JPWO2017085812A1 - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JPWO2017085812A1
JPWO2017085812A1 JP2017551443A JP2017551443A JPWO2017085812A1 JP WO2017085812 A1 JPWO2017085812 A1 JP WO2017085812A1 JP 2017551443 A JP2017551443 A JP 2017551443A JP 2017551443 A JP2017551443 A JP 2017551443A JP WO2017085812 A1 JPWO2017085812 A1 JP WO2017085812A1
Authority
JP
Japan
Prior art keywords
heat
hot water
water supply
heat storage
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017551443A
Other languages
Japanese (ja)
Other versions
JP6509368B2 (en
Inventor
七種 哲二
哲二 七種
大林 誠善
誠善 大林
裕介 辻
裕介 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2017085812A1 publication Critical patent/JPWO2017085812A1/en
Application granted granted Critical
Publication of JP6509368B2 publication Critical patent/JP6509368B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/215Temperature of the water before heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/227Temperature of the refrigerant in heat pump cycles
    • F24H15/231Temperature of the refrigerant in heat pump cycles at the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/242Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/335Control of pumps, e.g. on-off control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/38Control of compressors of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/385Control of expansion valves of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • F24H4/04Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H7/00Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release
    • F24H7/02Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid
    • F24H7/04Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid with forced circulation of the transfer fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/021Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material and the heat-exchanging means being enclosed in one container
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/028Control arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/103Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of more than two coaxial conduits or modules of more than two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/14Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically both tubes being bent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Details Of Fluid Heaters (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

この発明に係るヒートポンプ給湯装置は、圧縮機、給湯用熱交換器、採熱用絞り装置、蓄熱用熱交換器、主絞り装置および空気熱交換器を冷媒配管で環状に接続し、また、蓄熱用熱交換器から流出する冷媒を、空気熱交換器をバイパスさせて、圧縮機の吸入側に流す吸入バイパス配管を接続して構成する冷媒回路と、蓄熱用熱交換器、蓄熱材をためる蓄熱槽および蓄熱用熱交換器と蓄熱槽との間で蓄熱材を循環させる蓄熱ポンプを有する蓄熱側二次回路と、給湯用熱交換器における冷媒との熱交換により、給湯に係る水に加熱させるとともに、蓄熱材への蓄熱または蓄熱材からの採熱を行わせる運転制御を行う制御装置とを備えるものである。A heat pump hot water supply apparatus according to the present invention comprises a compressor, a hot water supply heat exchanger, a heat extraction throttle device, a heat storage heat exchanger, a main throttle device, and an air heat exchanger connected in an annular shape with a refrigerant pipe, Refrigerant circuit configured by connecting a suction bypass pipe that bypasses the air heat exchanger and flows the refrigerant flowing out from the heat exchanger to the suction side of the compressor, heat storage for heat storage, and heat storage material The heat storage side secondary circuit having a heat storage pump that circulates the heat storage material between the tank and the heat storage heat exchanger and the heat storage tank and heat exchange with the refrigerant in the hot water supply heat exchanger cause the water related to hot water to be heated. In addition, the apparatus includes a control device that performs operation control for storing heat in the heat storage material or collecting heat from the heat storage material.

Description

この発明は、ヒートポンプ給湯装置に関するものである。特に蓄熱材に蓄熱した熱を給湯運転に利用するものである。   The present invention relates to a heat pump hot water supply apparatus. In particular, the heat stored in the heat storage material is used for hot water supply operation.

従来のヒートポンプ給湯装置として、たとえば、液体をためる2つのタンクを有し、2つのタンク内の液体と冷媒との熱交換を行う2つの熱交換器を有するヒートポンプ装置を備えたヒートポンプ給湯装置が提案されている(たとえば、特許文献1参照)。   As a conventional heat pump hot water supply apparatus, for example, a heat pump hot water supply apparatus including two heat exchangers that have two tanks for storing liquid and have two heat exchangers that exchange heat between the liquid in the two tanks and the refrigerant is proposed. (For example, refer to Patent Document 1).

特開2005−180836号公報JP 2005-180836 A

上述した特許文献1の給湯装置においては、たとえば、排熱を利用して水を加熱する運転を行う際、採熱に係る熱交換器から流出した低圧の冷媒は、室外熱交換器を通過して圧縮機に吸引される。このため、屋外の空気の温度である外気よりも採熱側のタンクの液体が高温であったとしても、蒸発温度は外気温度よりも低く、低圧上昇による加熱能力の増強ができないといった課題があった。   In the hot water supply apparatus of Patent Document 1 described above, for example, when performing an operation of heating water using exhaust heat, the low-pressure refrigerant that has flowed out of the heat exchanger related to heat collection passes through the outdoor heat exchanger. Sucked into the compressor. For this reason, even if the liquid in the tank on the heat collection side is hotter than the outside air, which is the temperature of the outdoor air, the evaporation temperature is lower than the outside air temperature, and there is a problem that the heating capacity cannot be increased by increasing the low pressure. It was.

この発明は、上記のような課題を解決するためになされたもので、外気温度に関係なく、蒸発温度を外気温度よりも高く維持した給湯運転を行うことができるヒートポンプ給湯装置を提供するものである。   The present invention has been made to solve the above-described problems, and provides a heat pump hot water supply apparatus capable of performing a hot water supply operation in which the evaporation temperature is maintained higher than the outside air temperature regardless of the outside air temperature. is there.

この発明に係るヒートポンプ給湯装置は、圧縮機、給湯用熱交換器、採熱用絞り装置、蓄熱用熱交換器、主絞り装置および空気熱交換器を冷媒配管で環状に接続し、また、蓄熱用熱交換器から流出する冷媒を、空気熱交換器をバイパスさせて、圧縮機の吸入側に流す吸入バイパス配管を接続して構成する冷媒回路と、蓄熱用熱交換器、蓄熱材をためる蓄熱槽および蓄熱用熱交換器と蓄熱槽との間で蓄熱材を循環させる蓄熱ポンプを有する蓄熱側二次回路と、給湯用熱交換器における冷媒との熱交換により、給湯に係る水に加熱させるとともに、蓄熱材への蓄熱または蓄熱材からの採熱を行わせる運転制御を行う制御装置とを備えるものである。   A heat pump hot water supply apparatus according to the present invention comprises a compressor, a hot water supply heat exchanger, a heat extraction throttle device, a heat storage heat exchanger, a main throttle device, and an air heat exchanger connected in an annular shape with a refrigerant pipe, Refrigerant circuit configured by connecting a suction bypass pipe that bypasses the air heat exchanger and flows the refrigerant flowing out from the heat exchanger to the suction side of the compressor, heat storage for heat storage, and heat storage material The heat storage side secondary circuit having a heat storage pump that circulates the heat storage material between the tank and the heat storage heat exchanger and the heat storage tank and heat exchange with the refrigerant in the hot water supply heat exchanger cause the water related to hot water to be heated. In addition, the apparatus includes a control device that performs operation control for storing heat in the heat storage material or collecting heat from the heat storage material.

この発明のヒートポンプ給湯装置によれば、給湯に係る水に加熱する際、蓄熱材に蓄熱した熱を採熱して給湯に利用することができるので、冷媒回路において、外気温度に関係なく、蒸発温度を外気温度よりも高くして給湯運転を行うことができ、加熱能力を増強した給湯運転を実現することができる。   According to the heat pump hot water supply apparatus of the present invention, when the water related to the hot water supply is heated, the heat stored in the heat storage material can be collected and used for hot water supply. Therefore, in the refrigerant circuit, the evaporation temperature regardless of the outside air temperature. The hot water supply operation can be performed with the temperature higher than the outside air temperature, and the hot water supply operation with enhanced heating capability can be realized.

