage material via a heat transfer wall. As the heat medium, known materials can be used in an arbitrary composition.Specifically, saturated hydrocarbon oils such as liquid paraffin, aromatic hydrocarbon oils such as halogenated biphenyl, air, Examples include nitrogen, argon, water, steam, and aqueous glycol solutions. Among them, an aqueous heat medium which can use a general-purpose pipe and has a high heat exchange efficiency because of having a high sensible heat density is particularly preferable. In addition, when using as a hot water supply device,
There is also an advantage that the system configuration can be simplified by using water as a heat medium.

【0016】本発明は、以上のような潜熱蓄熱材と熱媒
体を用い、その両者間の熱交換が伝熱壁を介して行われ
る形式の蓄熱槽であって、前記伝熱壁が潜熱蓄熱材と接
触する側においてフィン構造を有する蓄熱槽である。こ
こでの伝熱壁は、蓄熱材と蓄熱材に熱の受け渡しをする
熱媒体との間に介在する固体壁を意味する。伝熱壁の材
質としては既知の金属材質であればよく、銅、ステンレ
ス、アルミ、亜鉛メッキ炭素鋼等を任意に使用可能であ
るが、汎用で耐食性の高いアルミ、銅、ステンレス鋼が
好ましい。また、伝熱壁の成形方法としては既知の成形
方法であれば何ら制限はないが、最も簡便かつ低コスト
で達成可能な方法という点では、フィンチューブ型伝熱
壁に関して圧入工法を用いてアルミ製フィンを銅製また
はステンレス製チューブと連結する方法が好ましい。
The present invention provides a heat storage tank of the type in which the above-described latent heat storage material and a heat medium are used, and heat exchange between the two is performed via a heat transfer wall. A heat storage tank having a fin structure on the side that comes into contact with the material. Here, the heat transfer wall means a solid wall interposed between the heat storage material and the heat medium that transfers heat to and from the heat storage material. As the material of the heat transfer wall, any known metal material may be used, and copper, stainless steel, aluminum, galvanized carbon steel and the like can be arbitrarily used, but aluminum, copper, and stainless steel that are general-purpose and have high corrosion resistance are preferable. There is no particular limitation on the method of forming the heat transfer wall as long as it is a known forming method, but in terms of the simplest and lowest cost achievable method, the fin-tube type heat transfer wall is formed using a press-fitting method. It is preferable to connect the fins to a copper or stainless steel tube.

【0017】蓄熱槽の熱交換方式としては、フィン付き
カプセル型、フィンチューブ型、フィンプレート型など
で表現される該当する既知の方式を用途に応じて任意に
使用することができるが、最も簡便かつ低コストで達成
可能な方法という点では、フィンチューブ型熱交換方式
が好ましい。このフィンチューブ型熱交換方式では、フ
ィン部位以外の伝熱壁と材質の異なるフィンを接続する
場合や、薄肉フィンを接続する場合、通常、穴あきフィ
ンの穴に穴径よりも多少大きい径のチューブを圧力をか
けて貫通させる所謂圧入工法が採用される。なお、ここ
でののフィンチューブ型とは、蓄熱材を収蔵する容器
と、伝熱管から構成され、蓄熱材中を単管もしくは多管
の伝熱管が貫通し、伝熱管内部に熱媒体を流通させるこ
とで熱交換を行わしめる形式の熱交換方式を指し、必要
に応じて熱源手段、制御手段、断熱手段などの付帯機能
を追加することができる。
As the heat exchange method of the heat storage tank, a known known method represented by a finned capsule type, a fin tube type, a fin plate type, or the like can be arbitrarily used according to the purpose, but the simplest method is used. The fin tube type heat exchange method is preferable in terms of a method that can be achieved at low cost. In this fin tube type heat exchange method, when connecting fins of different materials to the heat transfer wall other than the fin part, or when connecting thin fins, the diameter of the hole of the perforated fin is usually slightly larger than the hole diameter. A so-called press-fitting method of applying pressure to penetrate the tube is employed. The fin tube type here is composed of a container for storing the heat storage material and a heat transfer tube, and a single tube or a multi-tube heat transfer tube penetrates the heat storage material to circulate the heat medium inside the heat transfer tube. This means a heat exchange system in which heat exchange is performed, and additional functions such as a heat source unit, a control unit, and a heat insulation unit can be added as necessary.

【0018】本発明の蓄熱槽におけるフィン構造とは、
既知の方法で伝熱壁に接続された金属フィンであればよ
く、断面形状としては矩形、放射凸形、三角形、放射凹
形などを任意に利用できる。また、フィン構造部位は、
他の伝熱面を形成するフィン部位と連通していても、分
かれていてもよい。このフィン構造部位とフィン構造部
位以外の伝熱面はいずれも金属製であり、フィン構造部
位のイオン化傾向(I1)が該フィン構造部位以外の伝
熱面のイオン化傾向(I2)より大きくする。I2よりI
1が小さい場合、蓄熱材中に酸性物質もしくは酸化性物
質が存在すると、フィン構造部位以外の伝熱面が優先的
に腐食してしまい、伝熱壁破損を招くため好ましくな
い。なお、ここでのイオン化傾向とは、20℃の純水中
における数値を指す。また、フィン構造部位とフィン構
造部位以外の伝熱面の具体的な材質としては、フィン構
造部位をアルミに、フィン構造部位以外の伝熱面を銅あ
るいはステンレスが挙げられる。
The fin structure in the heat storage tank of the present invention is as follows.
Any metal fin may be used as long as it is a metal fin connected to the heat transfer wall by a known method, and a rectangular, radially convex, triangular, or radially concave cross-sectional shape can be arbitrarily used. In addition, the fin structure site
It may be in communication with the fin portion forming another heat transfer surface or may be separated. Both the fin structure portion and the heat transfer surface other than the fin structure portion are made of metal, and the ionization tendency (I 1 ) of the fin structure portion is larger than the ionization tendency (I 2 ) of the heat transfer surface other than the fin structure portion. I do. I from I 2
When 1 is small, the presence of an acidic substance or an oxidizing substance in the heat storage material is not preferable because the heat transfer surface other than the fin structure portion is preferentially corroded, and the heat transfer wall is damaged. Here, the ionization tendency refers to a numerical value in pure water at 20 ° C. Further, specific materials of the fin structure portion and the heat transfer surface other than the fin structure portion include aluminum for the fin structure portion and copper or stainless steel for the heat transfer surface other than the fin structure portion.

【0019】本発明者らの検討によれば、蓄熱装置にお
ける液体熱媒体との熱交換に関する平均総括熱伝達係数
Kは、蓄熱材側の平均熱伝達率αpの低さが律速となっ
て低く、熱媒体側の平均熱伝達率αfを流速を上げた
り、熱媒体側の伝熱面を拡大するなどして改善しても効
果が小さいことが見出されている。また、蓄熱温度と熱
媒体入口温度の差が200℃以下のシステムに関して、
蓄熱量の50%以上を放出する間において、伝熱フィン
を含む全ての伝熱面に関する平均値としてのKは100
0kcal/hm2℃以下であることを見出し、この条件であれ
ば必要とされる伝熱フィンは薄肉のもので十分に機能す
る。なお、ここで言う蓄熱量とは蓄熱温度まで加熱され
た蓄熱材が熱媒体入口温度と同じにまで低下するまで放
出される理論的熱量を指す。
According to the study of the present inventors, the average overall heat transfer coefficient K relating to heat exchange with the liquid heat medium in the heat storage device is low because the average heat transfer coefficient αp on the heat storage material side is rate-limiting. It has been found that the effect is small even if the average heat transfer coefficient αf on the heat medium side is improved by increasing the flow velocity or enlarging the heat transfer surface on the heat medium side. For a system in which the difference between the heat storage temperature and the heat medium inlet temperature is 200 ° C. or less,
During the release of 50% or more of the heat storage amount, K as an average value for all the heat transfer surfaces including the heat transfer fins is 100.
It is found that the heat transfer fin is 0 kcal / hm 2 ° C or less. Under this condition, the required heat transfer fins are thin and function well. Here, the heat storage amount refers to a theoretical heat amount released until the heat storage material heated to the heat storage temperature drops to the same temperature as the heat medium inlet temperature.

【0020】上記の検討結果として、上記フィン構造部
位の平均厚み(tF)は、好ましくは0.01〜0.5
mm、特に好ましくは0.05〜0.3mmの範囲とな
る。tFが0.01mm未満だとフィン部位の強度が足
りず、装置製造が困難であるばかりでなく、伝熱特性改
良効果が低下する恐れがある。一方、tFが0.5mm
を越えると装置重量の増大が無視できなくなると共に、
圧入工法によるフィン接続が困難となるなど、成型条件
に制約が生まれるのであまり好ましくない。一方、フィ
ン部位の高さHは、通常は、好ましくは3〜150m
m、特に好ましくは5〜100mm、最も好ましくは1
0〜50mmである。Hが3未満だと、装置の熱交換効
率が十分大きいため、フィン部位をつけても熱交換効率
改良効果が小さく、一方、Hが150mmを越えると、
薄肉フィンでは熱交換効率が上げきれないため、圧肉フ
ィンにせざるを得なくなり、装置の重量増が無視できな
くなる。
As a result of the above study, the average thickness (t F ) of the fin structure is preferably 0.01 to 0.5.
mm, particularly preferably in the range of 0.05 to 0.3 mm. If t F is less than 0.01 mm, the strength of the fin portion is insufficient, and not only is the device difficult to manufacture, but also the effect of improving the heat transfer characteristics may be reduced. On the other hand, t F is 0.5 mm
Beyond that, the increase in equipment weight cannot be ignored,
It is not preferable because the molding conditions are restricted, for example, the fin connection by the press-fitting method becomes difficult. On the other hand, the height H of the fin portion is usually preferably 3 to 150 m.
m, particularly preferably 5-100 mm, most preferably 1
0 to 50 mm. When H is less than 3, the heat exchange efficiency of the device is sufficiently large, so even if a fin portion is provided, the heat exchange efficiency improvement effect is small. On the other hand, when H exceeds 150 mm,
Since the heat exchange efficiency cannot be increased with the thin fins, the fins must be pressure fins, and the weight increase of the apparatus cannot be ignored.