この発明の実施の形態1におけるヒートポンプ給湯装置の構成を示す図である。It is a figure which shows the structure of the heat pump hot-water supply apparatus in Embodiment 1 of this invention. この発明の実施の形態1のヒートポンプ給湯装置における給湯蓄熱併用運転における冷媒状態を示すP−h線図を示す図である。It is a figure which shows the Ph diagram which shows the refrigerant | coolant state in the hot water supply heat storage combined use driving | operation in the heat pump hot water supply apparatus of Embodiment 1 of this invention. この発明の実施の形態1のヒートポンプ給湯装置における蓄熱利用給湯運転時の冷媒状態を示すP−h線図を示す図である。It is a figure which shows the Ph diagram which shows the refrigerant | coolant state at the time of the heat storage utilization hot water supply driving | operation in the heat pump hot-water supply apparatus of Embodiment 1 of this invention. この発明の実施の形態1のヒートポンプ給湯装置における給湯蓄熱併用運転を行う際の制御系のシステムを中心とする構成を示す図である。It is a figure which shows the structure centering on the system of the control system at the time of performing the hot water supply heat storage combined use operation in the heat pump hot water supply apparatus of Embodiment 1 of this invention. この発明の実施の形態1のヒートポンプ給湯装置における給湯蓄熱併用運転に係る制御手順のフローチャートを示す図である。It is a figure which shows the flowchart of the control procedure which concerns on the hot water supply heat storage combined use driving | operation in the heat pump hot water supply apparatus of Embodiment 1 of this invention. この発明の実施の形態1のヒートポンプ給湯装置における給湯蓄熱併用運転を行う際の制御系の別例のシステムを中心とする構成を示す図である。It is a figure which shows the structure centering on the system of another example of the control system at the time of performing the hot water supply heat storage combined use operation in the heat pump hot water supply apparatus of Embodiment 1 of this invention. この発明の実施の形態1のヒートポンプ給湯装置における給湯蓄熱併用運転に係る制御手順の別例のフローチャートを示す図である。It is a figure which shows the flowchart of another example of the control procedure which concerns on the hot water supply heat storage combined use driving | operation in the heat pump hot water supply apparatus of Embodiment 1 of this invention. この発明の実施の形態1のヒートポンプ給湯装置における蓄熱利用給湯運転を行う際の制御系のシステムを中心とする構成を示す図である。It is a figure which shows the structure centering on the system of the control system at the time of performing the heat storage utilization hot water supply driving | operation in the heat pump hot water supply apparatus of Embodiment 1 of this invention. この発明の実施の形態1のヒートポンプ給湯装置における蓄熱利用給湯運転に係る制御手順のフローチャートを示す図である。It is a figure which shows the flowchart of the control procedure which concerns on the heat storage hot water supply driving | operation in the heat pump hot water supply apparatus of Embodiment 1 of this invention. この発明の実施の形態2におけるヒートポンプ給湯装置の構成を示す図である。It is a figure which shows the structure of the heat pump hot-water supply apparatus in Embodiment 2 of this invention. この発明の実施の形態2のヒートポンプ給湯装置における給湯蓄熱併用運転を行う際の制御系のシステムを中心とする構成を示す図である。It is a figure which shows the structure centering on the system of the control system at the time of performing the hot water supply heat storage combined use operation in the heat pump hot water supply apparatus of Embodiment 2 of this invention. この発明の実施の形態2のヒートポンプ給湯装置における給湯蓄熱併用運転に係る制御手順のフローチャートを示す図である。It is a figure which shows the flowchart of the control procedure which concerns on the hot water storage heat | fever combined use driving | operation in the heat pump hot-water supply apparatus of Embodiment 2 of this invention. この発明の実施の形態2のヒートポンプ給湯装置における給湯蓄熱併用運転を行う際の制御系の別例のシステムを中心とする構成を示す図である。It is a figure which shows the structure centering on the system of another example of the control system at the time of performing the hot water supply heat storage combined use driving | operation in the heat pump hot water supply apparatus of Embodiment 2 of this invention. この発明の実施の形態2のヒートポンプ給湯装置における給湯蓄熱併用運転に係る制御手順の別例のフローチャートを示す図である。It is a figure which shows the flowchart of another example of the control procedure which concerns on the hot water supply heat storage combined use driving | operation in the heat pump hot water supply apparatus of Embodiment 2 of this invention. この発明の実施の形態2のヒートポンプ給湯装置における蓄熱利用給湯運転を行う際の制御系のシステムを中心とする構成を示す図である。It is a figure which shows the structure centering on the system of the control system at the time of performing the heat storage utilization hot water supply operation in the heat pump hot water supply apparatus of Embodiment 2 of this invention. この発明の実施の形態2のヒートポンプ給湯装置における蓄熱利用給湯運転に係る制御手順のフローチャートを示す図である。It is a figure which shows the flowchart of the control procedure which concerns on the heat storage hot water supply driving | operation in the heat pump hot water supply apparatus of Embodiment 2 of this invention. この発明の実施の形態3におけるヒートポンプ給湯装置の構成を示す図である。It is a figure which shows the structure of the heat pump hot-water supply apparatus in Embodiment 3 of this invention. この発明の実施の形態3における蓄熱用熱交換器4Aの一例を示す図である。It is a figure which shows an example of the heat exchanger 4A for heat storage in Embodiment 3 of this invention. この発明の実施の形態3における蓄熱用熱交換器4Aの別の一例を示す図(その1)である。It is FIG. (The 1) which shows another example of the heat exchanger 4A for thermal storage in Embodiment 3 of this invention. この発明の実施の形態3における蓄熱用熱交換器4Aの別の一例を示す図(その2)である。It is FIG. (2) which shows another example of the heat exchanger 4A for thermal storage in Embodiment 3 of this invention. この発明の実施の形態3における蓄熱用熱交換器4Aの別の一例を示す図(その3)である。It is FIG. (The 3) which shows another example of the heat exchanger 4A for thermal storage in Embodiment 3 of this invention. この発明の実施の形態3における蓄熱用熱交換器4Aのさらに別の一例を示す図(その1)である。It is FIG. (The 1) which shows another example of the heat exchanger 4A for thermal storage in Embodiment 3 of this invention. この発明の実施の形態3における蓄熱用熱交換器4Aのさらに別の一例を示す図(その2)である。It is FIG. (2) which shows another example of the heat exchanger 4A for thermal storage in Embodiment 3 of this invention. この発明の実施の形態3における蓄熱用熱交換器4Aのさらに別の一例を示す図(その3)である。It is FIG. (The 3) which shows another example of the heat exchanger 4A for thermal storage in Embodiment 3 of this invention. この発明の実施の形態3における蓄熱用熱交換器4Aの他の一例を示す図(その1)である。It is FIG. (1) which shows another example of the heat storage heat exchanger 4A in Embodiment 3 of this invention. この発明の実施の形態3における蓄熱用熱交換器4Aの他の一例を示す図(その2)である。It is FIG. (2) which shows another example of the heat storage heat exchanger 4A in Embodiment 3 of this invention. この発明の実施の形態3における蓄熱用熱交換器4Aの他の一例を示す図(その3)である。It is FIG. (The 3) which shows another example of the heat exchanger 4A for thermal storage in Embodiment 3 of this invention. この発明の実施の形態3における蓄熱用熱交換器4Aの他の一例を示す図(その4)である。It is FIG. (The 4) which shows another example of the heat exchanger 4A for heat storage in Embodiment 3 of this invention. この発明の実施の形態3のヒートポンプ給湯装置における給湯蓄熱併用運転を行う際の制御系のシステムを中心とする構成を示す図である。It is a figure which shows the structure centering on the system of the control system at the time of performing the hot water supply heat storage combined use operation in the heat pump hot water supply apparatus of Embodiment 3 of this invention. この発明の実施の形態3のヒートポンプ給湯装置における給湯蓄熱併用運転に係る制御手順のフローチャートを示す図である。It is a figure which shows the flowchart of the control procedure which concerns on the hot water supply heat storage combined use driving | operation in the heat pump hot water supply apparatus of Embodiment 3 of this invention. この発明の実施の形態3のヒートポンプ給湯装置における給湯蓄熱併用運転を行う際の制御系の別例のシステムを中心とする構成を示す図である。It is a figure which shows the structure centering on the system of another example of the control system at the time of performing the hot water supply thermal storage combined use driving | operation in the heat pump hot water supply apparatus of Embodiment 3 of this invention. この発明の実施の形態3のヒートポンプ給湯装置における給湯蓄熱併用運転に係る制御手順の別例のフローチャートを示す図である。It is a figure which shows the flowchart of another example of the control procedure which concerns on the hot water supply heat storage combined use driving | operation in the heat pump hot water supply apparatus of Embodiment 3 of this invention. この発明の実施の形態3のヒートポンプ給湯装置における蓄熱利用給湯運転を行う際の制御系のシステムを中心とする構成を示す図である。It is a figure which shows the structure centering on the system of the control system at the time of performing the heat storage utilization hot water supply driving | operation in the heat pump hot water supply apparatus of Embodiment 3 of this invention. この発明の実施の形態3のヒートポンプ給湯装置における蓄熱利用給湯運転に係る制御手順のフローチャートを示す図である。It is a figure which shows the flowchart of the control procedure which concerns on the heat storage utilization hot water supply driving | operation in the heat pump hot water supply apparatus of Embodiment 3 of this invention. この発明の実施の形態4におけるヒートポンプ給湯装置の構成を示す図である。It is a figure which shows the structure of the heat pump hot-water supply apparatus in Embodiment 4 of this invention. この発明の実施の形態4のヒートポンプ給湯装置における給湯蓄熱併用運転を行う際の制御系のシステムを中心とする構成を示す図である。It is a figure which shows the structure centering on the system of the control system at the time of performing the hot water supply heat storage combined use operation in the heat pump hot water supply apparatus of Embodiment 4 of this invention. この発明の実施の形態4のヒートポンプ給湯装置における給湯蓄熱併用運転に係る制御手順のフローチャートを示す図である。It is a figure which shows the flowchart of the control procedure which concerns on the hot water supply heat storage combined use driving | operation in the heat pump hot water supply apparatus of Embodiment 4 of this invention. この発明の実施の形態4のヒートポンプ給湯装置における給湯蓄熱併用運転を行う際の制御系の別例のシステムを中心とする構成を示す図である。It is a figure which shows the structure centering on the system of another example of the control system at the time of performing the hot water supply heat storage combined use driving | operation in the heat pump hot water supply apparatus of Embodiment 4 of this invention. この発明の実施の形態4のヒートポンプ給湯装置における給湯蓄熱併用運転に係る制御手順の別例のフローチャートを示す図である。It is a figure which shows the flowchart of another example of the control procedure which concerns on the hot water supply thermal storage combined use driving | operation in the heat pump hot water supply apparatus of Embodiment 4 of this invention. この発明の実施の形態4のヒートポンプ給湯装置における蓄熱利用給湯運転を行う際の制御系のシステムを中心とする構成を示す図である。It is a figure which shows the structure centering on the system of the control system at the time of performing the heat storage utilization hot water supply operation in the heat pump hot water supply apparatus of Embodiment 4 of this invention. この発明の実施の形態4のヒートポンプ給湯装置における蓄熱利用給湯運転に係る制御手順のフローチャートを示す図である。It is a figure which shows the flowchart of the control procedure which concerns on the heat storage utilization hot water supply driving | operation in the heat pump hot water supply apparatus of Embodiment 4 of this invention.

以下、この発明の実施の形態について説明する。ここで、以下に説明する実施の形態によってこの発明が限定されるものではない。また、各図において同一の符号を付したものは、同一のまたはこれに相当するものである。これは明細書の全文において共通している。さらに、明細書全文に表れている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。また、図1を含め、以下に説明する図面においては、各構成部材の大きさの関係が実際のものとは異なる場合がある。さらに、符号に添字を付した装置、機器などについて、たとえば共通事項を説明するなど、特に区別したり、特定したりする必要がない場合には、添字を省略して記載する場合がある。ここで、温度、圧力などの高低については、特に絶対的な値との関係で高低などが定まっているものではなく、システム、装置などにおける状態、動作などにおいて相対的に定まるものとする。   Embodiments of the present invention will be described below. Here, the present invention is not limited by the embodiments described below. Moreover, what attached | subjected the same code | symbol in each figure is the same, or is equivalent to this. This is common throughout the entire specification. Furthermore, the form of the constituent elements appearing in the whole specification is merely an example, and is not limited to these descriptions. In addition, in the drawings described below including FIG. 1, the relationship between the sizes of the constituent members may be different from the actual one. Furthermore, for devices, devices, and the like that have subscripts added to the reference numerals, the subscripts may be omitted when there is no need to distinguish or identify them, for example, by explaining common matters. Here, the levels of temperature, pressure, etc. are not particularly determined in relation to absolute values, but are relatively determined in terms of the state and operation of the system and apparatus.

実施の形態1.
図1は、この発明の実施の形態1におけるヒートポンプ給湯装置の構成を示す図である。本実施の形態のヒートポンプ給湯装置は、圧縮機1、給湯用熱交換器2、第1膨張弁3、蓄熱用熱交換器4、第2膨張弁5および空気熱交換器6を、冷媒配管を介して環状に接続する。また、圧縮機1の吸入側の配管と蓄熱用熱交換器4の冷媒流出側の配管とを吸入バイパス配管9で接続する。吸入バイパス配管9には、吸入バイパス弁7が設置されている。また、圧縮機1の吸入側の配管において、吸入バイパス配管9の接続部分と空気熱交換器6との間に逆止弁8が設置されている。このように、配管および機器を接続して、本実施の形態のヒートポンプ給湯装置は、冷媒を循環させる冷媒回路を構成している。冷媒回路を循環する冷媒は、たとえば二酸化炭素である。
Embodiment 1 FIG.
1 is a diagram showing a configuration of a heat pump water heater in Embodiment 1 of the present invention. The heat pump hot water supply apparatus of the present embodiment includes a compressor 1, a hot water supply heat exchanger 2, a first expansion valve 3, a heat storage heat exchanger 4, a second expansion valve 5, and an air heat exchanger 6, and a refrigerant pipe. It connects in a ring through. Further, the suction-side piping 9 connects the suction-side piping of the compressor 1 and the refrigerant outlet-side piping of the heat storage heat exchanger 4. A suction bypass valve 7 is installed in the suction bypass pipe 9. Further, a check valve 8 is installed between the connection portion of the suction bypass pipe 9 and the air heat exchanger 6 in the pipe on the suction side of the compressor 1. Thus, the piping and equipment are connected, and the heat pump hot water supply apparatus of the present embodiment constitutes a refrigerant circuit that circulates the refrigerant. The refrigerant circulating through the refrigerant circuit is, for example, carbon dioxide.

圧縮機1は、低温低圧のガス冷媒を吸引して圧縮し、高温高圧のガス冷媒の状態にして吐出する。ここで、本実施の形態では、圧縮機1は、たとえば、容量制御可能なインバーター圧縮機などで構成する。また、給湯用熱交換器2は、放熱器として機能する熱交換器である。給湯側二次回路30を循環する水と冷媒とを熱交換させて、冷媒に放熱させる。蓄熱用熱交換器4は、放熱器または蒸発器として機能する熱交換器である。蓄熱用熱交換器4は、蓄熱側二次回路40を循環する蓄熱材と冷媒とを熱交換させて、冷媒に放熱または採熱させる。採熱用絞り装置となる第1膨張弁3は、運転に応じて、開度を全閉もしくは全開または開度調整をし、蓄熱用熱交換器4を放熱器または蒸発器に切り換える。また、第1膨張弁3は、蓄熱用熱交換器4において、冷媒が蓄熱材から採熱する際に開度調整を行う。主絞り装置となる第2膨張弁5は、高圧の冷媒を減圧させ、低圧の気液二相冷媒にする。第2膨張弁5は、空気熱交換器6を用いた運転を行う際に開度調整を行う。空気熱交換器6を用いないときには、開度を全閉または冷媒が流れないような開度にする。空気熱交換器6は、蒸発器として機能する熱交換器である。空気熱交換器6は、冷媒と空気とを熱交換させて蒸発させる。ここで、空気熱交換器6は、たとえば、プレートフィン式熱交換器などで構成する。また、本実施の形態の空気熱交換器6は、屋外の空気である外気と冷媒とを熱交換させるものとする。   The compressor 1 sucks and compresses a low-temperature and low-pressure gas refrigerant, and discharges it in a state of a high-temperature and high-pressure gas refrigerant. Here, in this Embodiment, the compressor 1 is comprised with the inverter compressor etc. which can control capacity | capacitance, for example. The hot water supply heat exchanger 2 is a heat exchanger that functions as a radiator. The water circulating in the hot water supply side secondary circuit 30 and the refrigerant are heat-exchanged to dissipate heat to the refrigerant. The heat storage heat exchanger 4 is a heat exchanger that functions as a radiator or an evaporator. The heat storage heat exchanger 4 exchanges heat between the heat storage material circulating in the heat storage side secondary circuit 40 and the refrigerant, and causes the refrigerant to radiate heat or collect heat. The first expansion valve 3 serving as the heat collecting throttle device is fully closed or fully opened or the opening is adjusted according to the operation, and the heat storage heat exchanger 4 is switched to a radiator or an evaporator. Moreover, the 1st expansion valve 3 performs opening degree adjustment in the heat exchanger 4 for thermal storage, when a refrigerant | coolant heat-collects from a thermal storage material. The second expansion valve 5 serving as the main throttle device depressurizes the high-pressure refrigerant to form a low-pressure gas-liquid two-phase refrigerant. The second expansion valve 5 adjusts the opening when performing an operation using the air heat exchanger 6. When the air heat exchanger 6 is not used, the opening is set to a fully closed position or an opening that does not allow the refrigerant to flow. The air heat exchanger 6 is a heat exchanger that functions as an evaporator. The air heat exchanger 6 evaporates by exchanging heat between the refrigerant and the air. Here, the air heat exchanger 6 is comprised with a plate fin type heat exchanger etc., for example. Moreover, the air heat exchanger 6 of this Embodiment shall heat-exchange outdoor air which is outdoor air, and a refrigerant | coolant.

吸入バイパス配管9は、蓄熱用熱交換器4から流出した冷媒を圧縮機1の吸入側にバイパスする配管である。開閉弁である吸入バイパス弁7は、吸入バイパス配管9に冷媒を通過させるまたは通過させない制御をする。逆止弁8は、吸入バイパス配管9を通過した冷媒が、空気熱交換器6に流入することを防止する。   The suction bypass pipe 9 is a pipe that bypasses the refrigerant flowing out of the heat storage heat exchanger 4 to the suction side of the compressor 1. The suction bypass valve 7, which is an on-off valve, controls the refrigerant to pass through or not through the suction bypass pipe 9. The check valve 8 prevents the refrigerant that has passed through the suction bypass pipe 9 from flowing into the air heat exchanger 6.

給湯側二次回路30は、給湯用熱交換器2、給湯タンク31および給湯ポンプ32を配管で環状に接続して構成する。給湯側二次回路30には、給湯用の水が循環する。給湯タンク31は給湯用の水をためる。また、給湯ポンプ32は、給湯用の水を加圧して給湯側二次回路30を循環させる。   The hot water supply side secondary circuit 30 is configured by connecting the hot water supply heat exchanger 2, the hot water supply tank 31, and the hot water supply pump 32 in a ring shape by piping. Hot water supply water circulates in the hot water supply side secondary circuit 30. The hot water supply tank 31 accumulates water for hot water supply. The hot water supply pump 32 pressurizes hot water supply water and circulates the hot water supply side secondary circuit 30.

蓄熱側二次回路40は、蓄熱用熱交換器4、蓄熱槽41および蓄熱ポンプ42を配管で環状に接続して構成する。蓄熱側二次回路40には、水または相変化を伴う芯物質が封入された微小なカプセルと液体とで構成されたスラリーを有する蓄熱材が充填され、循環する。蓄熱槽41は、蓄熱材をためる。また、蓄熱ポンプ42は蓄熱材を加圧して蓄熱側二次回路40を循環させる。   The heat storage side secondary circuit 40 is configured by connecting the heat storage heat exchanger 4, the heat storage tank 41, and the heat storage pump 42 in a ring shape with piping. The heat storage side secondary circuit 40 is filled with a heat storage material having a slurry composed of a microcapsule in which water or a core substance accompanying a phase change is sealed and a liquid, and circulates. The heat storage tank 41 accumulates a heat storage material. The heat storage pump 42 pressurizes the heat storage material and circulates the heat storage side secondary circuit 40.

次に図1を参照しながら、本実施の形態に係るヒートポンプ給湯装置における運転動作について説明する。   Next, the operation | movement operation | movement in the heat pump hot-water supply apparatus which concerns on this Embodiment is demonstrated, referring FIG.

まず、通常の給湯運転について説明する。通常の給湯運転とは、水道水と同程度の温度の水を、たとえば80℃などの高温の水に沸き上げる運転である。ここで、蓄熱ポンプ42は停止しており、蓄熱用熱交換器4では、冷媒と蓄熱材の熱交換はなされない。   First, a normal hot water supply operation will be described. The normal hot water supply operation is an operation in which water having a temperature similar to that of tap water is boiled into high-temperature water such as 80 ° C. Here, the heat storage pump 42 is stopped, and the heat storage heat exchanger 4 does not exchange heat between the refrigerant and the heat storage material.

通常の給湯運転において、給湯側二次回路30側では、給湯ポンプ32が駆動すると、給湯タンク31内の低温水が給湯用熱交換器2に送られる。給湯用熱交換器2を通過した水は冷媒によって加熱されて高温水となり給湯タンク31に戻る。以上のようにして加熱された水が給湯タンク31内にたまる。   In a normal hot water supply operation, on the hot water supply side secondary circuit 30 side, when the hot water supply pump 32 is driven, the low temperature water in the hot water supply tank 31 is sent to the hot water supply heat exchanger 2. The water that has passed through the hot water supply heat exchanger 2 is heated by the refrigerant to become high temperature water and returns to the hot water supply tank 31. The water heated as described above accumulates in the hot water supply tank 31.

次に冷媒回路側の動作について説明する。ここで、通常の給湯運転においては、吸入バイパス弁7は全閉とする。このため、吸入バイパス配管9には冷媒が流れない。圧縮機1が駆動すると、低温低圧のガス状態の冷媒が圧縮機1に吸入され、圧縮されて高温高圧の超臨界状態の冷媒となって吐出する。圧縮機1から吐出した、高温高圧の超臨界状態の冷媒は、給湯用熱交換器2に流入する。給湯用熱交換器2に流入した高温高圧の超臨界状態冷媒は、被熱交換媒体である、給湯側二次回路30を循環する水に放熱し、低温高圧の超臨界状態の冷媒となる。   Next, the operation on the refrigerant circuit side will be described. Here, in the normal hot water supply operation, the suction bypass valve 7 is fully closed. For this reason, the refrigerant does not flow through the suction bypass pipe 9. When the compressor 1 is driven, the low-temperature and low-pressure gaseous refrigerant is sucked into the compressor 1 and compressed to be discharged as a high-temperature and high-pressure supercritical refrigerant. The high-temperature and high-pressure supercritical refrigerant discharged from the compressor 1 flows into the hot water supply heat exchanger 2. The high-temperature and high-pressure supercritical state refrigerant that has flowed into the hot water supply heat exchanger 2 dissipates heat to the water circulating through the hot-water supply side secondary circuit 30, which is a heat exchange medium, and becomes a low-temperature and high-pressure supercritical state refrigerant.

給湯用熱交換器2を流出した、低温高圧の超臨界状態の冷媒は、第1膨張弁3および蓄熱用熱交換器4を通過して第2膨張弁5に流入する。このとき、第1膨張弁3の開度は全開である。また、蓄熱用熱交換器4では蓄熱材と冷媒との熱交換は行われない。第2膨張弁5に流入した冷媒は、第2膨張弁5に減圧膨張され、低温低圧の気液二相冷媒となって流出する。   The low-temperature and high-pressure supercritical refrigerant that has flowed out of the hot water supply heat exchanger 2 passes through the first expansion valve 3 and the heat storage heat exchanger 4 and flows into the second expansion valve 5. At this time, the opening degree of the first expansion valve 3 is fully open. Further, the heat storage heat exchanger 4 does not perform heat exchange between the heat storage material and the refrigerant. The refrigerant flowing into the second expansion valve 5 is decompressed and expanded by the second expansion valve 5 and flows out as a low-temperature and low-pressure gas-liquid two-phase refrigerant.

第2膨張弁5から流出した気液二相冷媒は、空気熱交換器6に流入する。空気熱交換器6を通過した気液二相冷媒は、被熱交換媒体である外気を冷却し、蒸発して低温低圧のガス冷媒となる。空気熱交換器6から流出した低温低圧のガス冷媒は、圧縮機1に再び吸入される。   The gas-liquid two-phase refrigerant that has flowed out of the second expansion valve 5 flows into the air heat exchanger 6. The gas-liquid two-phase refrigerant that has passed through the air heat exchanger 6 cools the outside air that is the heat exchange medium and evaporates to become a low-temperature and low-pressure gas refrigerant. The low-temperature and low-pressure gas refrigerant that has flowed out of the air heat exchanger 6 is sucked into the compressor 1 again.

次に、給湯蓄熱併用運転について説明する。ここで、給湯蓄熱併用運転とは、保温運転と蓄熱運転とを同時に行う運転である。保温運転は、たとえば放熱などにより給湯タンク31内の水の温度が60℃に低下した場合に、65℃へ5℃程度沸き上げる運転である。また、蓄熱運転は、蓄熱槽41内の蓄熱材に蓄熱する運転である。   Next, the hot water storage heat combined operation will be described. Here, the hot water storage heat storage combined operation is an operation in which the heat insulation operation and the heat storage operation are performed simultaneously. The heat insulation operation is an operation in which water is heated to 65 ° C. by about 5 ° C. when the temperature of the water in the hot water supply tank 31 is reduced to 60 ° C. due to, for example, heat radiation. The heat storage operation is an operation for storing heat in the heat storage material in the heat storage tank 41.

給湯蓄熱併用運転において、給湯側二次回路30側では、給湯ポンプ32が駆動すると、給湯タンク31内の中温水が給湯用熱交換器2に送られる。給湯用熱交換器2を通過した水は、冷媒によって加熱されて高温水となって給湯タンク31に戻る。以上のようにして加熱された水が給湯タンク31内にたまる。   In the hot water storage heat storage combined operation, when the hot water supply pump 32 is driven on the hot water supply side secondary circuit 30 side, the medium temperature water in the hot water supply tank 31 is sent to the hot water supply heat exchanger 2. The water that has passed through the hot water supply heat exchanger 2 is heated by the refrigerant to become high-temperature water and returns to the hot water supply tank 31. The water heated as described above accumulates in the hot water supply tank 31.

また、蓄熱側二次回路40側では、蓄熱ポンプ42が駆動すると、蓄熱槽41内の蓄熱材が蓄熱用熱交換器4に送られる。蓄熱用熱交換器4を通過した蓄熱材は、冷媒によって加熱されて蓄熱槽41に戻る。以上のようにして加熱された蓄熱材が蓄熱槽41にたまって蓄熱する。   On the heat storage side secondary circuit 40 side, when the heat storage pump 42 is driven, the heat storage material in the heat storage tank 41 is sent to the heat storage heat exchanger 4. The heat storage material that has passed through the heat storage heat exchanger 4 is heated by the refrigerant and returns to the heat storage tank 41. The heat storage material heated as described above accumulates in the heat storage tank 41 and stores heat.

次に冷媒回路側の動作について説明する。ここで、給湯蓄熱併用運転においては、吸入バイパス弁7は全閉とする。このため、吸入バイパス配管9には冷媒が流れない。圧縮機1が駆動すると、低温低圧のガス状態の冷媒が圧縮機1に吸入され、圧縮されて高温高圧の超臨界状態の冷媒となって吐出する。圧縮機1から吐出した、高温高圧の超臨界状態の冷媒は、給湯用熱交換器2に流入する。給湯用熱交換器2に流入した、高温高圧の超臨界状態冷媒は、被熱交換媒体である、給湯側二次回路30を循環する水に放熱し、中温高圧の超臨界状態の冷媒となる。   Next, the operation on the refrigerant circuit side will be described. Here, in the hot water storage heat storage combined operation, the suction bypass valve 7 is fully closed. For this reason, the refrigerant does not flow through the suction bypass pipe 9. When the compressor 1 is driven, the low-temperature and low-pressure gaseous refrigerant is sucked into the compressor 1 and compressed to be discharged as a high-temperature and high-pressure supercritical refrigerant. The high-temperature and high-pressure supercritical refrigerant discharged from the compressor 1 flows into the hot water supply heat exchanger 2. The high-temperature and high-pressure supercritical state refrigerant that has flowed into the hot water supply heat exchanger 2 radiates heat to the water circulating through the hot-water supply side secondary circuit 30, which is a heat exchange medium, and becomes a medium-temperature and high-pressure supercritical state refrigerant. .

給湯用熱交換器2を流出した、中温高圧の超臨界状態の冷媒は、第1膨張弁3を通過して蓄熱用熱交換器4に流入する。このとき、第1膨張弁3の開度は全開である。蓄熱用熱交換器4に流入した、中温高圧の超臨界状態冷媒は、被熱交換媒体である、蓄熱側二次回路40を循環する蓄熱材に放熱し、低温高圧の超臨界状態の冷媒となる。蓄熱用熱交換器4を流出した、低温高圧の超臨界状態の冷媒は、第2膨張弁5に流入する。第2膨張弁5に流入した冷媒は、第2膨張弁5に減圧膨張され、低温低圧の気液二相冷媒となって流出する。   The medium temperature and high pressure supercritical refrigerant that has flowed out of the hot water supply heat exchanger 2 passes through the first expansion valve 3 and flows into the heat storage heat exchanger 4. At this time, the opening degree of the first expansion valve 3 is fully open. The medium temperature and high pressure supercritical refrigerant that has flowed into the heat storage heat exchanger 4 radiates heat to the heat storage material that circulates through the heat storage side secondary circuit 40, which is a heat exchange medium, and a low temperature and high pressure supercritical refrigerant. Become. The low-temperature and high-pressure supercritical refrigerant that has flowed out of the heat storage heat exchanger 4 flows into the second expansion valve 5. The refrigerant flowing into the second expansion valve 5 is decompressed and expanded by the second expansion valve 5 and flows out as a low-temperature and low-pressure gas-liquid two-phase refrigerant.

第2膨張弁5から流出した気液二相冷媒は、空気熱交換器6に流入する。空気熱交換器6を通過した気液二相冷媒は、被熱交換媒体である外気を冷却し、蒸発して低温低圧のガス冷媒となる。空気熱交換器6から流出した低温低圧のガス冷媒は、圧縮機1に再び吸入される。   The gas-liquid two-phase refrigerant that has flowed out of the second expansion valve 5 flows into the air heat exchanger 6. The gas-liquid two-phase refrigerant that has passed through the air heat exchanger 6 cools the outside air that is the heat exchange medium and evaporates to become a low-temperature and low-pressure gas refrigerant. The low-temperature and low-pressure gas refrigerant that has flowed out of the air heat exchanger 6 is sucked into the compressor 1 again.