【0021】以上説明した本発明の蓄熱槽は、熱源部、
制御部、及び駆動部等を備えてなる蓄熱装置として使用
される。この蓄熱装置としては、例えば、給湯装置であ
れば、(1)蓄熱槽、(2)蓄熱材を加熱するための熱
源部、(3)蓄熱材の温度を検知して蓄熱を終了あるい
は蓄熱を開始させるための制御部、及び(4)熱媒体流
路に熱媒体を強制的に流通させるための駆動部とを備え
た構成となる。また、冷房装置であれば、(1)蓄熱
槽、(2)蓄熱材を冷却するための熱源部、(3)蓄熱
材の温度を検知して蓄熱を終了させるための制御部、及
び(4)熱媒体流路に熱媒体を強制的に流通させるため
の駆動部とを備えた構成となる。
The heat storage tank of the present invention described above has a heat source section,
It is used as a heat storage device including a control unit and a drive unit. As the heat storage device, for example, if it is a hot water supply device, (1) a heat storage tank, (2) a heat source unit for heating the heat storage material, (3) heat storage is terminated by detecting the temperature of the heat storage material, or the heat storage is stopped. A control unit for starting the heating unit and (4) a driving unit for forcibly flowing the heat medium through the heat medium flow path are provided. In the case of a cooling device, (1) a heat storage tank, (2) a heat source unit for cooling the heat storage material, (3) a control unit for detecting the temperature of the heat storage material and terminating the heat storage, and (4) A) a drive unit for forcibly flowing the heat medium through the heat medium flow path.

【0022】上記蓄熱装置において、蓄熱材への蓄熱方
法は、既知の加熱あるいは冷却方法であれば何ら制限は
なく、工場やコジェネレーションシステムなどからの廃
熱、ガスバーナー、太陽熱、地熱、電気ヒーター、冷凍
機、ヒートポンプ、深層海水などの環境熱源などを熱源
装置とすることができる。熱源装置の具体例としては、
蓄熱槽外部に熱源装置を有する場合、熱源装置で加熱も
しくは冷却された熱媒体をポンプ駆動、ファン送風、あ
るいは気化輸送(=液状熱媒体を気化させて体積を飛躍
的に膨張させることで伝熱面に熱媒体を輸送し、凝縮し
た熱媒体を自然落下や毛細管現象などの自然現象を利用
して戻す方法)などの駆動手段によって蓄熱槽内の熱媒
体流路に送給する方法が挙げられる。
In the above heat storage device, the method of storing heat in the heat storage material is not limited as long as it is a known heating or cooling method, and waste heat from factories or cogeneration systems, gas burners, solar heat, geothermal, electric heaters, etc. , A refrigerator, a heat pump, an environmental heat source such as deep seawater, or the like can be used as the heat source device. As a specific example of the heat source device,
When a heat source device is provided outside the heat storage tank, the heat medium heated or cooled by the heat source device is driven by a pump, a fan is blown, or is vaporized and transported (= heat is transferred by vaporizing the liquid heat medium and expanding the volume dramatically. A method of transporting the heat medium to the surface and returning the condensed heat medium using natural phenomena such as natural fall or capillary action) to the heat medium flow path in the heat storage tank by driving means. .

【0023】また、蓄熱槽内部に熱源装置を有する場
合、蓄熱材中に電気ヒーターあるいは冷凍機の冷却管な
どを設置する方法が挙げられる。但し、深夜電力利用を
推進する目的のために好ましい熱源装置は、本発明を給
湯装置として利用する場合、電気ヒーターもしくはヒー
トポンプである。電気ヒーターの例としては、シーズヒ
ーター、誘導加熱式ヒーター、誘電加熱式ヒーター、遠
赤外線加熱式ヒーターなどによる直接加熱方式;シーズ
ヒーター、誘導加熱式ヒーター、誘電加熱式ヒーター、
遠赤外線加熱式ヒーターなどを用いて熱媒体を加熱し、
加熱された熱媒体を蓄熱槽に通すことによる間接加熱方
式が挙げられるが、中でも、比較的安価なシーズヒータ
ーによる方法が特に好ましい。
When a heat source device is provided inside the heat storage tank, a method of installing an electric heater or a cooling pipe of a refrigerator in the heat storage material may be used. However, a preferred heat source device for the purpose of promoting the use of late-night power is an electric heater or a heat pump when the present invention is used as a hot water supply device. Examples of the electric heater include a direct heating method using a sheathed heater, an induction heating heater, a dielectric heating heater, a far-infrared heating heater, and the like; a sheath heater, an induction heating heater, a dielectric heating heater,
Heat the heating medium using a far-infrared heater, etc.
An indirect heating method in which a heated heat medium is passed through a heat storage tank may be mentioned, and a method using a relatively inexpensive sheath heater is particularly preferable.

【0024】蓄熱装置の制御部は、蓄熱材の温度を検知
して蓄熱を終了させ、あるいは蓄熱を開始させる目的で
使用される制御系であり、既知の温度制御ユニットでも
何ら制限なく任意に利用可能である。更に詳細には、サ
ーモスタット、熱電対、温度差計、赤外線センサーなど
の温度検知ユニットを必須構成要素とし、設定温度到達
時に自動的に熱交換を停止させ、あるいは蓄熱を開始さ
せる機能を指す。温度検知ユニットとして好ましくは、
安価で制御が容易なサーモスタットが挙げられる。な
お、温度制御ユニットの設置場所は特に限定されるもの
ではないが、潜熱蓄熱材中もしくは蓄熱槽外壁部が好ま
しい。
The control unit of the heat storage device is a control system used for detecting the temperature of the heat storage material to terminate the heat storage or to start the heat storage, and any known temperature control unit can be used without any limitation. It is possible. More specifically, it refers to a function of making a temperature detection unit such as a thermostat, a thermocouple, a temperature difference meter, and an infrared sensor an essential component, and automatically stopping heat exchange or starting heat storage when a set temperature is reached. Preferably as a temperature detection unit,
Thermostats that are inexpensive and easy to control are mentioned. The location of the temperature control unit is not particularly limited, but is preferably in the latent heat storage material or the outer wall of the heat storage tank.

【0025】蓄熱装置の駆動部は、熱媒体流路に熱媒体
を強制的に流通させるために用いる駆動系であり、通常
知られるポンプ類やファン類、あるいはスチーム搬送な
どの液状熱媒体を気化させて体積を飛躍的に膨張させる
ことで熱源もしくは伝熱面へ熱媒体を輸送し、凝縮した
熱媒体を自然落下や毛細管現象などの自然現象を利用し
て戻す方法など、既知の手段を単独もしくは複合して利
用することができる。
The drive unit of the heat storage device is a drive system used for forcibly flowing the heat medium through the heat medium flow path, and evaporates a liquid heat medium such as pumps and fans, or steam transport, which is generally known. Known means such as a method of transporting a heat medium to a heat source or a heat transfer surface by expanding the volume dramatically and returning the condensed heat medium using natural phenomena such as natural fall and capillary phenomenon Alternatively, they can be used in combination.

【0026】なお、以上の蓄熱装置には、必要に応じて
シーケンサー等のプログラムコントロールユニット、カ
レンダータイマー、24時間タイマーなどのタイマーユ
ニット、熱源温度検知ユニット、熱源出力調節ユニッ
ト、電磁開閉弁、混合弁、流量調節弁、流量計などの熱
媒体流量調節ユニット、補助熱源ユニット、疑似負荷ユ
ニット(「蓄熱工学2」第1版 森北出版(株)、関信
弘 編集、64p参照)、日負荷パターン学習機能、圧
力計、膨張タンク、調圧弁、ドレイン弁、熱媒体自動排
出機構、スチーム凝縮槽、過熱防止装置、漏電防止装
置、断熱材などの断熱手段などの既存ユニットを利用で
きることは言うまでもない。
The heat storage device includes a program control unit such as a sequencer, a timer unit such as a calendar timer and a 24-hour timer, a heat source temperature detection unit, a heat source output control unit, a solenoid on-off valve, and a mixing valve, if necessary. , Flow control valve, heat medium flow control unit such as flow meter, auxiliary heat source unit, pseudo load unit ("Heat storage engineering 2" 1st edition, Morikita Publishing Co., Ltd., edited by Nobuhiro Seki, 64p), daily load pattern learning function Needless to say, existing units such as a pressure gauge, an expansion tank, a pressure regulating valve, a drain valve, an automatic heat medium discharging mechanism, a steam condensing tank, an overheating prevention device, a leakage prevention device, and a heat insulating means such as a heat insulating material can be used.

【0027】ところで、潜熱蓄熱材は相変化時にもっと
も高効率で熱交換できるという特徴と、高温にするほど
分解が促進され寿命が低下するという性質を有する。従
って、本発明の蓄熱装置を給湯装置として用いる場合の
蓄熱温度は蓄熱材の融点(Tm)以上でかつあまり高す
ぎないことが望まれ、蓄熱温度を蓄熱材の融点(Tm)
より通常1〜100℃、好ましくは5〜80℃の範囲で
高く、放熱運転において熱媒体の蓄熱槽入口温度がTm
より通常1〜200℃、好ましくは5〜150℃の範囲
で低くすることが好ましい。潜熱蓄熱材は(Tm−1)
℃以下に冷却されないと凝固しにくく、また、(Tm−
200)℃以下に冷却されると、冷熱衝撃により劣化を
招くだけでなく、装置の平均総括熱伝達係数Kが大きく
なりすぎて薄肉の伝熱フィンでは熱交換効率改良効果が
現れにくくなるので好ましくない。
By the way, the latent heat storage material has a feature that it can exchange heat with the highest efficiency at the time of phase change, and has a property that decomposition is promoted and the life is shortened as the temperature is increased. Therefore, when the heat storage device of the present invention is used as a hot water supply device, it is desired that the heat storage temperature be equal to or higher than the melting point (Tm) of the heat storage material and not too high.
The temperature is usually higher in the range of 1 to 100 ° C, preferably 5 to 80 ° C, and the temperature of the heat storage tank inlet of the heat medium in the heat dissipation operation is Tm.
It is more preferable to lower the temperature in the range of usually 1 to 200 ° C, preferably 5 to 150 ° C. Latent heat storage material is (Tm-1)
If not cooled below ℃, solidification is difficult and (Tm−
When the temperature is cooled to 200) ° C. or lower, not only deterioration due to thermal shock is caused but also the average overall heat transfer coefficient K of the device becomes too large, and the effect of improving the heat exchange efficiency becomes difficult to be exhibited with thin heat transfer fins. Absent.

【0028】また、潜熱蓄熱材は相変化時にもっとも高
効率で熱交換できるという特徴と、高温にするほど分解
が促進され寿命が低下するという性質を有する。従っ
て、本発明の蓄熱装置を冷房装置として用いる場合は、
放熱運転において、蓄熱材の融点(Tm)より通常1〜
200℃、好ましくは5〜80℃の範囲で低く、放熱運
転において熱媒体の蓄熱槽入口温度がTmより1〜10
0℃、好ましくは5〜80℃のの範囲で高くすることが
り好ましい。また、潜熱蓄熱材は(Tm−1)℃以下に
冷却されないと凝固しにくく、また、(Tm−200)
℃以下に冷却されると、冷熱衝撃により劣化を招くだけ
でなく、装置の平均総括熱伝達係数Kが大きくなりすぎ
て薄肉の伝熱フィンでは熱交換効率改良効果が現れにく
くなるので好ましくない。
Further, the latent heat storage material has a feature that heat exchange can be performed with the highest efficiency at the time of phase change, and has a property that decomposition is promoted and the life is shortened as the temperature is increased. Therefore, when using the heat storage device of the present invention as a cooling device,
In the heat dissipation operation, it is usually 1 to 1 from the melting point (Tm) of the heat storage material.
200 ° C., preferably in the range of 5 to 80 ° C., and the temperature of the heat storage tank inlet of the heat medium in the heat radiation operation is 1 to 10 ° C. lower than Tm.
It is preferable to increase the temperature in the range of 0 ° C, preferably 5 to 80 ° C. Further, the latent heat storage material is hard to solidify unless cooled to (Tm-1) ° C or lower, and (Tm-200)
It is not preferable that the temperature is cooled to not more than ℃ because not only deterioration due to thermal shock is caused, but also the average overall heat transfer coefficient K of the apparatus becomes too large, and the effect of improving the heat exchange efficiency becomes difficult to appear with thin heat transfer fins.

【0029】以下に、以上のような本発明の蓄熱装置の
具体的な態様を図面に基づいてより詳細に説明する。図
1は、本発明の蓄熱装置の一形態を示す概念図である。
図1において、蓄熱装置1は、給水装置2と、潜熱蓄熱
材を収蔵し伝熱壁を介して熱交換を行う蓄熱槽3を有し
ている。給水装置2は、ポンプ4、三方弁5、逆止弁6
を介して蓄熱槽3に連結されており、ポンプ4を駆動す
ることにより、蓄熱槽3、弁体7を経由して給湯口8よ
り水が供給される。ところで、三方弁5は、蓄熱槽3に
送られる水とバイパス管9を通して給湯口8へ向かう水
との混合割合を調節するための弁体で、給湯口8より供
給される温水もしくは蒸気水の温度調節に用いられる。
なお、これらに例示される本発明の蓄熱装置には、圧力
計、流量計、過加熱防止装置、漏電防止装置、温度セン
サ、温度制御装置、断熱材、補助ポンプ、減圧弁、ヒー
トポンプ、あるいは蓄熱材の相転移等による熱媒体のオ
ーバーフローあるいは減少を吸収するためのバッファー
タンク等を必要に応じて使用する必要があるのは言うま
でもない。
Hereinafter, specific embodiments of the heat storage device of the present invention as described above will be described in more detail with reference to the drawings. FIG. 1 is a conceptual diagram showing one embodiment of the heat storage device of the present invention.
In FIG. 1, a heat storage device 1 includes a water supply device 2 and a heat storage tank 3 that stores a latent heat storage material and exchanges heat via a heat transfer wall. The water supply device 2 includes a pump 4, a three-way valve 5, a check valve 6,
The water is supplied from the hot water supply port 8 via the heat storage tank 3 and the valve body 7 by driving the pump 4. By the way, the three-way valve 5 is a valve body for adjusting a mixing ratio of water sent to the heat storage tank 3 and water going to the hot water supply port 8 through the bypass pipe 9, and is a hot water or steam water supplied from the hot water supply port 8. Used for temperature control.
Examples of the heat storage device of the present invention include a pressure gauge, a flow meter, an overheating prevention device, an earth leakage prevention device, a temperature sensor, a temperature control device, a heat insulating material, an auxiliary pump, a pressure reducing valve, a heat pump, or a heat storage device. Needless to say, it is necessary to use a buffer tank or the like for absorbing overflow or decrease of the heat medium due to phase transition of the material as necessary.

【0030】該蓄熱装置を利用して蓄熱するときは、三
方弁5、弁体7を閉として、蓄熱槽3に担持されている
熱源装置10にて蓄熱材に熱エネルギーを与える。この
とき、熱源装置10の温度は温度調節装置によって(T
m+1)℃〜(Tm+100)℃の範囲にコントロールさ
れる。熱源装置10によって熱エネルギーを与えられた
蓄熱材は、固相状態から液相状態への相転移による融解
潜熱および顕熱を蓄熱する。蓄熱槽3内のパイプ11内
に熱媒体である水を存在させたまま蓄熱する場合は、パ
イプ11内が加圧もしくは減圧となるので、圧力調節弁
12にて圧力を緩和する必要がある。また、蓄熱開始前
にパイプ11内の水抜きをすることも一つの安全措置で
ある。
When heat is stored using the heat storage device, the three-way valve 5 and the valve body 7 are closed, and heat energy is given to the heat storage material by the heat source device 10 carried in the heat storage tank 3. At this time, the temperature of the heat source device 10 is set to (T
(m + 1) ° C to (Tm + 100) ° C. The heat storage material given thermal energy by the heat source device 10 stores latent heat of fusion and sensible heat due to a phase transition from a solid state to a liquid state. In the case where heat is stored while water as a heat medium is present in the pipe 11 in the heat storage tank 3, the pressure in the pipe 11 is increased or reduced. Also, draining the water inside the pipe 11 before starting the heat storage is one safety measure.

【0031】蓄熱槽3内に蓄熱された熱エネルギーを利
用するときは、三方弁5の逆止弁6とポンプ4間の流
路、弁体7を開とし、ポンプ4を駆動すると、水が給水
装置よりポンプ4、三方弁5、逆止弁6を介して蓄熱槽
3に送給される。このとき水の温度は(Tm−200
℃)〜(Tm−1℃)の範囲にコントロールされる。蓄
熱槽3の蓄熱材によって加熱された水は、弁体7を経由
して給湯口8より温水もしくは蒸気水として供給され
る。一方、潜熱を放出した蓄熱材は固相に転移する。
尚、給湯口の水温は、三方弁5の調整によって、蓄熱槽
3で加熱された水と、バイパス管9を経由してきた水の
混合比を調整することによって調整することができる。
また、必要に応じ、給湯口8と弁体7との間に補助熱源
(ヒートポンプや電気ヒーターなど)を追加し、給湯温
度を高めることも可能である。
When the heat energy stored in the heat storage tank 3 is used, the flow path between the check valve 6 of the three-way valve 5 and the pump 4 and the valve body 7 are opened, and when the pump 4 is driven, water is discharged. Water is supplied from the water supply device to the heat storage tank 3 via the pump 4, the three-way valve 5, and the check valve 6. At this time, the temperature of the water is (Tm-200
C) to (Tm-1C). The water heated by the heat storage material in the heat storage tank 3 is supplied as hot water or steam water from a hot water supply port 8 via a valve body 7. On the other hand, the heat storage material that has released the latent heat transforms to a solid phase.
The water temperature at the hot water supply port can be adjusted by adjusting the three-way valve 5 to adjust the mixing ratio of the water heated in the heat storage tank 3 and the water that has passed through the bypass pipe 9.
If necessary, an auxiliary heat source (such as a heat pump or an electric heater) may be added between the hot water supply port 8 and the valve body 7 to increase the hot water supply temperature.