図2は、この発明の実施の形態1のヒートポンプ給湯装置における給湯蓄熱併用運転における冷媒状態を示すP−h線図を示す図である。保温運転を単独に行ったときには、給湯用熱交換器2に流入する水の温度は、たとえば55℃程度と高い。このため、給湯用熱交換器2から流出する冷媒の温度は、60℃程度と高い状態となる。超臨界状態の二酸化炭素冷媒は、冷媒の温度が60℃のときには、高エンタルピーの状態にある。このため、給湯用熱交換器2における流入側と流出側とのエンタルピー差が小さく、非効率な運転となる。   FIG. 2 is a diagram illustrating a Ph diagram illustrating a refrigerant state in the hot water storage heat storage combined operation in the heat pump hot water supply apparatus according to Embodiment 1 of the present invention. When the heat insulation operation is performed independently, the temperature of the water flowing into the hot water supply heat exchanger 2 is as high as about 55 ° C., for example. For this reason, the temperature of the refrigerant flowing out of the hot water supply heat exchanger 2 is as high as about 60 ° C. The supercritical carbon dioxide refrigerant is in a high enthalpy state when the temperature of the refrigerant is 60 ° C. For this reason, the enthalpy difference between the inflow side and the outflow side in the hot water supply heat exchanger 2 is small, resulting in inefficient operation.

一方、給湯蓄熱併用運転では、給湯用熱交換器2から流出した高エンタルピー状態の冷媒を、蓄熱用熱交換器4において、たとえば40℃程度まで放熱させて、蓄熱材に蓄熱する蓄熱運転をすることができる。このため、給湯蓄熱併用運転では、利用できる冷媒エンタルピー差が大きくなり、有効に熱エネルギーを利用することができる。   On the other hand, in the hot water storage heat storage combined operation, the high enthalpy state refrigerant that has flowed out of the hot water supply heat exchanger 2 is radiated to, for example, about 40 ° C. in the heat storage heat exchanger 4 to store heat in the heat storage material. be able to. For this reason, in the hot water storage heat storage combined operation, the refrigerant enthalpy difference which can be utilized becomes large, and heat energy can be used effectively.

次に、蓄熱利用給湯運転について説明する。ここで、蓄熱利用給湯運転とは、蓄熱槽41において蓄熱された蓄熱材を熱源として、給湯運転を行う運転である。たとえば、低外気時における給湯能力低下の防止、給湯負荷が一時的に大きくなるときなどにおける給湯能力の増強などを目的として行う運転である。   Next, the heat storage hot water supply operation will be described. Here, the hot water storage operation using the heat storage is an operation for performing the hot water supply operation using the heat storage material stored in the heat storage tank 41 as a heat source. For example, the operation is performed for the purpose of preventing a decrease in hot water supply capacity during low outside air, and increasing the hot water supply capacity when the hot water supply load temporarily increases.

蓄熱利用給湯運転において、給湯側二次回路30側では、給湯ポンプ32が駆動すると、給湯タンク31内の低温水が給湯用熱交換器2に送られる。給湯用熱交換器2を通過した水は、冷媒によって加熱されて高温水となって給湯タンク31に戻る。以上のようにして加熱された水が給湯タンク31内にたまる。   In the hot water storage use hot water supply operation, on the hot water supply side secondary circuit 30 side, when the hot water supply pump 32 is driven, the low temperature water in the hot water supply tank 31 is sent to the hot water supply heat exchanger 2. The water that has passed through the hot water supply heat exchanger 2 is heated by the refrigerant to become high-temperature water and returns to the hot water supply tank 31. The water heated as described above accumulates in the hot water supply tank 31.

また、蓄熱側二次回路40側では、蓄熱ポンプ42が駆動すると、蓄熱槽41内の蓄熱材が蓄熱用熱交換器4に送られる。蓄熱用熱交換器4を通過した蓄熱材は、冷媒に放熱して蓄熱槽41に戻る。以上のようにして放熱した蓄熱材が蓄熱槽41にたまる。   On the heat storage side secondary circuit 40 side, when the heat storage pump 42 is driven, the heat storage material in the heat storage tank 41 is sent to the heat storage heat exchanger 4. The heat storage material that has passed through the heat storage heat exchanger 4 radiates heat to the refrigerant and returns to the heat storage tank 41. The heat storage material radiated as described above accumulates in the heat storage tank 41.

次に冷媒回路側の動作について説明する。ここで、蓄熱利用給湯運転においては、吸入バイパス弁7は全開とする。このため、吸入バイパス配管9に冷媒が流れる。また、第2膨張弁5の開度は全閉または冷媒が流れないような極めて小さな開度とする(以下、全閉として説明する)。このため、空気熱交換器6には冷媒が流れず、冷媒と外気との熱交換は行われない。   Next, the operation on the refrigerant circuit side will be described. Here, the suction bypass valve 7 is fully opened in the heat storage hot water supply operation. For this reason, the refrigerant flows through the suction bypass pipe 9. The opening of the second expansion valve 5 is either fully closed or extremely small so that the refrigerant does not flow (hereinafter, described as fully closed). For this reason, a refrigerant | coolant does not flow into the air heat exchanger 6, and heat exchange with a refrigerant | coolant and external air is not performed.

圧縮機1が駆動すると、低温低圧のガス状態の冷媒が圧縮機1に吸入され、圧縮されて高温高圧の超臨界状態の冷媒となって吐出する。圧縮機1から吐出した、高温高圧の超臨界状態の冷媒は、給湯用熱交換器2に流入する。給湯用熱交換器2に流入した、高温高圧の超臨界状態冷媒は、被熱交換媒体である、給湯側二次回路30を循環する水に放熱し、低温高圧の超臨界状態の冷媒となる。   When the compressor 1 is driven, the low-temperature and low-pressure gaseous refrigerant is sucked into the compressor 1 and compressed to be discharged as a high-temperature and high-pressure supercritical refrigerant. The high-temperature and high-pressure supercritical refrigerant discharged from the compressor 1 flows into the hot water supply heat exchanger 2. The high-temperature and high-pressure supercritical refrigerant that has flowed into the hot water supply heat exchanger 2 radiates heat to the water circulating through the hot-water supply side secondary circuit 30, which is a heat exchange medium, and becomes a low-temperature and high-pressure supercritical refrigerant. .

給湯用熱交換器2を流出した、低温高圧の超臨界状態の冷媒は、第1膨張弁3に流入する。第1膨張弁3に流入した冷媒は、第1膨張弁3に減圧膨張され、低温低圧の気液二相冷媒となって流出する。第1膨張弁3から流出した気液二相冷媒は、蓄熱用熱交換器4に流入する。   The low-temperature and high-pressure supercritical refrigerant that has flowed out of the hot water supply heat exchanger 2 flows into the first expansion valve 3. The refrigerant flowing into the first expansion valve 3 is decompressed and expanded by the first expansion valve 3 and flows out as a low-temperature and low-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant flowing out of the first expansion valve 3 flows into the heat storage heat exchanger 4.

蓄熱用熱交換器4に流入した低温低圧の気液二相冷媒は、被熱交換媒体である、蓄熱側二次回路40を循環する蓄熱材から採熱し、中温低圧のガス冷媒となる。蓄熱用熱交換器4を流出した中温低圧のガス冷媒は、吸入バイパス弁7を介して吸入バイパス配管9を通過し、圧縮機1に再び吸入される。ここで、前述したように、吸入バイパス配管9の接続部分と空気熱交換器6との間には逆止弁8が設置されている。このため、外気の温度が低く、空気熱交換器6が冷えている状態でも、蓄熱用熱交換器4で熱交換した後の低圧中温のガス冷媒が、空気熱交換器6側に流れない。このため、空気熱交換器6において冷媒が凝縮し、寝込むことを防止することができる。   The low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed into the heat storage heat exchanger 4 collects heat from the heat storage material circulating through the heat storage side secondary circuit 40, which is a heat exchange medium, and becomes a medium temperature and low pressure gas refrigerant. The medium-temperature and low-pressure gas refrigerant flowing out of the heat storage heat exchanger 4 passes through the suction bypass pipe 9 via the suction bypass valve 7 and is sucked into the compressor 1 again. Here, as described above, the check valve 8 is installed between the connection portion of the suction bypass pipe 9 and the air heat exchanger 6. For this reason, even when the temperature of the outside air is low and the air heat exchanger 6 is cold, the low-pressure and medium-temperature gas refrigerant after heat exchange by the heat storage heat exchanger 4 does not flow to the air heat exchanger 6 side. For this reason, it is possible to prevent the refrigerant from condensing and falling asleep in the air heat exchanger 6.

図3は、この発明の実施の形態1のヒートポンプ給湯装置における蓄熱利用給湯運転時の冷媒状態を示すP−h線図を示す図である。たとえば、通常の給湯運転では、冷媒は空気熱交換器6において外気から採熱するため、冷凍サイクルにおける蒸発温度は外気の温度よりも低い温度となる。一方、蓄熱利用給湯運転では、冷媒は、たとえば40℃程度の高い温度の蓄熱材から採熱するため、冷凍サイクルにおける蒸発温度は通常の給湯運転よりも高くなる。したがって、蓄熱利用給湯運転の方が効率が向上する。さらに、圧縮機1の吸入圧力が上昇するので、圧縮機1の吸入側における冷媒ガスの密度が大きくなり、冷媒循環量が増加する。このため、給湯能力を増強することができる。   FIG. 3 is a diagram illustrating a Ph diagram illustrating a refrigerant state during a heat storage hot water supply operation in the heat pump hot water supply apparatus according to Embodiment 1 of the present invention. For example, in a normal hot water supply operation, since the refrigerant collects heat from the outside air in the air heat exchanger 6, the evaporation temperature in the refrigeration cycle is lower than the temperature of the outside air. On the other hand, in the heat storage hot water supply operation, the refrigerant collects heat from a heat storage material having a high temperature of, for example, about 40 ° C., so that the evaporation temperature in the refrigeration cycle is higher than that in the normal hot water supply operation. Therefore, efficiency is improved in the hot water storage operation using heat storage. Furthermore, since the suction pressure of the compressor 1 increases, the density of the refrigerant gas on the suction side of the compressor 1 increases, and the amount of refrigerant circulation increases. For this reason, the hot water supply capability can be increased.

図4は、この発明の実施の形態1のヒートポンプ給湯装置における給湯蓄熱併用運転を行う際の制御系のシステムを中心とする構成を示す図である。図4に示すように、本実施の形態に係るヒートポンプ給湯装置は、少なくとも制御装置100、圧縮機吸入圧力センサ10、給湯用熱交換器入口水温センサ11および圧縮機吸入温度センサ12を制御に係る機器として有している。ここで、図4では、本実施の形態のヒートポンプ給湯装置が給湯蓄熱併用運転を行う際の制御に係る構成を示している。   FIG. 4 is a diagram showing a configuration centering on the system of the control system when performing the hot water storage heat combined operation in the heat pump hot water supply apparatus according to Embodiment 1 of the present invention. As shown in FIG. 4, the heat pump hot water supply apparatus according to the present embodiment relates to control of at least the control device 100, the compressor suction pressure sensor 10, the hot water supply heat exchanger inlet water temperature sensor 11, and the compressor suction temperature sensor 12. It has as equipment. Here, in FIG. 4, the structure which concerns on the control at the time of the heat pump hot-water supply apparatus of this Embodiment performing hot water supply heat storage combined use driving | operation is shown.

圧縮機吸入圧力センサ10は、圧縮機1の吸入側における冷媒の圧力となる圧縮機吸入圧力Psを検出する装置である。給湯用熱交換器入口水温センサ11は、給湯用熱交換器2に流入する水の温度となる入口水温Twiを検出する装置である。圧縮機吸入温度センサ12は、圧縮機1の吸入側における冷媒の温度となる圧縮機吸入温度Tsを検出する装置である。   The compressor suction pressure sensor 10 is a device that detects a compressor suction pressure Ps that is a refrigerant pressure on the suction side of the compressor 1. The hot water supply heat exchanger inlet water temperature sensor 11 is a device that detects an inlet water temperature Twi that is the temperature of the water flowing into the hot water supply heat exchanger 2. The compressor suction temperature sensor 12 is a device that detects a compressor suction temperature Ts that is a refrigerant temperature on the suction side of the compressor 1.

制御装置100は、ヒートポンプ給湯装置が有する機器に指令を送り、各種運転制御を行う。制御装置100は、特に本実施の形態では、通常の給湯運転、給湯蓄熱併用運転または蓄熱利用給湯運転のいずれの運転を行うかを判定し、判定に基づいてヒートポンプ給湯装置を運転させる。   The control device 100 sends a command to equipment included in the heat pump hot water supply device to perform various operation controls. Particularly in the present embodiment, control device 100 determines whether to perform a normal hot water supply operation, a hot water storage heat storage combined operation, or a heat storage hot water supply operation, and operates the heat pump water heater based on the determination.