【0032】図2は、本発明の蓄熱装置の一形態を示す
概念図である。図2において、蓄熱装置17は、給水装
置2と、蓄熱材を収蔵し伝熱壁を介して熱交換を行う蓄
熱槽3と、熱源装置18を有している。給水装置2は、
ポンプ4、三方弁5、逆止弁6を介して蓄熱槽3に連結
されており、ポンプ4を駆動することにより、蓄熱槽
3、熱源装置18、弁体19を経由して給湯口8より水
が供給される。一方、熱源装置18は蓄熱槽3と分岐部
20との間に配され、弁体21、ポンプ22、弁体2
3、分岐部20を介してループを形成するように構成さ
れ、ポンプ22を駆動することによって、熱源装置18
で加熱された水を蓄熱槽3に送給して蓄熱材を加熱する
ようにされている。ところで、三方弁5は、逆止弁6を
介して蓄熱槽3に送られる水とバイパス管9を通して給
湯口8へ向かう水との混合割合を調節するための弁体
で、給湯口8より供給される温水もしくは蒸気水の温度
調節に用いられる。なお、これらに例示される本発明の
蓄熱装置には、圧力計、流量計、過加熱防止装置、漏電
防止装置、温度センサ、温度制御装置、断熱材、補助ポ
ンプ、減圧弁、ヒートポンプ、あるいは蓄熱材の相転移
等による熱媒体のオーバーフローあるいは減少を吸収す
るためのバッファータンク等を必要に応じて使用する必
要があるのは言うまでもない。
FIG. 2 is a conceptual diagram showing one embodiment of the heat storage device of the present invention. In FIG. 2, the heat storage device 17 includes a water supply device 2, a heat storage tank 3 that stores a heat storage material and exchanges heat via a heat transfer wall, and a heat source device 18. The water supply device 2
The pump 4 is connected to the heat storage tank 3 via the three-way valve 5 and the check valve 6. By driving the pump 4, the hot water is supplied from the hot water supply port 8 via the heat storage tank 3, the heat source device 18, and the valve element 19. Water is supplied. On the other hand, the heat source device 18 is disposed between the heat storage tank 3 and the branch portion 20, and includes a valve 21, a pump 22, and a valve 2.
3. The heat source device 18 is configured to form a loop through the branch portion 20 and to drive the pump 22
Is supplied to the heat storage tank 3 to heat the heat storage material. The three-way valve 5 is a valve body for adjusting a mixing ratio of water sent to the heat storage tank 3 through the check valve 6 and water flowing to the hot water supply port 8 through the bypass pipe 9. It is used for controlling the temperature of hot water or steam water. Examples of the heat storage device of the present invention include a pressure gauge, a flow meter, an overheating prevention device, an earth leakage prevention device, a temperature sensor, a temperature control device, a heat insulating material, an auxiliary pump, a pressure reducing valve, a heat pump, or a heat storage device. Needless to say, it is necessary to use a buffer tank or the like for absorbing overflow or decrease of the heat medium due to phase transition of the material as necessary.

【0033】該蓄熱装置を利用して蓄熱するときは、三
方弁5,弁体19を閉とし、弁体21、23を開とし
て、ポンプ22を駆動すると、熱源装置18で加熱され
た水は、蓄熱槽3に入り、伝熱壁を介して蓄熱材に熱エ
ネルギーを伝達する。このとき、熱源装置18の温度は
温度調節装置によって(Tm+1)℃〜(Tm+100)
℃の範囲にコントロールされる。熱源装置18によって
熱エネルギーを与えられた蓄熱材は、固相状態から液相
状態への相転移による融解潜熱および顕熱を蓄熱する。
蓄熱材を加熱して自体は冷却された水は弁体21、ポン
プ22、弁体23を経由して熱源装置18で再度加熱さ
れる。なお、構造上パイプ11の内圧が減圧もしくは加
圧となる場合があるが、圧力調節弁12にて圧力を緩和
することができる。圧力調節弁の先には、バッファータ
ンク24が配される。
When heat is stored using the heat storage device, the three-way valve 5, the valve body 19 is closed, the valve bodies 21 and 23 are opened, and the pump 22 is driven. , Enters the heat storage tank 3 and transmits heat energy to the heat storage material via the heat transfer wall. At this time, the temperature of the heat source device 18 is (Tm + 1) ° C. to (Tm + 100) by the temperature controller.
It is controlled in the range of ° C. The heat storage material given thermal energy by the heat source device 18 stores latent heat of fusion and sensible heat due to a phase transition from a solid state to a liquid state.
The water that has been cooled by heating the heat storage material is heated again by the heat source device 18 via the valve 21, the pump 22, and the valve 23. Although the internal pressure of the pipe 11 may be reduced or increased due to its structure, the pressure can be reduced by the pressure control valve 12. A buffer tank 24 is provided at the end of the pressure control valve.

【0034】蓄熱槽3内に蓄熱された熱エネルギーを利
用するときは、三方弁5の逆止弁6とポンプ3間の流
路、弁体19を開とし、弁体21、23を閉としてポン
プ3を駆動すると、水が給水装置2よりポンプ4、三方
弁5、逆止弁6を介して蓄熱槽3に送給される。このと
き水の温度は(Tm−200℃)〜(Tm−1℃)の範囲
にコントロールされる。蓄熱槽3の蓄熱材によって加熱
された水は、熱源装置18、弁体19を経由して給湯口
8より温水もしくは蒸気水として供給される。一方、潜
熱を放出した蓄熱材は固相に転移する。尚、給湯口8の
水温が高すぎる場合は、三方弁5の調整によって、蓄熱
槽3で加熱された水と、バイパス管9を経由してきた水
の混合比を調整することによって調整することができ
る。また、給湯口8の水温が低すぎる場合は、蓄熱槽3
により加熱された水を熱源装置18にて更に加熱する。
When utilizing the heat energy stored in the heat storage tank 3, the flow path between the check valve 6 of the three-way valve 5 and the pump 3 and the valve body 19 are opened, and the valve bodies 21 and 23 are closed. When the pump 3 is driven, water is supplied from the water supply device 2 to the heat storage tank 3 via the pump 4, the three-way valve 5, and the check valve 6. At this time, the temperature of the water is controlled in the range of (Tm-200C) to (Tm-1C). The water heated by the heat storage material in the heat storage tank 3 is supplied as hot water or steam water from the hot water supply port 8 via the heat source device 18 and the valve body 19. On the other hand, the heat storage material that has released the latent heat transforms to a solid phase. If the water temperature of the hot water supply port 8 is too high, it can be adjusted by adjusting the three-way valve 5 to adjust the mixing ratio of the water heated in the heat storage tank 3 and the water that has passed through the bypass pipe 9. it can. If the water temperature of the hot water supply port 8 is too low, the heat storage tank 3
Is further heated by the heat source device 18.

【0035】図6は、本発明の蓄熱装置の一形態を示す
概念図である。図6において、蓄熱装置25は、蓄熱材
を収蔵し、伝熱壁を介して熱交換を行う蓄熱槽26を有
している。蓄熱装置26は、熱源装置27に連結されて
いる。熱源装置27の材質、構造は利用される熱源に応
じて適当なものを使用する事ができ、例えば、ゴミ焼却
炉等の燃焼炉の熱エネルギーを利用するときは、炉内又
は煙道に金属製の管体(図示せず)を設置し、管体内に
熱媒体を通すことによって熱エネルギーを取り入れるこ
とができる。熱槽26と熱源装置27は、弁体28,2
9,30及びポンプ31を介してループを形成してお
り、ポンプ31を駆動することによって熱源装置27で
取り入れた熱エネルギーを蓄熱槽26に蓄えることがで
きる。
FIG. 6 is a conceptual diagram showing one embodiment of the heat storage device of the present invention. In FIG. 6, a heat storage device 25 has a heat storage tank 26 that stores heat storage material and performs heat exchange via a heat transfer wall. The heat storage device 26 is connected to a heat source device 27. The material and structure of the heat source device 27 can be appropriately selected according to the heat source to be used. For example, when utilizing the heat energy of a combustion furnace such as a garbage incinerator, a metal It is possible to take in heat energy by installing a tubular body (not shown) made of steel and passing a heat medium through the tubular body. The heat tank 26 and the heat source device 27 are
A loop is formed through 9, 30 and the pump 31, and by driving the pump 31, heat energy taken in by the heat source device 27 can be stored in the heat storage tank 26.

【0036】また、蓄熱装置25は熱交換器32を有
し、被加熱体(=水)流路33から導入された被加熱体
(=水)を熱交換によって加熱するように構成されてい
る。熱交換器32と蓄熱槽26は、弁体29、三方弁3
4、ポンプ35、弁体30を介してループを形成するよ
うに構成され、ポンプ35を駆動することによって、蓄
熱槽26で加熱された熱媒体を熱交換器32に送給して
被加熱体を加熱するようにされている。三方弁34は、
蓄熱槽26から送られる加熱媒体と、バイパス管36を
通して熱交換器32から帰還する熱媒体との混合割合を
調整するための弁体で、熱交換器32の加熱温度調整に
用いられる。なお、これらに例示される本発明の蓄熱装
置には、圧力計、流量計、過加熱防止装置、漏電防止装
置、温度センサ、温度制御装置、断熱材、補助ポンプ、
減圧弁、ヒートポンプ、あるいは温度変化に伴う熱媒体
の膨張あるいは収縮を吸収するための膨張タンク等を必
要に応じて使用することができる。
The heat storage device 25 has a heat exchanger 32, and is configured to heat the heated object (= water) introduced from the heated object (= water) flow path 33 by heat exchange. . The heat exchanger 32 and the heat storage tank 26 include a valve body 29, a three-way valve 3
4. The pump 35 is configured to form a loop via the valve body 30. By driving the pump 35, the heat medium heated in the heat storage tank 26 is supplied to the heat exchanger 32 to be heated. Is to be heated. The three-way valve 34
A valve for adjusting the mixing ratio of the heating medium sent from the heat storage tank 26 and the heating medium returned from the heat exchanger 32 through the bypass pipe 36, and is used for adjusting the heating temperature of the heat exchanger 32. In addition, the heat storage device of the present invention exemplified by these includes a pressure gauge, a flow meter, an overheating prevention device, a leakage prevention device, a temperature sensor, a temperature control device, a heat insulating material, an auxiliary pump,
A pressure reducing valve, a heat pump, or an expansion tank for absorbing expansion or contraction of the heat medium due to temperature change can be used as necessary.

【0037】本発明の蓄熱装置を利用して蓄熱するとき
は、三方弁34を閉とし、弁体28,29,30を開と
してポンプ31を駆動すると、熱源装置27で加熱され
た熱媒体は、弁体28,29を経由して蓄熱槽26に入
り、伝熱壁を介して蓄熱材に熱エネルギーを伝達する。
熱源装置27で加熱された熱媒体は、蓄熱材の融点より
1℃以上、好ましくは5℃以上高い温度となるように加
熱される。熱媒体によって熱エネルギーを与えられた蓄
熱材は、固相状態から液相状態への相転移による融解潜
熱および顕熱として蓄熱する。蓄熱材を加熱して自体は
冷却された熱媒体は弁体30、ポンプ31を経由して熱
源装置27で再度加熱される。蓄熱槽26内に蓄熱され
た熱エネルギーを利用するときは、弁体28を閉とし、
弁体29、三方弁34の弁体29とポンプ35間の流路
及び弁体30を開としてポンプ35を駆動する。熱媒体
は熱交換器32で(Tm−1)〜(Tm−200)℃の範
囲に冷却され、蓄熱槽26に送られると、蓄熱材は伝熱
壁表面にて発核し、潜熱の放熱を開始する。蓄熱槽26
の蓄熱材によって加熱された熱媒体は、弁体29、三方
弁34、ポンプ35を経由して熱交換器32に送給さ
れ、被加熱体流路33から送給される被加熱体を加熱す
る。一方、潜熱を放出した蓄熱材は固相に転移する。
When heat is stored using the heat storage device of the present invention, the three-way valve 34 is closed, the valves 28, 29, 30 are opened and the pump 31 is driven. Then, the heat enters the heat storage tank 26 via the valve bodies 28 and 29 and transmits heat energy to the heat storage material via the heat transfer wall.
The heat medium heated by the heat source device 27 is heated to a temperature higher than the melting point of the heat storage material by 1 ° C. or more, preferably 5 ° C. or more. The heat storage material given heat energy by the heat medium stores heat as latent heat of fusion and sensible heat due to a phase transition from a solid state to a liquid state. The heat medium that has been cooled by heating the heat storage material is heated again by the heat source device 27 via the valve 30 and the pump 31. When using the heat energy stored in the heat storage tank 26, the valve body 28 is closed,
The pump 35 is driven by opening the flow path between the valve element 29 and the valve element 29 of the three-way valve 34 and the pump 35 and the valve element 30. The heat medium is cooled to a range of (Tm-1) to (Tm-200) ° C. by the heat exchanger 32 and is sent to the heat storage tank 26, where the heat storage material nucleates on the surface of the heat transfer wall to release the latent heat. To start. Thermal storage tank 26
The heat medium heated by the heat storage material is supplied to the heat exchanger 32 via the valve body 29, the three-way valve 34, and the pump 35, and heats the heating target supplied from the heating target flow path 33. I do. On the other hand, the heat storage material that has released the latent heat transforms to a solid phase.

【0038】被加熱体を加熱した熱媒体は弁体30を経
由して蓄熱槽26に入り再度加熱される。熱交換器32
の加熱温度は、三方弁34の調整によって、蓄熱槽26
で加熱された熱媒体と、バイパス管36を経由して熱交
換器32を循環する熱媒体の混合比を調整することによ
って調整することができる。また、被加熱体を加熱する
ときに熱源装置27に熱エネルギーを放出させるときに
は、バルブ28を開として熱源装置27からの熱媒体を
そのまま、あるいは蓄熱槽26で加熱された媒体と混合
して熱交換器32に送給することもできる。蓄熱槽3の
形式は特に制限されるものではないが、フィンチューブ
型もしくはフィンプレート型が適する。蓄熱装置1およ
び25に用いられるフィンチューブ型蓄熱槽3aは、図
3に示すように、槽体13を有し、槽体13には熱媒体
の導出入口14aから主管11aが延び、主管11aに
は多数の支管11bが連結され、支管11bの他端は、
他方の導出入口側の主管11cに連結されており、他方
の熱媒体導出入口14bから他の機構に送給されるよう
に構成されている。なお、支管11bには圧入工法でア
ルミ製の矩形伝熱フィン50が管長方向に垂直な面をな
して管長方向に一定間隔で多数枚が接続されている。
The heat medium that has heated the object to be heated enters the heat storage tank 26 via the valve 30 and is heated again. Heat exchanger 32
The heating temperature of the heat storage tank 26 is controlled by adjusting the three-way valve 34.
It can be adjusted by adjusting the mixing ratio of the heat medium heated by the heating medium and the heat medium circulating through the heat exchanger 32 via the bypass pipe 36. When releasing heat energy from the heat source device 27 when heating the object to be heated, the heat medium from the heat source device 27 is opened as it is, or the heat medium is mixed with the medium heated in the heat storage tank 26 to open the heat source. It can also be sent to the exchanger 32. The type of the heat storage tank 3 is not particularly limited, but a fin tube type or a fin plate type is suitable. As shown in FIG. 3, the fin tube type heat storage tank 3a used for the heat storage devices 1 and 25 has a tank body 13, and the tank 13 has a main pipe 11a extending from a heat medium outlet 14a. Is connected to many branch pipes 11b, and the other end of the branch pipe 11b is
It is connected to the main pipe 11c on the other outlet side, and is configured to be fed from the other heat medium outlet 14b to another mechanism. A large number of rectangular heat transfer fins 50 made of aluminum are connected to the branch pipe 11b at regular intervals in the pipe length direction by forming a surface perpendicular to the pipe length direction by a press-fitting method.

【0039】ここで、前記の主管11a,11c及び支
管11bとはパイプ11であり、伝熱フィン50と共に
伝熱壁に該当する。また、熱源装置10は蓄熱槽3内の
蓄熱材と十分に接触可能な位置に配されている。表面温
度検知用の温度センサ15は槽体13の外壁上部に設置
されている。主管11a,11c,支管11b、伝熱フ
ィン50および熱源装置10の外側の蓄熱室16には蓄
熱材が充填される。蓄熱装置1,17および25に用い
られるフィンチューブ型蓄熱槽3bは、図4に示すよう
に、槽体13を有し、槽体13には水の導出入口14a
からパイプ11dが延び、パイプ11dは枝分かれせず
に、ある一定のピッチと配列をもって槽体13内を巡っ
ており、他方の導出入口14bから他の機構に送給され
るように構成されている。尚、パイプ11dには圧入工
法でアルミ製の矩形伝熱フィン50が管長方向に垂直な
面をなして管長方向に一定間隔で多数枚が接続されてい
る。
Here, the main pipes 11a and 11c and the branch pipe 11b are pipes 11, and together with the heat transfer fins 50, correspond to a heat transfer wall. The heat source device 10 is arranged at a position where the heat source device 10 can sufficiently contact the heat storage material in the heat storage tank 3. The temperature sensor 15 for detecting the surface temperature is installed above the outer wall of the tank 13. The main tubes 11a and 11c, the branch tubes 11b, the heat transfer fins 50, and the heat storage chamber 16 outside the heat source device 10 are filled with a heat storage material. The fin tube type heat storage tank 3b used for the heat storage devices 1, 17 and 25 has a tank body 13 as shown in FIG.
The pipe 11d extends from the inside of the tank body 13 without branching and with a certain pitch and arrangement, and is configured to be fed from the other outlet 14b to another mechanism. . Incidentally, a large number of rectangular heat transfer fins 50 made of aluminum are connected to the pipe 11d at regular intervals in the pipe length direction by forming a surface perpendicular to the pipe length direction by a press-fitting method.