図5は、この発明の実施の形態1のヒートポンプ給湯装置における給湯蓄熱併用運転に係る制御手順のフローチャートを示す図である。図4および図5に基づいて、制御装置100が行う給湯蓄熱併用運転に係る制御について説明する。制御装置100は、給湯運転指令を受けると、圧縮機1および給湯ポンプ32の駆動を開始させる(S01)。また、第1膨張弁3の開度を全開させ、吸入バイパス弁7を閉止させる(S02)。   FIG. 5 is a diagram showing a flowchart of a control procedure related to hot water storage heat storage combined operation in the heat pump hot water supply apparatus according to Embodiment 1 of the present invention. Based on FIG. 4 and FIG. 5, the control which concerns on the hot water storage heat | fever combined use operation which the control apparatus 100 performs is demonstrated. Upon receiving the hot water supply operation command, control device 100 starts driving compressor 1 and hot water supply pump 32 (S01). Further, the opening of the first expansion valve 3 is fully opened, and the suction bypass valve 7 is closed (S02).

制御装置100は、給湯用熱交換器入口水温センサ11が検出した入口水温Twiを入力する(S03)。そして、制御装置100は、入口水温Twiの温度値が第1設定値より大きいかどうかを判定する(S04)。たとえば、入口水温Twiが高いと、水と冷媒との熱交換量が少なく、給湯用熱交換器2から流出する冷媒のエンタルピーが十分大きくなるため、蓄熱運転が可能となる。そこで、制御装置100は、入口水温Twiの温度値が第1設定値より大きいと判定すると、給湯蓄熱併用運転を開始させる(S05)。そして、蓄熱ポンプ42を駆動させて、蓄熱材を循環させて、蓄熱材に蓄熱させる(S06)。   The control device 100 inputs the inlet water temperature Twi detected by the hot water supply heat exchanger inlet water temperature sensor 11 (S03). Then, the control device 100 determines whether or not the temperature value of the inlet water temperature Twi is larger than the first set value (S04). For example, if the inlet water temperature Twi is high, the amount of heat exchange between water and the refrigerant is small, and the enthalpy of the refrigerant flowing out of the hot water supply heat exchanger 2 becomes sufficiently large, so that the heat storage operation can be performed. Therefore, when determining that the temperature value of the inlet water temperature Twi is larger than the first set value, the control device 100 starts the hot water storage heat storage combined operation (S05). Then, the heat storage pump 42 is driven, the heat storage material is circulated, and heat is stored in the heat storage material (S06).

一方、入口水温Twiが低いと、熱交換量が多く、給湯用熱交換器2から流出する冷媒のエンタルピーが小さくなる。そこで、入口水温Twiの温度値が第1設定値より大きくないと判定すると、蓄熱ポンプ42は駆動させず、給湯運転を行わせる(S07)。   On the other hand, when the inlet water temperature Twi is low, the heat exchange amount is large, and the enthalpy of the refrigerant flowing out from the hot water supply heat exchanger 2 is small. Therefore, if it is determined that the temperature value of the inlet water temperature Twi is not greater than the first set value, the heat storage pump 42 is not driven and a hot water supply operation is performed (S07).

制御装置100は、圧縮機吸入圧力センサ10が検出した圧縮機吸入圧力Psと圧縮機吸入温度センサ12が検出した圧縮機吸入温度Tsとを入力する(S08)。そして、制御装置100は、圧縮機吸入圧力Psの飽和温度f(Ps)を算出する。さらに、圧縮機吸入温度Tsから圧縮機吸入圧力Psの飽和温度f(Ps)を差し引いて圧縮機吸入過熱度SHsを算出する(S09)。   The control device 100 inputs the compressor suction pressure Ps detected by the compressor suction pressure sensor 10 and the compressor suction temperature Ts detected by the compressor suction temperature sensor 12 (S08). Then, the control device 100 calculates a saturation temperature f (Ps) of the compressor suction pressure Ps. Further, the compressor intake superheat degree SHs is calculated by subtracting the saturation temperature f (Ps) of the compressor intake pressure Ps from the compressor intake temperature Ts (S09).

制御装置100は、算出した圧縮機吸入過熱度SHsの値が、圧縮機吸入過熱度目標値としてあらかじめ設定された第2設定値よりも小さいかどうかを判定する(S10)。制御装置100は、圧縮機吸入過熱度SHsの値が第2設定値よりも小さいと判定すると、第2膨張弁5の開度を小さくさせる制御を行う(S11)。そして、S08に戻って制御を続ける。また、制御装置100は、圧縮機吸入過熱度SHsの値が第2設定値よりも小さくないと判定すると、第2膨張弁5の開度を大きくさせる制御を行う(S12)。そして、S08に戻って制御を続ける。   The control device 100 determines whether or not the calculated value of the compressor suction superheat degree SHs is smaller than a second set value set in advance as a compressor suction superheat degree target value (S10). When determining that the value of the compressor intake superheat degree SHs is smaller than the second set value, the control device 100 performs control to reduce the opening of the second expansion valve 5 (S11). And it returns to S08 and continues control. When determining that the value of the compressor intake superheat degree SHs is not smaller than the second set value, the control device 100 performs control to increase the opening of the second expansion valve 5 (S12). And it returns to S08 and continues control.

図6は、この発明の実施の形態1のヒートポンプ給湯装置における給湯蓄熱併用運転を行う際の制御系の別例のシステムを中心とする構成を示す図である。図6において、図4などと同じ符号を付している機器については、図4などにおいて説明したことと基本的に同様の動作を行う。図6に示すように、本実施の形態に係るヒートポンプ給湯装置は、少なくとも制御装置100、圧縮機吸入圧力センサ10、給湯用熱交換器出口冷媒温度センサ13および圧縮機吸入温度センサ12を制御に係る機器として有している。給湯用熱交換器出口冷媒温度センサ13は、給湯用熱交換器2から流出する冷媒の温度となる出口冷媒温度Troを検出する装置である。   FIG. 6 is a diagram showing a configuration centering on another system of the control system when performing the hot water storage heat combined operation in the heat pump hot water supply apparatus of Embodiment 1 of the present invention. In FIG. 6, devices having the same reference numerals as in FIG. 4 perform basically the same operations as described in FIG. As shown in FIG. 6, the heat pump hot water supply apparatus according to the present embodiment controls at least the control device 100, the compressor suction pressure sensor 10, the hot water supply heat exchanger outlet refrigerant temperature sensor 13, and the compressor suction temperature sensor 12. As such equipment. The hot water supply heat exchanger outlet refrigerant temperature sensor 13 is a device that detects an outlet refrigerant temperature Tro that is the temperature of the refrigerant flowing out of the hot water supply heat exchanger 2.

図7は、この発明の実施の形態1のヒートポンプ給湯装置における給湯蓄熱併用運転に係る制御手順の別例のフローチャートを示す図である。図6および図7に基づいて、制御装置100が行う給湯蓄熱併用運転に係る制御について説明する。制御装置100は、給湯運転指令を受けると、圧縮機1および給湯ポンプ32の駆動を開始させる(S21)。また、第1膨張弁3の開度を全開させ、吸入バイパス弁7を閉止させる(S22)。   FIG. 7 is a view showing a flowchart of another example of the control procedure related to the hot water storage heat storage combined operation in the heat pump hot water supply apparatus according to Embodiment 1 of the present invention. Based on FIG. 6 and FIG. 7, the control which concerns on the hot water storage heat | fever combined use operation which the control apparatus 100 performs is demonstrated. Upon receiving the hot water supply operation command, control device 100 starts driving compressor 1 and hot water supply pump 32 (S21). Further, the opening of the first expansion valve 3 is fully opened, and the suction bypass valve 7 is closed (S22).

制御装置100は、給湯用熱交換器出口冷媒温度センサ13が検出した出口冷媒温度Troを入力する(S23)。そして、制御装置100は、出口冷媒温度Troの温度値が第3設定値より大きいかどうかを判定する(S24)。たとえば、出口冷媒温度Troが高いと、給湯用熱交換器2から流出する冷媒のエンタルピーが十分大きいため、蓄熱運転が可能となる。そこで、制御装置100は、出口冷媒温度Troの温度値が第3設定値より大きいと判定すると、給湯蓄熱併用運転を開始させる(S25)。そして、蓄熱ポンプ42を駆動させて、蓄熱材を循環させて、蓄熱材に蓄熱させる(S26)。   The control apparatus 100 inputs the outlet refrigerant temperature Tro detected by the hot water supply heat exchanger outlet refrigerant temperature sensor 13 (S23). Then, the control device 100 determines whether or not the temperature value of the outlet refrigerant temperature Tro is larger than the third set value (S24). For example, when the outlet refrigerant temperature Tro is high, the enthalpy of the refrigerant flowing out from the hot water supply heat exchanger 2 is sufficiently large, so that the heat storage operation is possible. Therefore, when determining that the temperature value of the outlet refrigerant temperature Tro is larger than the third set value, the control device 100 starts the hot water storage heat storage combined operation (S25). Then, the heat storage pump 42 is driven, the heat storage material is circulated, and heat is stored in the heat storage material (S26).

一方、出口冷媒温度Troが低いと、給湯用熱交換器2から流出する冷媒のエンタルピーが小さい。そこで、出口冷媒温度Troの温度値が第3設定値より大きくないと判定すると、蓄熱ポンプ42は駆動させず、給湯運転を行わせる(S27)。   On the other hand, when the outlet refrigerant temperature Tro is low, the enthalpy of the refrigerant flowing out of the hot water supply heat exchanger 2 is small. Therefore, if it is determined that the temperature value of the outlet refrigerant temperature Tro is not larger than the third set value, the heat storage pump 42 is not driven and a hot water supply operation is performed (S27).

制御装置100は、圧縮機吸入圧力センサ10が検出した圧縮機吸入圧力Psと圧縮機吸入温度センサ12が検出した圧縮機吸入温度Tsとを入力する(S28)。そして、制御装置100は、圧縮機吸入圧力Psの飽和温度f(Ps)を算出する。さらに、圧縮機吸入温度Tsから圧縮機吸入圧力Psの飽和温度f(Ps)を差し引いて圧縮機吸入過熱度SHsを算出する(S29)。   The control device 100 inputs the compressor suction pressure Ps detected by the compressor suction pressure sensor 10 and the compressor suction temperature Ts detected by the compressor suction temperature sensor 12 (S28). Then, the control device 100 calculates a saturation temperature f (Ps) of the compressor suction pressure Ps. Further, the compressor intake superheat degree SHs is calculated by subtracting the saturation temperature f (Ps) of the compressor intake pressure Ps from the compressor intake temperature Ts (S29).

制御装置100は、算出した圧縮機吸入過熱度SHsの値が、圧縮機吸入過熱度目標値としてあらかじめ設定された第2設定値よりも小さいかどうかを判定する(S30)。制御装置100は、圧縮機吸入過熱度SHsの値が第2設定値よりも小さいと判定すると、第2膨張弁5の開度を小さくさせる制御を行う(S31)。そして、S28に戻って制御を続ける。また、制御装置100は、圧縮機吸入過熱度SHsの値が第2設定値よりも小さくないと判定すると、第2膨張弁5の開度を大きくさせる制御を行う(S32)。そして、S28に戻って制御を続ける。   The control device 100 determines whether or not the calculated value of the compressor suction superheat degree SHs is smaller than a second set value preset as a compressor suction superheat degree target value (S30). When determining that the value of the compressor suction superheat degree SHs is smaller than the second set value, the control device 100 performs control to reduce the opening of the second expansion valve 5 (S31). And it returns to S28 and continues control. When determining that the value of the compressor intake superheat degree SHs is not smaller than the second set value, the control device 100 performs control to increase the opening of the second expansion valve 5 (S32). And it returns to S28 and continues control.

図8は、この発明の実施の形態1のヒートポンプ給湯装置における蓄熱利用給湯運転を行う際の制御系のシステムを中心とする構成を示す図である。図8では、本実施の形態のヒートポンプ給湯装置が蓄熱利用給湯運転を行う際の制御に係る構成を示している。図8において、図4などと同じ符号を付している機器については、図4などにおいて説明したことと基本的に同様の動作を行う。本実施の形態に係るヒートポンプ給湯装置は、少なくとも制御装置100、圧縮機吸入圧力センサ10、圧縮機吸入温度センサ12および蓄熱材温度センサ14を制御に係る機器として有している。蓄熱材温度センサ14は、蓄熱槽41内の蓄熱材の温度となる蓄熱材温度Tstを検出する装置である。   FIG. 8 is a diagram showing a configuration centering on a system of a control system when performing a heat storage hot water supply operation in the heat pump hot water supply apparatus according to Embodiment 1 of the present invention. In FIG. 8, the structure which concerns on the control at the time of the heat pump hot-water supply apparatus of this Embodiment performing heat storage utilization hot-water supply driving | operation is shown. In FIG. 8, devices having the same reference numerals as in FIG. 4 perform basically the same operations as described in FIG. The heat pump hot water supply apparatus according to the present embodiment includes at least the control device 100, the compressor suction pressure sensor 10, the compressor suction temperature sensor 12, and the heat storage material temperature sensor 14 as control-related devices. The heat storage material temperature sensor 14 is a device that detects the heat storage material temperature Tst that is the temperature of the heat storage material in the heat storage tank 41.

図9は、この発明の実施の形態1のヒートポンプ給湯装置における蓄熱利用給湯運転に係る制御手順のフローチャートを示す図である。図8および図9に基づいて、制御装置100が行う蓄熱利用給湯運転に係る制御について説明する。制御装置100は、給湯運転指令を受けると、圧縮機1および給湯ポンプ32の駆動を開始させる(S41)。   FIG. 9 is a diagram illustrating a flowchart of a control procedure related to a heat storage hot water supply operation in the heat pump hot water supply apparatus according to Embodiment 1 of the present invention. Based on FIG. 8 and FIG. 9, the control which concerns on the thermal storage utilization hot water supply operation which the control apparatus 100 performs is demonstrated. When receiving the hot water supply operation command, control device 100 starts driving compressor 1 and hot water supply pump 32 (S41).

制御装置100は、蓄熱材温度センサ14が検出した蓄熱材温度Tstを入力する(S42)。そして、制御装置100は、蓄熱材温度Tstの温度値が第4設定値より大きいかどうかを判定する(S43)。   The control device 100 inputs the heat storage material temperature Tst detected by the heat storage material temperature sensor 14 (S42). And the control apparatus 100 determines whether the temperature value of the thermal storage material temperature Tst is larger than a 4th setting value (S43).

制御装置100は、蓄熱材温度Tstの温度値が第4設定値より大きいと判定すると、蓄熱利用給湯運転を開始させる(S44)。制御装置100は、第2膨張弁5の開度を全閉させ、吸入バイパス弁7を開放させる。そして、蓄熱ポンプ42を駆動させて、蓄熱材を循環させて、蓄熱材に放熱させる(S45)。   When determining that the temperature value of the heat storage material temperature Tst is larger than the fourth set value, the control device 100 starts the heat storage hot water supply operation (S44). The control device 100 fully closes the opening of the second expansion valve 5 and opens the suction bypass valve 7. Then, the heat storage pump 42 is driven to circulate the heat storage material and radiate heat to the heat storage material (S45).

制御装置100は、圧縮機吸入圧力センサ10が検出した圧縮機吸入圧力Psと圧縮機吸入温度センサ12が検出した圧縮機吸入温度Tsとを入力する(S46)。そして、制御装置100は、圧縮機吸入圧力Psの飽和温度f(Ps)を算出する。さらに、圧縮機吸入温度Tsから圧縮機吸入圧力Psの飽和温度f(Ps)を差し引いて圧縮機吸入過熱度SHsを算出する(S47)。   The control device 100 inputs the compressor suction pressure Ps detected by the compressor suction pressure sensor 10 and the compressor suction temperature Ts detected by the compressor suction temperature sensor 12 (S46). Then, the control device 100 calculates a saturation temperature f (Ps) of the compressor suction pressure Ps. Further, the compressor intake superheat degree SHs is calculated by subtracting the saturation temperature f (Ps) of the compressor intake pressure Ps from the compressor intake temperature Ts (S47).

制御装置100は、算出した圧縮機吸入過熱度SHsの値が、圧縮機吸入過熱度目標値としてあらかじめ設定された第2設定値よりも小さいかどうかを判定する(S48)。制御装置100は、圧縮機吸入過熱度SHsの値が第2設定値よりも小さいと判定すると、第1膨張弁3の開度を小さくさせる制御を行う(S49)。そして、S42に戻って制御を続ける。また、制御装置100は、圧縮機吸入過熱度SHsの値が第2設定値よりも小さくないと判定すると、第1膨張弁3の開度を大きくさせる制御を行う(S50)。そして、S42に戻って制御を続ける。   The control device 100 determines whether or not the calculated value of the compressor intake superheat degree SHs is smaller than a second set value preset as a compressor intake superheat degree target value (S48). When determining that the value of the compressor suction superheat degree SHs is smaller than the second set value, the control device 100 performs control to reduce the opening of the first expansion valve 3 (S49). And it returns to S42 and continues control. When determining that the value of the compressor suction superheat degree SHs is not smaller than the second set value, the control device 100 performs control to increase the opening degree of the first expansion valve 3 (S50). And it returns to S42 and continues control.

一方、制御装置100は、蓄熱材温度Tstの温度値が第4設定値より大きくないと判定すると、通常の給湯運転を行わせる(S51)。制御装置100は、第1膨張弁3の開度を全開させ、吸入バイパス弁7を閉止させる。また、蓄熱ポンプ42を駆動させないようにする(S52)。   On the other hand, when determining that the temperature value of the heat storage material temperature Tst is not larger than the fourth set value, the control device 100 causes a normal hot water supply operation to be performed (S51). The control device 100 fully opens the opening of the first expansion valve 3 and closes the suction bypass valve 7. Further, the heat storage pump 42 is not driven (S52).

制御装置100は、圧縮機吸入圧力センサ10が検出した圧縮機吸入圧力Psと圧縮機吸入温度センサ12が検出した圧縮機吸入温度Tsとを入力する(S53)。そして、制御装置100は、圧縮機吸入圧力Psの飽和温度f(Ps)を算出する。さらに、圧縮機吸入温度Tsから圧縮機吸入圧力Psの飽和温度f(Ps)を差し引いて圧縮機吸入過熱度SHsを算出する(S54)。   The control device 100 inputs the compressor suction pressure Ps detected by the compressor suction pressure sensor 10 and the compressor suction temperature Ts detected by the compressor suction temperature sensor 12 (S53). Then, the control device 100 calculates a saturation temperature f (Ps) of the compressor suction pressure Ps. Further, the compressor intake superheat degree SHs is calculated by subtracting the saturation temperature f (Ps) of the compressor intake pressure Ps from the compressor intake temperature Ts (S54).

制御装置100は、算出した圧縮機吸入過熱度SHsの値が、圧縮機吸入過熱度目標値としてあらかじめ設定された第2設定値よりも小さいかどうかを判定する(S55)。制御装置100は、圧縮機吸入過熱度SHsの値が第2設定値よりも小さいと判定すると、第2膨張弁5の開度を小さくさせる制御を行う(S56)。そして、S42に戻って制御を続ける。また、制御装置100は、圧縮機吸入過熱度SHsの値が第2設定値よりも小さくないと判定すると、第2膨張弁5の開度を大きくさせる制御を行う(S57)。そして、S42に戻って制御を続ける。   The control device 100 determines whether or not the calculated value of the compressor intake superheat degree SHs is smaller than a second set value preset as a compressor intake superheat degree target value (S55). When determining that the value of the compressor intake superheat degree SHs is smaller than the second set value, the control device 100 performs control to reduce the opening of the second expansion valve 5 (S56). And it returns to S42 and continues control. Further, when determining that the value of the compressor intake superheat degree SHs is not smaller than the second set value, the control device 100 performs control to increase the opening of the second expansion valve 5 (S57). And it returns to S42 and continues control.

以上のように、本実施の形態に係るヒートポンプ給湯装置は、冷媒が循環する冷媒回路、給湯側二次回路30および蓄熱側二次回路40を有し、制御装置100が、保温運転などのように、比較的高温の水を加熱する運転を行う場合など、給湯用熱交換器2から流出する冷媒が比エンタルピーの大きい状態になるかどうかを判定し、比エンタルピーが大きい状態になると判定すると、給湯蓄熱併用運転を行って蓄熱運転も行うことにより、ヒートポンプ給湯装置を運転することによって得られる熱エネルギーを有効利用することができる。また、蓄熱槽41に蓄熱した熱エネルギーを利用した蓄熱利用給湯運転を行うことができるので、外気温度によらず、空気熱交換器6における冷媒の蒸発温度を高く維持することができるので、冷媒から水への加熱能力を増強することができる。   As described above, the heat pump hot water supply apparatus according to the present embodiment includes the refrigerant circuit in which the refrigerant circulates, the hot water supply side secondary circuit 30 and the heat storage side secondary circuit 40, and the control apparatus 100 performs a heat insulation operation or the like. In addition, when performing an operation of heating relatively high temperature water, it is determined whether or not the refrigerant flowing out of the hot water supply heat exchanger 2 has a large specific enthalpy, and when it is determined that the specific enthalpy is large, By performing the hot water storage heat storage combined operation and performing the heat storage operation, the thermal energy obtained by operating the heat pump hot water supply apparatus can be used effectively. Further, since the heat storage hot water supply operation using the heat energy stored in the heat storage tank 41 can be performed, the evaporation temperature of the refrigerant in the air heat exchanger 6 can be kept high regardless of the outside air temperature. The heating capacity from water to water can be enhanced.

また、本実施の形態に係るヒートポンプ給湯装置は、たとえば、中温で潜熱変化するスラリーまたは水を有する蓄熱材を、蓄熱側二次回路40内に循環させるようにしたので、蓄熱運転における効率を高くすることができる。また、蓄熱材が蓄熱用熱交換器4を直接通過するので、効率よく採熱などを行うことができる。また、蓄熱利用給湯運転において、外気温度が低く、空気熱交換器6が冷えている状態でも、蓄熱用熱交換器4で熱交換した後の低圧中温のガス冷媒が、空気熱交換器6側に流れない。このため、空気熱交換器6において冷媒が凝縮し、寝込むことを防止することができる。   In addition, the heat pump hot water supply apparatus according to the present embodiment circulates, for example, a heat storage material having slurry or water that changes in latent heat at an intermediate temperature in the heat storage side secondary circuit 40, so that the efficiency in the heat storage operation is high. can do. Moreover, since the heat storage material passes directly through the heat storage heat exchanger 4, heat collection or the like can be performed efficiently. In the heat storage hot water supply operation, even when the outside air temperature is low and the air heat exchanger 6 is cold, the low-pressure medium-temperature gas refrigerant after heat exchange by the heat storage heat exchanger 4 is performed on the air heat exchanger 6 side. Does not flow. For this reason, it is possible to prevent the refrigerant from condensing and falling asleep in the air heat exchanger 6.

実施の形態2.
図10は、この発明の実施の形態2におけるヒートポンプ給湯装置の構成を示す図である。図10において、図1などと同じ符号を付している機器は、実施の形態1において説明したことと同様の動作を行う。本実施の形態のヒートポンプ給湯装置は、圧縮機1、給湯用熱交換器2、蓄熱用熱交換器4、第2膨張弁5および空気熱交換器6を、冷媒配管を介して環状に接続する。また、圧縮機1の吸入側の配管と蓄熱用熱交換器4の冷媒流出側の配管とを採熱バイパス配管20で接続する。採熱バイパス配管20には、採熱用熱交換器15および第3膨張弁16が設置されている。
Embodiment 2. FIG.
FIG. 10 is a diagram showing a configuration of a heat pump water heater in Embodiment 2 of the present invention. 10, devices having the same reference numerals as those in FIG. 1 perform the same operation as described in the first embodiment. The heat pump hot water supply apparatus of the present embodiment connects the compressor 1, the hot water supply heat exchanger 2, the heat storage heat exchanger 4, the second expansion valve 5 and the air heat exchanger 6 in an annular manner via a refrigerant pipe. . Further, the suction-side piping of the compressor 1 and the refrigerant outlet-side piping of the heat storage heat exchanger 4 are connected by a heat collection bypass piping 20. The heat collecting bypass pipe 20 is provided with a heat collecting heat exchanger 15 and a third expansion valve 16.

採熱バイパス配管20は、蓄熱利用給湯運転において、蓄熱用熱交換器4から流出した冷媒を圧縮機1の吸入側にバイパスする配管である。採熱用熱交換器15は、蒸発器として機能する熱交換器である。蓄熱利用給湯運転において、冷媒と蓄熱材とを熱交換させて、冷媒に採熱させる。採熱用絞り装置となる第3膨張弁16は、運転に応じて、開度を全閉または開度調整される。第3膨張弁16は、蓄熱用熱交換器4において、冷媒が蓄熱材から採熱する際に開度調整が行われる。   The heat collection bypass pipe 20 is a pipe that bypasses the refrigerant that has flowed out of the heat storage heat exchanger 4 to the suction side of the compressor 1 in a hot water supply operation using heat storage. The heat collecting heat exchanger 15 is a heat exchanger that functions as an evaporator. In the heat storage hot water supply operation, heat is exchanged between the refrigerant and the heat storage material, and the refrigerant collects heat. The third expansion valve 16 serving as the heat collecting throttle device is fully closed or adjusted in opening according to the operation. The opening degree of the third expansion valve 16 is adjusted when the refrigerant collects heat from the heat storage material in the heat storage heat exchanger 4.

また、本実施の形態の蓄熱側二次回路40は、蓄熱用熱交換器4、蓄熱槽41、蓄熱ポンプ42および切換装置となる三方弁43を配管で環状に接続し、蓄熱材を循環させることができる。また、三方弁43を切り換えることによって、採熱用熱交換器15、蓄熱槽41、蓄熱ポンプ42および三方弁43を配管で環状に接続し、蓄熱材を循環させることができる。三方弁43は、蓄熱材が蓄熱用熱交換器4を通過して蓄熱槽41に戻るか、採熱用熱交換器15を通過して蓄熱槽41に戻るかを切り換える弁である。   Further, the heat storage side secondary circuit 40 of the present embodiment connects the heat storage heat exchanger 4, the heat storage tank 41, the heat storage pump 42, and the three-way valve 43 serving as a switching device in a ring shape to circulate the heat storage material. be able to. Further, by switching the three-way valve 43, the heat-collecting heat exchanger 15, the heat storage tank 41, the heat storage pump 42, and the three-way valve 43 can be connected in an annular shape by piping so that the heat storage material can be circulated. The three-way valve 43 is a valve that switches whether the heat storage material passes through the heat storage heat exchanger 4 and returns to the heat storage tank 41 or passes through the heat collection heat exchanger 15 and returns to the heat storage tank 41.