【0040】ここで、前記のパイプ11dおよび伝熱フ
ィン50が伝熱壁に該当する。また、熱源装置10は蓄
熱槽3内の蓄熱材と十分に接触可能な位置に配され、表
面温度検知用の温度センサを有している。パイプ11
d、伝熱フィン50、熱源装置10および温度センサ1
5の外側の蓄熱室16には蓄熱材が充填される。蓄熱装
置1および25に用いられるフィンプレート型蓄熱槽3
cは、図5に示すように、槽体13を有し、槽体13に
は熱媒体の導出入口14aから主管11aが延び、主管
11aには多数のプレート状の熱媒体流路51aの上端
が連結され、プレート状熱媒体流路51aの下端は、プ
レート状熱媒体流路51bの下端へ通じる主管11bに
連結されており、プレート状熱媒体流路51bの上端は
他方の導出入口14b側の主管11cに連結されてお
り、導出入口14bから他の機構に送給されるように構
成されている。尚、プレート状熱媒体流路51aおよび
51bには一体プレス成形法、一体押し出し成形法、溶
接法、もしくはハンダ法で矩形伝熱フィン50がプレー
ト状熱媒体流路51の面に垂直な面をなして一定間隔も
しくは不連続に多数枚が接続されている。
Here, the pipe 11d and the heat transfer fins 50 correspond to heat transfer walls. The heat source device 10 is disposed at a position where the heat source device 10 can sufficiently contact the heat storage material in the heat storage tank 3 and has a temperature sensor for detecting a surface temperature. Pipe 11
d, heat transfer fins 50, heat source device 10, and temperature sensor 1
The heat storage material 16 is filled in the heat storage chamber 16 outside the heat storage chamber 5. Fin plate type heat storage tank 3 used for heat storage devices 1 and 25
As shown in FIG. 5, c has a tank body 13, and a main pipe 11a extends from the heat medium outlet 14a to the tank body 13, and the main pipe 11a has upper ends of a large number of plate-shaped heat medium passages 51a. The lower end of the plate-shaped heat medium flow path 51a is connected to the main pipe 11b communicating with the lower end of the plate-shaped heat medium flow path 51b, and the upper end of the plate-shaped heat medium flow path 51b is connected to the other outlet 14b. , And is configured to be fed from the outlet 14b to another mechanism. The plate-shaped heat medium flow passages 51a and 51b are provided with rectangular heat transfer fins 50 by integral press molding, integral extrusion molding, welding, or soldering. Many are connected at regular intervals or discontinuously.

【0041】ここで前記の主管11a,11b,11
c,およびプレート状熱媒体流路51a,51bとはパ
イプ11であり、伝熱フィン50と共に伝熱壁に該当す
る。また、熱源装置10は蓄熱槽3内の蓄熱材と十分に
接触可能な位置に配されている。蓄熱材温度検知用の温
度センサ15は蓄熱材上層に挿入された形で設置されて
いる。主管11a,11b,11c、プレート状熱媒体
流路51a,51b、伝熱フィン50および熱源装置1
0の外側の蓄熱室16には蓄熱材が充填される。また、
蓄熱槽において、蓄熱材の相転移に伴う容積変化を吸収
するために、蓄熱槽内に減圧あるいは加圧された空隙を
設けておくことも重要な技術である。
Here, the main pipes 11a, 11b, 11
c, and the plate-shaped heat medium passages 51a and 51b are the pipes 11 and correspond to the heat transfer walls together with the heat transfer fins 50. The heat source device 10 is arranged at a position where the heat source device 10 can sufficiently contact the heat storage material in the heat storage tank 3. The temperature sensor 15 for detecting the temperature of the heat storage material is installed so as to be inserted in the upper layer of the heat storage material. Main pipes 11a, 11b, 11c, plate-shaped heat medium passages 51a, 51b, heat transfer fins 50 and heat source device 1
A heat storage material is filled in the heat storage chamber 16 outside the zero. Also,
In the heat storage tank, it is also an important technique to provide a depressurized or pressurized space in the heat storage tank in order to absorb a volume change due to a phase transition of the heat storage material.

【0042】[0042]

【実施例】以下、実施例により本発明をさらに詳細に説
明するが、本発明はその要旨を超えない限り、以下の実
施例に限定されるものではない。なお、、実施例1,2
および比較例1における温度とは、T型シース熱電対
(φ1;JIS0.75級;中央理化(株)社製)で測
定された温度を指す。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the scope of the present invention. It should be noted that Examples 1 and 2
The temperature in Comparative Example 1 refers to a temperature measured by a T-type sheath thermocouple (φ1: JIS 0.75 grade; manufactured by Chuo Rika Co., Ltd.).

【0043】実施例1 内寸350mm(W)×300mm(H)×270mm
(D)でSUS304製の槽体にはシースヒーター(2
kW)を槽体内底部に設置し、ヒーター表面にはT型シ
ース熱電対(1mmφ)をSUS304製のワイヤー
(1mmφ)にて接するように固定した。また、図7で
示される分岐なしのフィンチューブ型伝熱壁ユニット
(アルミフィンをリン脱酸銅チューブに圧入工法にて制
作;フィン厚み0.3mm、フィンピッチ5.0mm、
管外径12.7mm、肉厚1.0mm、管長11.1
m、管ピッチ25mm、格子配列)を槽体中央部に設置
した。ここに潜熱蓄熱材としてmeso-エリスリトール
[三菱化学フーズ(株)社製、dS=1435kg/m3(2
0℃)、dL=1280kg/m3(130℃)、(dL
S)=0.89]24.1kgを充填した。蓄熱材の
温度を検出するためのT型シース熱電対(1mmφ)を
槽底面から40,90,140,190mmの高さで水
平に、各2本、計8本挿入した。また、グラスウール製
断熱材を50mm厚で周囲を覆い、蓄熱槽とした。
Example 1 Inner dimensions 350 mm (W) × 300 mm (H) × 270 mm
In (D), a sheath heater (2
kW) was installed at the bottom of the inside of the tank, and a T-type sheath thermocouple (1 mmφ) was fixed to the heater surface so as to be in contact with a SUS304 wire (1 mmφ). Further, a fin tube type heat transfer wall unit without branch shown in FIG. 7 (made by press-fitting aluminum fins into a phosphor deoxidized copper tube; fin thickness 0.3 mm, fin pitch 5.0 mm,
Tube outer diameter 12.7mm, wall thickness 1.0mm, tube length 11.1
m, tube pitch 25 mm, lattice arrangement) were installed in the center of the tank body. Here, meso-erythritol [produced by Mitsubishi Chemical Foods Co., Ltd., d S = 1435 kg / m 3 (2
0 ° C.), d L = 1280 kg / m 3 (130 ° C.), (d L /
It was filled with d S) = 0.89] 24.1kg. A total of eight T-type sheath thermocouples (1 mmφ) for detecting the temperature of the heat storage material were horizontally inserted at a height of 40, 90, 140, and 190 mm from the bottom of the tank. In addition, a heat insulating tank made of glass wool was covered with a thickness of 50 mm to form a heat storage tank.

【0044】蓄熱過程においては、プログラムコントロ
ーラでヒーター表面温度を160℃一定制御で加熱し、
蓄熱材の温度が平均値で140℃に到達した時点で蓄熱
完了とした。放熱過程においては、熱媒体に21±1℃
の井水を用い、50L用給水タンクから給水ポンプにて
流量10L/分で井水を蓄熱槽の熱媒体導入口へ送給
し、熱媒体導出口から給湯を行った。尚、流量制御には
10L/分用の定流量弁(日本フローセル(株)社製、
Fan-Setter,HCT-15A)を用い、流量計測には一体形電磁
流量計(横河電機(株)社製、AE115SG-AK1-LSJD1DH)
を用いた。このとき、熱媒体導出口における水温が50
℃まで低下するまでに交換された積算熱量の結果を表1
に示した。また、給湯実験を8回繰り返した後のチュー
ブ表面の外観変化を表1に示した。
In the heat storage process, the heater controller heats the heater surface temperature at a constant control of 160 ° C.
When the temperature of the heat storage material reached 140 ° C. on average, the heat storage was completed. In the heat radiation process, 21 ± 1 ℃
The well water was supplied from the 50 L water supply tank to the heat medium inlet of the heat storage tank at a flow rate of 10 L / min by a water supply pump using a water supply pump, and hot water was supplied from the heat medium outlet. In addition, a constant flow valve for 10 L / min (manufactured by Nippon Flow Cell Co., Ltd.,
Fan-Setter, HCT-15A) and an integrated electromagnetic flowmeter (AE115SG-AK1-LSJD1DH, manufactured by Yokogawa Electric Corporation) for flow measurement.
Was used. At this time, the water temperature at the heat medium outlet is 50
Table 1 shows the results of the integrated heat exchanged until the temperature drops to ℃.
It was shown to. Table 1 shows changes in the appearance of the tube surface after the hot water supply experiment was repeated eight times.

【0045】実施例2 図8で示されるフィンチューブ型伝熱壁ユニット(アル
ミフィンをリン脱酸銅チューブに圧入工法にて制作;フ
ィン厚み0.3mm、フィンピッチ2.5mm、管外径
12.7mm、肉厚1.0mm、管長11.1m、管ピ
ッチ25mm、格子配列)を用いた以外は実施例1と同
様の条件で実験を実施した。このときの結果を表−1に
示した。また、給湯実験を8回繰り返した後のチューブ
表面の外観変化を表−1に示した。
Example 2 A fin tube type heat transfer wall unit shown in FIG. 8 (made of aluminum fins into a phosphor deoxidized copper tube by press-fitting method; fin thickness 0.3 mm, fin pitch 2.5 mm, tube outer diameter 12 The experiment was carried out under the same conditions as in Example 1 except that 0.7 mm, a wall thickness of 1.0 mm, a tube length of 11.1 m, a tube pitch of 25 mm, and a lattice arrangement were used. The results at this time are shown in Table 1. Table 1 shows changes in the appearance of the tube surface after the hot water supply experiment was repeated eight times.

【0046】比較例1 図9で示されるチューブ型伝熱壁ユニット(管外径1
2.7mm、肉厚1.0mm、管長11.1m、管ピッ
チ25mm、格子配列)を用いた以外は実施例1と同様
の条件で実験を実施した。このときの結果を表−1に示
した。また、給湯実験を8回繰り返した後のチューブ表
面の外観変化を表−1に示した。
Comparative Example 1 A tube-type heat transfer wall unit (tube outer diameter 1) shown in FIG.
An experiment was performed under the same conditions as in Example 1 except that 2.7 mm, a wall thickness of 1.0 mm, a pipe length of 11.1 m, a pipe pitch of 25 mm, and a lattice arrangement were used. The results at this time are shown in Table 1. Table 1 shows changes in the appearance of the tube surface after the hot water supply experiment was repeated eight times.

【0047】[0047]

【表1】 [Table 1]

【0048】[0048]

【発明の効果】本発明によれば、熱交換性能の優れた蓄
熱槽とそれを用いた蓄熱装置が得られる。本発明の蓄熱
装置は従来の蓄熱型装置よりも軽量、省スペースで、ま
た、伝熱壁が蓄熱材によって腐食される現象を防ぐこと
ができ、かつ安定した熱能力を有するため家庭、ビル、
その他の建造物あるいは地域向けの給湯装置や冷房装置
として用いることができるばかりでなく、ゴミ焼却炉等
のプラントにおける未利用廃熱の蓄熱、ガス冷暖房およ
びガス給湯におけるコジェネレーションシステムの蓄熱
ユニット等に利用することができる。
According to the present invention, a heat storage tank having excellent heat exchange performance and a heat storage device using the same can be obtained. The heat storage device of the present invention is lighter and more space-saving than a conventional heat storage device, and can prevent a phenomenon in which a heat transfer wall is corroded by a heat storage material, and has a stable heat capacity.
Not only can it be used as a hot water supply device or cooling device for other buildings or areas, but also for heat storage of unused waste heat in plants such as garbage incinerators, heat storage units for cogeneration systems for gas cooling and heating, and gas hot water. Can be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の蓄熱装置の一形態を示す概念図。FIG. 1 is a conceptual diagram showing one embodiment of a heat storage device of the present invention.

【図2】本発明の蓄熱装置の一形態を示す概念図。FIG. 2 is a conceptual diagram showing one embodiment of a heat storage device of the present invention.

【図3】本発明のフィンチューブ型蓄熱槽の一形態を示
す縦断面図。
FIG. 3 is a longitudinal sectional view showing one embodiment of a fin tube type heat storage tank of the present invention.

【図4】本発明のフィンチューブ型蓄熱槽の一形態を示
す縦断面図。
FIG. 4 is a longitudinal sectional view showing one embodiment of a fin tube type heat storage tank of the present invention.

【図5】本発明のフィンプレート型蓄熱槽の一形態を示
す縦断面図。
FIG. 5 is a longitudinal sectional view showing one embodiment of a fin plate type heat storage tank of the present invention.

【図6】本発明の蓄熱装置の一形態を示す概念図。FIG. 6 is a conceptual diagram showing one embodiment of a heat storage device of the present invention.

【図7】実施例1で用いた伝熱壁ユニットの外観図。FIG. 7 is an external view of a heat transfer wall unit used in the first embodiment.

【図8】実施例2で用いた伝熱壁ユニットの外観図。FIG. 8 is an external view of a heat transfer wall unit used in the second embodiment.

【図9】比較例1で用いた伝熱壁ユニットの外観図。FIG. 9 is an external view of a heat transfer wall unit used in Comparative Example 1.

【符号の説明】 1,17,25:蓄熱装置 2:給水装置 3,26:蓄熱槽 4,22,31,35:ポンプ 5,34:三方弁 6:逆止弁 7,19,21,23,28,29,30:弁体 8:給湯口 9,36:バイパス管 10,18,27:熱源装置 11:パイプ 12:圧力調節弁 13,37:槽体 14,38:熱媒体導出入口 15:温度センサ 16,42:蓄熱室 20:分岐部 24:バッファータンク 32:熱交換器 33:被加熱体流路 39,41:主管 40:支管 50:伝熱フィン 51:プレート型熱媒体流路[Description of Signs] 1, 17, 25: Heat storage device 2: Water supply device 3, 26: Heat storage tank 4, 22, 31, 35: Pump 5, 34: Three-way valve 6: Check valve 7, 19, 21, 23 , 28, 29, 30: Valve body 8: Hot water supply port 9, 36: Bypass pipe 10, 18, 27: Heat source device 11: Pipe 12: Pressure regulating valve 13, 37: Tank body 14, 38: Heat medium outlet 15 : Temperature sensors 16 and 42: Heat storage chamber 20: Branch section 24: Buffer tank 32: Heat exchanger 33: Heated body flow path 39, 41: Main pipe 40: Branch pipe 50: Heat transfer fin 51: Plate type heat medium flow path

───────────────────────────────────────────────────── フロントページの続き (72)発明者 垣内 博行 茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式会社筑波研究所内 (72)発明者 山崎 正典 茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式会社筑波研究所内 ──────────────────────────────────────────────────続 き Continued on front page (72) Inventor Hiroyuki Kakiuchi 3-1-1 Chuo, Ami-cho, Inashiki-gun, Ibaraki Prefecture Inside Tsukuba Research Laboratory, Mitsubishi Chemical Corporation (72) Inventor Masanori Yamazaki 8-Chome, Ami-cho, Inashiki-gun, Ibaraki Prefecture No.3-1 Inside the Tsukuba Research Laboratory, Mitsubishi Chemical Corporation

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 潜熱蓄熱材を収蔵し、潜熱蓄熱材と熱媒
体間の熱交換が伝熱壁を介して行われる形式の蓄熱槽で
あって、前記潜熱蓄熱材として固相状態における比重
(dS)に対する液相状態における比重(dL)との比率
(dL/dS)が0.5〜1.0の範囲にあるものを用い
ること、前記伝熱壁が潜熱蓄熱材と接触する側において
フィン構造を有する蓄熱槽であること、及び、該フィン
構造部位と該フィン構造部位以外の伝熱面がいずれも金
属製であり該フィン構造部位のイオン化傾向(I1)が
該フィン構造部位以外の伝熱面のイオン化傾向(I2
より大きいことを特徴とする蓄熱槽。
1. A heat storage tank of a type in which a latent heat storage material is stored and heat exchange between the latent heat storage material and a heat medium is performed via a heat transfer wall, wherein the specific gravity of the latent heat storage material in a solid state ( d S) ratio of the specific gravity (d L) in liquid state for (d L / d S) is possible to use those in the range of 0.5 to 1.0, the heat transfer wall in contact with the latent heat storage material The heat storage tank having a fin structure on the side of the fin structure, and the fin structure portion and the heat transfer surface other than the fin structure portion are both made of metal, and the ionization tendency (I 1 ) of the fin structure portion is determined by the fin structure. Ionization tendency of heat transfer surfaces other than structural parts (I 2 )
A heat storage tank characterized by being larger.
【請求項2】 フィンの平均厚みが0.01〜0.5mm
の範囲であることを特徴とする請求項1の蓄熱槽。
2. The fin has an average thickness of 0.01 to 0.5 mm.
The heat storage tank according to claim 1, wherein
【請求項3】 潜熱蓄熱材が、糖アルコールを含んでな
ることを特徴とする請求項1又は2の蓄熱槽。
3. The heat storage tank according to claim 1, wherein the latent heat storage material comprises a sugar alcohol.
【請求項4】 (1)請求項1〜3のいずれかの蓄熱
槽、(2)蓄熱材を加熱するための熱源部、(3)蓄熱
材の温度を検知して蓄熱を終了あるいは蓄熱を開始させ
るための制御部、及び(4)熱媒体流路に熱媒体を強制
的に流通させるための駆動部とを備えてなる給湯装置。
4. The heat storage tank according to any one of claims 1 to 3, (2) a heat source unit for heating the heat storage material, and (3) detecting the temperature of the heat storage material to end the heat storage or stop the heat storage. A hot water supply device comprising: a control unit for starting the heating unit; and (4) a driving unit for forcibly flowing the heat medium through the heat medium passage.
【請求項5】 蓄熱温度を蓄熱材の融点(Tm)より1
〜100℃の範囲で高く、放熱運転において熱媒体の蓄
熱槽入口温度がTmより1〜200℃の範囲で低いこと
を特徴とする請求項4の給湯装置。
5. The heat storage temperature is set to be one point lower than the melting point (Tm) of the heat storage material.
The hot water supply apparatus according to claim 4, wherein the temperature is high in the range of 100C to 100C, and the temperature of the heat storage tank inlet of the heat medium in the heat radiation operation is lower than Tm in the range of 1C to 200C.
【請求項6】 (1)請求項1〜3記載の蓄熱槽、
(2)蓄熱材を冷却するための熱源部、(3)蓄熱材の
温度を検知して蓄熱を終了させるための制御部、及び
(4)熱媒体流路に熱媒体を強制的に流通させるための
駆動部とを備えた冷房装置。
6. The heat storage tank according to claim 1, wherein:
(2) a heat source unit for cooling the heat storage material, (3) a control unit for detecting the temperature of the heat storage material and terminating the heat storage, and (4) forcibly flowing the heat medium through the heat medium passage. Cooling device provided with a driving unit for the air conditioner.
【請求項7】 蓄熱温度が蓄熱材の融点(Tm)より1
〜200℃の範囲で低く、放熱運転において熱媒体の蓄
熱槽入口温度がTmより1〜100℃の範囲で高いこと
を特徴とする請求項6の冷房装置。
7. The heat storage temperature is one point lower than the melting point (Tm) of the heat storage material.
7. The cooling device according to claim 6, wherein the temperature is low in the range of -200 [deg.] C., and the temperature of the heat storage tank inlet of the heat medium in the heat radiation operation is higher than Tm in the range of 1-100 [deg.] C.
JP2000007438A 1999-11-15 2000-01-17 Heat storage tank and heat storage apparatus using the same Pending JP2001207163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000007438A JP2001207163A (en) 1999-11-15 2000-01-17 Heat storage tank and heat storage apparatus using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-323667 1999-11-15
JP32366799 1999-11-15
JP2000007438A JP2001207163A (en) 1999-11-15 2000-01-17 Heat storage tank and heat storage apparatus using the same