次に図10を参照しながら、本実施の形態に係るヒートポンプ給湯装置における運転動作について説明する。   Next, the operation | movement operation | movement in the heat pump hot-water supply apparatus which concerns on this Embodiment is demonstrated, referring FIG.

まず、通常の給湯運転について説明する。ここで、通常の給湯運転とは、水道水と同程度の温度の水を、たとえば80℃などの高温の水に沸き上げる運転である。ここで、蓄熱ポンプ42は停止しており、蓄熱用熱交換器4では、冷媒と蓄熱材の熱交換はなされない。また、第3膨張弁16の開度は全閉または冷媒が流れない開度であり、採熱バイパス配管20および採熱用熱交換器15には冷媒が流れない。   First, a normal hot water supply operation will be described. Here, the normal hot water supply operation is an operation in which water having a temperature similar to that of tap water is heated to high-temperature water such as 80 ° C., for example. Here, the heat storage pump 42 is stopped, and the heat storage heat exchanger 4 does not exchange heat between the refrigerant and the heat storage material. Further, the opening degree of the third expansion valve 16 is fully closed or an opening degree at which the refrigerant does not flow, and the refrigerant does not flow through the heat collecting bypass pipe 20 and the heat collecting heat exchanger 15.

通常の給湯運転において、給湯側二次回路30側では、給湯ポンプ32が駆動すると、給湯タンク31内の低温水が給湯用熱交換器2に送られる。給湯用熱交換器2を通過した水は冷媒によって加熱されて高温水となり給湯タンク31に戻る。以上のようにして加熱された水が給湯タンク31内にたまる。   In a normal hot water supply operation, on the hot water supply side secondary circuit 30 side, when the hot water supply pump 32 is driven, the low temperature water in the hot water supply tank 31 is sent to the hot water supply heat exchanger 2. The water that has passed through the hot water supply heat exchanger 2 is heated by the refrigerant to become high temperature water and returns to the hot water supply tank 31. The water heated as described above accumulates in the hot water supply tank 31.

次に冷媒回路側の動作について説明する。ここで、通常の給湯運転においては、吸入バイパス弁7は閉止とする。このため、吸入バイパス配管9には冷媒が流れない。圧縮機1が駆動すると、低温低圧のガス状態の冷媒が圧縮機1に吸入され、圧縮されて高温高圧の超臨界状態の冷媒となって吐出する。圧縮機1から吐出した、高温高圧の超臨界状態の冷媒は、給湯用熱交換器2に流入する。給湯用熱交換器2に流入した、高温高圧の超臨界状態冷媒は、被熱交換媒体である、給湯側二次回路30を循環する水に放熱し、低温高圧の超臨界状態の冷媒となる。   Next, the operation on the refrigerant circuit side will be described. Here, in the normal hot water supply operation, the suction bypass valve 7 is closed. For this reason, the refrigerant does not flow through the suction bypass pipe 9. When the compressor 1 is driven, the low-temperature and low-pressure gaseous refrigerant is sucked into the compressor 1 and compressed to be discharged as a high-temperature and high-pressure supercritical refrigerant. The high-temperature and high-pressure supercritical refrigerant discharged from the compressor 1 flows into the hot water supply heat exchanger 2. The high-temperature and high-pressure supercritical refrigerant that has flowed into the hot water supply heat exchanger 2 radiates heat to the water circulating through the hot-water supply side secondary circuit 30, which is a heat exchange medium, and becomes a low-temperature and high-pressure supercritical refrigerant. .

給湯用熱交換器2を流出した、低温高圧の超臨界状態の冷媒は、第1膨張弁3および蓄熱用熱交換器4を通過して第2膨張弁5に流入する。このとき、蓄熱用熱交換器4では蓄熱材と冷媒との熱交換は行われない。第2膨張弁5に流入した冷媒は、第2膨張弁5に減圧膨張され、低温低圧の気液二相冷媒となって流出する。   The low-temperature and high-pressure supercritical refrigerant that has flowed out of the hot water supply heat exchanger 2 passes through the first expansion valve 3 and the heat storage heat exchanger 4 and flows into the second expansion valve 5. At this time, heat exchange between the heat storage material and the refrigerant is not performed in the heat storage heat exchanger 4. The refrigerant flowing into the second expansion valve 5 is decompressed and expanded by the second expansion valve 5 and flows out as a low-temperature and low-pressure gas-liquid two-phase refrigerant.

第2膨張弁5から流出した気液二相冷媒は、空気熱交換器6に流入する。空気熱交換器6を通過した気液二相冷媒は、被熱交換媒体である外気を冷却し、蒸発して低温低圧のガス冷媒となる。空気熱交換器6から流出した低温低圧のガス冷媒は、圧縮機1に再び吸入される。   The gas-liquid two-phase refrigerant that has flowed out of the second expansion valve 5 flows into the air heat exchanger 6. The gas-liquid two-phase refrigerant that has passed through the air heat exchanger 6 cools the outside air that is the heat exchange medium and evaporates to become a low-temperature and low-pressure gas refrigerant. The low-temperature and low-pressure gas refrigerant that has flowed out of the air heat exchanger 6 is sucked into the compressor 1 again.

次に、給湯蓄熱併用運転について説明する。ここで、給湯蓄熱併用運転とは、保温運転と蓄熱運転とを同時に行う運転である。保温運転は、たとえば放熱などにより給湯タンク31内の水の温度が60℃に低下した場合に、65℃へ5℃程度沸き上げる運転である。また、蓄熱運転は、蓄熱槽41内の蓄熱材に蓄熱する運転である。   Next, the hot water storage heat combined operation will be described. Here, the hot water storage heat storage combined operation is an operation in which the heat insulation operation and the heat storage operation are performed simultaneously. The heat insulation operation is an operation in which water is heated to 65 ° C. by about 5 ° C. when the temperature of the water in the hot water supply tank 31 is reduced to 60 ° C. due to, for example, heat radiation. The heat storage operation is an operation for storing heat in the heat storage material in the heat storage tank 41.

給湯蓄熱併用運転において、給湯側二次回路30側では、給湯ポンプ32が駆動すると、給湯タンク31内の中温水が給湯用熱交換器2に送られる。給湯用熱交換器2を通過した水は、冷媒によって加熱されて高温水となって給湯タンク31に戻る。以上のようにして加熱された水が給湯タンク31内にたまる。   In the hot water storage heat storage combined operation, when the hot water supply pump 32 is driven on the hot water supply side secondary circuit 30 side, the medium temperature water in the hot water supply tank 31 is sent to the hot water supply heat exchanger 2. The water that has passed through the hot water supply heat exchanger 2 is heated by the refrigerant to become high-temperature water and returns to the hot water supply tank 31. The water heated as described above accumulates in the hot water supply tank 31.

また、蓄熱側二次回路40側では、蓄熱材が蓄熱用熱交換器4を通過して蓄熱槽41に流入するように、三方弁43を切り換える。蓄熱ポンプ42が駆動すると、蓄熱槽41内の蓄熱材が蓄熱用熱交換器4に送られる。蓄熱用熱交換器4を通過した蓄熱材は、冷媒によって加熱されて蓄熱槽41に戻る。以上のようにして加熱された蓄熱材が蓄熱槽41にたまって蓄熱する。   On the heat storage side secondary circuit 40 side, the three-way valve 43 is switched so that the heat storage material passes through the heat storage heat exchanger 4 and flows into the heat storage tank 41. When the heat storage pump 42 is driven, the heat storage material in the heat storage tank 41 is sent to the heat storage heat exchanger 4. The heat storage material that has passed through the heat storage heat exchanger 4 is heated by the refrigerant and returns to the heat storage tank 41. The heat storage material heated as described above accumulates in the heat storage tank 41 and stores heat.

次に冷媒回路側の動作について説明する。ここで、給湯蓄熱併用運転においては、吸入バイパス弁7は閉止とする。このため、吸入バイパス配管9には冷媒が流れない。圧縮機1が駆動すると、低温低圧のガス状態の冷媒が圧縮機1に吸入され、圧縮されて高温高圧の超臨界状態の冷媒となって吐出する。圧縮機1から吐出した、高温高圧の超臨界状態の冷媒は、給湯用熱交換器2に流入する。給湯用熱交換器2に流入した、高温高圧の超臨界状態冷媒は、被熱交換媒体である、給湯側二次回路30を循環する水に放熱し、中温高圧の超臨界状態の冷媒となる。   Next, the operation on the refrigerant circuit side will be described. Here, in the hot water storage heat storage combined operation, the suction bypass valve 7 is closed. For this reason, the refrigerant does not flow through the suction bypass pipe 9. When the compressor 1 is driven, the low-temperature and low-pressure gaseous refrigerant is sucked into the compressor 1 and compressed to be discharged as a high-temperature and high-pressure supercritical refrigerant. The high-temperature and high-pressure supercritical refrigerant discharged from the compressor 1 flows into the hot water supply heat exchanger 2. The high-temperature and high-pressure supercritical state refrigerant that has flowed into the hot water supply heat exchanger 2 radiates heat to the water circulating through the hot-water supply side secondary circuit 30, which is a heat exchange medium, and becomes a medium-temperature and high-pressure supercritical state refrigerant. .

給湯用熱交換器2を流出した、中温高圧の超臨界状態の冷媒は、蓄熱用熱交換器4に流入する。蓄熱用熱交換器4に流入した、中温高圧の超臨界状態冷媒は、被熱交換媒体である、蓄熱側二次回路40を循環する蓄熱材に放熱し、低温高圧の超臨界状態の冷媒となる。蓄熱用熱交換器4を流出した、低温高圧の超臨界状態の冷媒は、第2膨張弁5に流入する。第2膨張弁5に流入した冷媒は、第2膨張弁5に減圧膨張され、低温低圧の気液二相冷媒となって流出する。   The medium-temperature and high-pressure supercritical refrigerant that has flowed out of the hot water supply heat exchanger 2 flows into the heat storage heat exchanger 4. The medium temperature and high pressure supercritical refrigerant that has flowed into the heat storage heat exchanger 4 radiates heat to the heat storage material that circulates through the heat storage side secondary circuit 40, which is a heat exchange medium, and a low temperature and high pressure supercritical refrigerant. Become. The low-temperature and high-pressure supercritical refrigerant that has flowed out of the heat storage heat exchanger 4 flows into the second expansion valve 5. The refrigerant flowing into the second expansion valve 5 is decompressed and expanded by the second expansion valve 5 and flows out as a low-temperature and low-pressure gas-liquid two-phase refrigerant.

第2膨張弁5から流出した気液二相冷媒は、空気熱交換器6に流入する。空気熱交換器6を通過した気液二相冷媒は、被熱交換媒体である外気を冷却し、蒸発して低温低圧のガス冷媒となる。空気熱交換器6から流出した低温低圧のガス冷媒は、圧縮機1に再び吸入される。   The gas-liquid two-phase refrigerant that has flowed out of the second expansion valve 5 flows into the air heat exchanger 6. The gas-liquid two-phase refrigerant that has passed through the air heat exchanger 6 cools the outside air that is the heat exchange medium and evaporates to become a low-temperature and low-pressure gas refrigerant. The low-temperature and low-pressure gas refrigerant that has flowed out of the air heat exchanger 6 is sucked into the compressor 1 again.

次に、蓄熱利用給湯運転について説明する。ここで、蓄熱利用給湯運転とは、蓄熱槽41において蓄熱された蓄熱材を熱源として、給湯運転を行う運転である。たとえば、低外気時における給湯能力低下の防止、給湯負荷が一時的に大きくなるときなどにおける給湯能力の増強などを目的として行う運転である。   Next, the heat storage hot water supply operation will be described. Here, the hot water storage operation using the heat storage is an operation for performing the hot water supply operation using the heat storage material stored in the heat storage tank 41 as a heat source. For example, the operation is performed for the purpose of preventing a decrease in hot water supply capacity during low outside air, and increasing the hot water supply capacity when the hot water supply load temporarily increases.

蓄熱利用給湯運転において、給湯側二次回路30側では、給湯ポンプ32が駆動すると、給湯タンク31内の低温水が給湯用熱交換器2に送られる。給湯用熱交換器2を通過した水は、冷媒によって加熱されて高温水となって給湯タンク31に戻る。以上のようにして加熱された水が給湯タンク31内にたまる。   In the hot water storage use hot water supply operation, on the hot water supply side secondary circuit 30 side, when the hot water supply pump 32 is driven, the low temperature water in the hot water supply tank 31 is sent to the hot water supply heat exchanger 2. The water that has passed through the hot water supply heat exchanger 2 is heated by the refrigerant to become high-temperature water and returns to the hot water supply tank 31. The water heated as described above accumulates in the hot water supply tank 31.