Publications (1)

Publication Number Publication Date
JP2001207163A true JP2001207163A (en) 2001-07-31

Family

ID=26571264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000007438A Pending JP2001207163A (en) 1999-11-15 2000-01-17 Heat storage tank and heat storage apparatus using the same

Country Status (1)

Country Link
JP (1) JP2001207163A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130562A (en) * 2001-10-23 2003-05-08 Kansai Electric Power Co Inc:The Hot heat storage apparatus
JP2004036964A (en) * 2002-07-02 2004-02-05 Daikin Ind Ltd Thermal storage unit, its assembling method and thermal storage device
JP2004101031A (en) * 2002-09-06 2004-04-02 Daikin Ind Ltd Hot-water supply system
JP2005016766A (en) * 2003-06-24 2005-01-20 Rinnai Corp Heat accumulating device
JP2006308256A (en) * 2005-05-02 2006-11-09 Kobe Steel Ltd Heat storage device and method of operating heat storage device
JP2007113904A (en) * 2005-09-20 2007-05-10 Denso Corp Cold storage tank apparatus and refrigeration cycle apparatus using the same
JP2007253947A (en) * 2002-05-29 2007-10-04 Denso Corp Cold storage heat exchanger for vehicular air conditioner
JP2007285701A (en) * 2007-08-06 2007-11-01 Kobe Steel Ltd Heat storage device and method of operating heat storage device
JP2008011647A (en) * 2006-06-29 2008-01-17 Yaskawa Electric Corp Canned linear motor and armature thereof
JP2009074750A (en) * 2007-09-21 2009-04-09 Tokyo Electric Power Co Inc:The Hot water supply system
CN102808704A (en) * 2012-07-12 2012-12-05 夏致俊 Charging heat-accumulating device of Stirling engine
JP5892530B1 (en) * 2015-10-15 2016-03-23 株式会社日本理水研 Heat medium and hot water supply apparatus or heat exchange apparatus using the heat medium
JP6055570B1 (en) * 2015-06-19 2016-12-27 株式会社エフコンサルタント Resin composition and molded body
WO2017085812A1 (en) * 2015-11-18 2017-05-26 三菱電機株式会社 Heat pump hot-water supply device
JP2017120156A (en) * 2015-12-28 2017-07-06 三菱重工冷熱株式会社 Heat storage device
FR3046838A1 (en) * 2016-01-20 2017-07-21 Commissariat Energie Atomique OPTIMIZED ASSEMBLY HEAT PUMP HEAT EXCHANGER AND THERMAL ENERGY STORAGE DEVICE BY PHASE CHANGE MATERIAL COMPRISING SAID EXCHANGER.
WO2020202487A1 (en) * 2019-04-03 2020-10-08 三菱電機株式会社 Heat storage device
WO2021075040A1 (en) * 2019-10-18 2021-04-22 三菱電機株式会社 Heat storage type water heater
CN113462362A (en) * 2015-05-28 2021-10-01 杜邦营养生物科学有限公司 Phase change material

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130562A (en) * 2001-10-23 2003-05-08 Kansai Electric Power Co Inc:The Hot heat storage apparatus
JP2007253947A (en) * 2002-05-29 2007-10-04 Denso Corp Cold storage heat exchanger for vehicular air conditioner
JP4605188B2 (en) * 2002-05-29 2011-01-05 株式会社デンソー Air conditioner for vehicles
JP2004036964A (en) * 2002-07-02 2004-02-05 Daikin Ind Ltd Thermal storage unit, its assembling method and thermal storage device
JP2004101031A (en) * 2002-09-06 2004-04-02 Daikin Ind Ltd Hot-water supply system
JP2005016766A (en) * 2003-06-24 2005-01-20 Rinnai Corp Heat accumulating device
JP2006308256A (en) * 2005-05-02 2006-11-09 Kobe Steel Ltd Heat storage device and method of operating heat storage device
JP2007113904A (en) * 2005-09-20 2007-05-10 Denso Corp Cold storage tank apparatus and refrigeration cycle apparatus using the same
JP2008011647A (en) * 2006-06-29 2008-01-17 Yaskawa Electric Corp Canned linear motor and armature thereof
JP2007285701A (en) * 2007-08-06 2007-11-01 Kobe Steel Ltd Heat storage device and method of operating heat storage device
JP2009074750A (en) * 2007-09-21 2009-04-09 Tokyo Electric Power Co Inc:The Hot water supply system
CN102808704A (en) * 2012-07-12 2012-12-05 夏致俊 Charging heat-accumulating device of Stirling engine
CN113462362A (en) * 2015-05-28 2021-10-01 杜邦营养生物科学有限公司 Phase change material
US20220064511A1 (en) * 2015-05-28 2022-03-03 Dupont Industrial Biosciences Usa, Llc Phase change material
JP6055570B1 (en) * 2015-06-19 2016-12-27 株式会社エフコンサルタント Resin composition and molded body
JP5892530B1 (en) * 2015-10-15 2016-03-23 株式会社日本理水研 Heat medium and hot water supply apparatus or heat exchange apparatus using the heat medium
JPWO2017085812A1 (en) * 2015-11-18 2018-07-12 三菱電機株式会社 Heat pump water heater
GB2559496A (en) * 2015-11-18 2018-08-08 Mitsubishi Electric Corp Heat pump hot-water supply device
GB2559496B (en) * 2015-11-18 2020-04-29 Mitsubishi Electric Corp Heat pump hot water supply apparatus
WO2017085812A1 (en) * 2015-11-18 2017-05-26 三菱電機株式会社 Heat pump hot-water supply device
JP2017120156A (en) * 2015-12-28 2017-07-06 三菱重工冷熱株式会社 Heat storage device
FR3046838A1 (en) * 2016-01-20 2017-07-21 Commissariat Energie Atomique OPTIMIZED ASSEMBLY HEAT PUMP HEAT EXCHANGER AND THERMAL ENERGY STORAGE DEVICE BY PHASE CHANGE MATERIAL COMPRISING SAID EXCHANGER.
WO2017125513A3 (en) * 2016-01-20 2017-12-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Heat-transfer-fluid heat exchanger with optimised assembly, and thermal energy storage device using a phase change material and comprising said exchanger
WO2020202487A1 (en) * 2019-04-03 2020-10-08 三菱電機株式会社 Heat storage device
JPWO2020202487A1 (en) * 2019-04-03 2021-04-30 三菱電機株式会社 Heat storage device
WO2021075040A1 (en) * 2019-10-18 2021-04-22 三菱電機株式会社 Heat storage type water heater

Similar Documents

Publication Publication Date Title
JP2001207163A (en) Heat storage tank and heat storage apparatus using the same
Douvi et al. Phase change materials in solar domestic hot water systems: A review
Ali Applications of combined/hybrid use of heat pipe and phase change materials in energy storage and cooling systems: A recent review
Du et al. A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges
Fath Technical assessment of solar thermal energy storage technologies
US4131158A (en) Storage arrangement for thermal energy
US7505269B1 (en) Thermal energy storage transfer system
US20120168111A1 (en) Heat transfer system utilizing thermal energy storage materials
JPH01225897A (en) Heat accumulator with vessel for heat-accumulating medium and method of accumulating heat
US20100230075A1 (en) Thermal Storage System
Bhagwat et al. Performance of finned heat pipe assisted parabolic trough solar collector system under the climatic condition of North East India
US4421100A (en) Thermosyphon heat pipe hot water appliance
Paroutoglou et al. A PCM based cooling system for office buildings: a state of the art review
CN108019983A (en) New type solar energy list tank phase-change heat storage absorption heat pump
US6044200A (en) Hot fluid dispenser with inner reservoir containing meltable material and heat pipes transferring heat to outer reservoir
JPS62284193A (en) Heat transfer pipe
JPH1123065A (en) Heat storing heat dissipating device
Hirano Thermal Energy Storage and Transport
US20190186844A1 (en) Latent heat storage device
US20220034572A1 (en) Thermal energy storage and retrieval systems and methods
CN106016786A (en) Water tank-free type solar phase change heat storage water heater
JP2000063815A (en) Heat accumulating process and heat accumulating device using this
Delalić et al. A Small-Scale Solar System with Combined Sensible-and Latent-Heat Thermal Energy Storage
JP2004232897A (en) Complex heat storage device
CN2324525Y (en) Thermal storage battery of return loop heat pipe

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060922

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080129