また、蓄熱側二次回路40側では、蓄熱材が採熱用熱交換器15を通過して蓄熱槽41に流入するように、三方弁43を切り換える。蓄熱ポンプ42が駆動すると、蓄熱槽41内の蓄熱材が採熱用熱交換器15に送られる。採熱用熱交換器15を通過した蓄熱材は、冷媒に放熱して蓄熱槽41に戻る。以上のようにして放熱した蓄熱材が蓄熱槽41にたまる。   On the heat storage side secondary circuit 40 side, the three-way valve 43 is switched so that the heat storage material passes through the heat collecting heat exchanger 15 and flows into the heat storage tank 41. When the heat storage pump 42 is driven, the heat storage material in the heat storage tank 41 is sent to the heat exchanger 15 for heat collection. The heat storage material that has passed through the heat collecting heat exchanger 15 releases heat to the refrigerant and returns to the heat storage tank 41. The heat storage material radiated as described above accumulates in the heat storage tank 41.

次に冷媒回路側の動作について説明する。ここで、蓄熱利用給湯運転においては、第3膨張弁16は、冷媒を減圧させる開度に調整されている。このため、採熱バイパス配管20に冷媒が流れる。また、第2膨張弁5の開度は全閉とする。このため、空気熱交換器6には冷媒が流れず、冷媒と外気との熱交換は行われない。   Next, the operation on the refrigerant circuit side will be described. Here, in the heat storage hot water supply operation, the third expansion valve 16 is adjusted to an opening degree for depressurizing the refrigerant. For this reason, the refrigerant flows through the heat collection bypass pipe 20. The opening of the second expansion valve 5 is fully closed. For this reason, a refrigerant | coolant does not flow into the air heat exchanger 6, and heat exchange with a refrigerant | coolant and external air is not performed.

圧縮機1が駆動すると、低温低圧のガス状態の冷媒が圧縮機1に吸入され、圧縮されて高温高圧の超臨界状態の冷媒となって吐出する。圧縮機1から吐出した、高温高圧の超臨界状態の冷媒は、給湯用熱交換器2に流入する。給湯用熱交換器2に流入した、高温高圧の超臨界状態冷媒は、被熱交換媒体である、給湯側二次回路30を循環する水に放熱し、低温高圧の超臨界状態の冷媒となる。   When the compressor 1 is driven, the low-temperature and low-pressure gaseous refrigerant is sucked into the compressor 1 and compressed to be discharged as a high-temperature and high-pressure supercritical refrigerant. The high-temperature and high-pressure supercritical refrigerant discharged from the compressor 1 flows into the hot water supply heat exchanger 2. The high-temperature and high-pressure supercritical refrigerant that has flowed into the hot water supply heat exchanger 2 radiates heat to the water circulating through the hot-water supply side secondary circuit 30, which is a heat exchange medium, and becomes a low-temperature and high-pressure supercritical refrigerant. .

給湯用熱交換器2を流出した、低温高圧の超臨界状態の冷媒は、蓄熱用熱交換器4を通過して、第3膨張弁16に流入する。第3膨張弁16に流入した冷媒は、第3膨張弁16に減圧膨張され、低温低圧の気液二相冷媒となって流出する。第3膨張弁16から流出した気液二相冷媒は、採熱用熱交換器15に流入する。   The low-temperature and high-pressure supercritical refrigerant that has flowed out of the hot water supply heat exchanger 2 passes through the heat storage heat exchanger 4 and flows into the third expansion valve 16. The refrigerant flowing into the third expansion valve 16 is decompressed and expanded by the third expansion valve 16 and flows out as a low-temperature and low-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant that has flowed out of the third expansion valve 16 flows into the heat collecting heat exchanger 15.

採熱用熱交換器15に流入した低温低圧の気液二相冷媒は、被熱交換媒体である、蓄熱側二次回路40を循環する蓄熱材から採熱し、低温低圧のガス冷媒となる。採熱用熱交換器15を流出した低温低圧のガス冷媒は、採熱バイパス配管20を通過し、圧縮機1に再び吸入される。ここで、前述したように、採熱バイパス配管20の接続部分と空気熱交換器6との間には逆止弁8が設置されている。このため、外気の温度が低く、空気熱交換器6が冷えている状態でも、蓄熱用熱交換器4で熱交換した後の低圧中温のガス冷媒が、空気熱交換器6側に流れない。このため、空気熱交換器6において冷媒が凝縮し、寝込むことを防止することができる。   The low-temperature and low-pressure gas-liquid two-phase refrigerant flowing into the heat collecting heat exchanger 15 collects heat from the heat storage material circulating through the heat storage side secondary circuit 40, which is a heat exchange medium, and becomes a low-temperature and low-pressure gas refrigerant. The low-temperature and low-pressure gas refrigerant that has flowed out of the heat collecting heat exchanger 15 passes through the heat collecting bypass pipe 20 and is sucked into the compressor 1 again. Here, as described above, the check valve 8 is installed between the connection portion of the heat collection bypass pipe 20 and the air heat exchanger 6. For this reason, even when the temperature of the outside air is low and the air heat exchanger 6 is cold, the low-pressure and medium-temperature gas refrigerant after heat exchange by the heat storage heat exchanger 4 does not flow to the air heat exchanger 6 side. For this reason, it is possible to prevent the refrigerant from condensing and falling asleep in the air heat exchanger 6.

図11は、この発明の実施の形態2のヒートポンプ給湯装置における給湯蓄熱併用運転を行う際の制御系のシステムを中心とする構成を示す図である。図11では、本実施の形態のヒートポンプ給湯装置が給湯蓄熱併用運転を行う際の制御に係る構成を示している。図11において、図4などと同じ符号を付している機器は、実施の形態1において説明したことと同様の動作を行う。図11に示すように、本実施の形態に係るヒートポンプ給湯装置は、少なくとも制御装置100、圧縮機吸入圧力センサ10、給湯用熱交換器入口水温センサ11および圧縮機吸入温度センサ12を制御に係る機器として有している。   FIG. 11 is a diagram showing a configuration centering on the system of the control system when performing the hot water storage heat combined operation in the heat pump hot water supply apparatus according to Embodiment 2 of the present invention. In FIG. 11, the structure which concerns on the control at the time of the heat pump hot-water supply apparatus of this Embodiment performing hot water supply heat storage combined use driving | operation is shown. 11, devices having the same reference numerals as those in FIG. 4 perform the same operations as those described in the first embodiment. As shown in FIG. 11, the heat pump hot water supply apparatus according to the present embodiment relates to control of at least the control device 100, the compressor suction pressure sensor 10, the hot water supply heat exchanger inlet water temperature sensor 11, and the compressor suction temperature sensor 12. It has as equipment.

図12は、この発明の実施の形態2のヒートポンプ給湯装置における給湯蓄熱併用運転に係る制御手順のフローチャートを示す図である。図11および図12に基づいて、制御装置100が行う給湯蓄熱併用運転に係る制御について説明する。制御装置100は、給湯運転指令を受けると、圧縮機1および給湯ポンプ32の駆動を開始させる(S61)。また、第3膨張弁16の開度を全閉させ、蓄熱材が蓄熱用熱交換器4を通過するように三方弁43を切り換える(S62)。   FIG. 12 is a diagram showing a flowchart of a control procedure related to the hot water storage heat storage combined operation in the heat pump hot water supply apparatus according to Embodiment 2 of the present invention. Based on FIG. 11 and FIG. 12, the control which concerns on the hot water storage heat | fever combined use operation which the control apparatus 100 performs is demonstrated. Upon receiving the hot water supply operation command, control device 100 starts driving compressor 1 and hot water supply pump 32 (S61). Further, the opening degree of the third expansion valve 16 is fully closed, and the three-way valve 43 is switched so that the heat storage material passes through the heat storage heat exchanger 4 (S62).

制御装置100は、給湯用熱交換器入口水温センサ11が検出した入口水温Twiを入力する(S63)。そして、制御装置100は、入口水温Twiの温度値が第1設定値より大きいかどうかを判定する(S64)。たとえば、入口水温Twiが高いと、水と冷媒との熱交換量が少なく、給湯用熱交換器2から流出する冷媒のエンタルピーが十分大きくなるため、蓄熱運転が可能となる。そこで、制御装置100は、入口水温Twiの温度値が第1設定値より大きいと判定すると、給湯蓄熱併用運転を開始させる(S65)。そして、蓄熱ポンプ42を駆動させて、蓄熱材を循環させて、蓄熱材に蓄熱させる(S66)。   The control device 100 inputs the inlet water temperature Twi detected by the hot water supply heat exchanger inlet water temperature sensor 11 (S63). And the control apparatus 100 determines whether the temperature value of the inlet water temperature Twi is larger than a 1st setting value (S64). For example, if the inlet water temperature Twi is high, the amount of heat exchange between water and the refrigerant is small, and the enthalpy of the refrigerant flowing out of the hot water supply heat exchanger 2 becomes sufficiently large, so that the heat storage operation can be performed. Therefore, when determining that the temperature value of the inlet water temperature Twi is larger than the first set value, the control device 100 starts the hot water storage heat storage combined operation (S65). Then, the heat storage pump 42 is driven, the heat storage material is circulated, and heat is stored in the heat storage material (S66).

一方、入口水温Twiが低いと、熱交換量が多く、給湯用熱交換器2から流出する冷媒のエンタルピーが小さくなる。そこで、入口水温Twiの温度値が第1設定値より大きくないと判定すると、蓄熱ポンプ42は駆動させず、給湯運転を行わせる(S67)。   On the other hand, when the inlet water temperature Twi is low, the heat exchange amount is large, and the enthalpy of the refrigerant flowing out from the hot water supply heat exchanger 2 is small. Therefore, if it is determined that the temperature value of the inlet water temperature Twi is not larger than the first set value, the heat storage pump 42 is not driven and a hot water supply operation is performed (S67).

制御装置100は、圧縮機吸入圧力センサ10が検出した圧縮機吸入圧力Psと圧縮機吸入温度センサ12が検出した圧縮機吸入温度Tsとを入力する(S68)。そして、制御装置100は、圧縮機吸入圧力Psの飽和温度f(Ps)を算出する。さらに、圧縮機吸入温度Tsから圧縮機吸入圧力Psの飽和温度f(Ps)を差し引いて圧縮機吸入過熱度SHsを算出する(S69)。   The control device 100 inputs the compressor suction pressure Ps detected by the compressor suction pressure sensor 10 and the compressor suction temperature Ts detected by the compressor suction temperature sensor 12 (S68). Then, the control device 100 calculates a saturation temperature f (Ps) of the compressor suction pressure Ps. Further, the compressor intake superheat degree SHs is calculated by subtracting the saturation temperature f (Ps) of the compressor intake pressure Ps from the compressor intake temperature Ts (S69).

制御装置100は、算出した圧縮機吸入過熱度SHsの値が、圧縮機吸入過熱度目標値としてあらかじめ設定された第2設定値よりも小さいかどうかを判定する(S70)。制御装置100は、圧縮機吸入過熱度SHsの値が第2設定値よりも小さいと判定すると、第2膨張弁5の開度を小さくさせる制御を行う(S71)。そして、S68に戻って制御を続ける。また、制御装置100は、圧縮機吸入過熱度SHsの値が第2設定値よりも小さくないと判定すると、第2膨張弁5の開度を大きくさせる制御を行う(S72)。そして、S68に戻って制御を続ける。   The control device 100 determines whether or not the calculated value of the compressor suction superheat degree SHs is smaller than a second set value preset as a compressor suction superheat degree target value (S70). When determining that the value of the compressor intake superheat degree SHs is smaller than the second set value, the control device 100 performs control to reduce the opening of the second expansion valve 5 (S71). And it returns to S68 and continues control. When determining that the value of the compressor intake superheat degree SHs is not smaller than the second set value, the control device 100 performs control to increase the opening of the second expansion valve 5 (S72). And it returns to S68 and continues control.

図13は、この発明の実施の形態2のヒートポンプ給湯装置における給湯蓄熱併用運転を行う際の制御系の別例のシステムを中心とする構成を示す図である。図13において、図6などと同じ符号を付している機器については、実施の形態1などにおいて説明したことと基本的に同様の動作を行う。図13に示すように、本実施の形態に係るヒートポンプ給湯装置は、少なくとも制御装置100、圧縮機吸入圧力センサ10、給湯用熱交換器出口冷媒温度センサ13および圧縮機吸入温度センサ12を制御に係る機器として有している。   FIG. 13 is a diagram showing a configuration centering on another system of the control system when performing the hot water storage heat combined operation in the heat pump hot water supply apparatus of Embodiment 2 of the present invention. 13, devices having the same reference numerals as those in FIG. 6 perform basically the same operations as those described in the first embodiment. As shown in FIG. 13, the heat pump hot water supply apparatus according to the present embodiment controls at least the control device 100, the compressor suction pressure sensor 10, the hot water supply heat exchanger outlet refrigerant temperature sensor 13, and the compressor suction temperature sensor 12. As such equipment.

図14は、この発明の実施の形態2のヒートポンプ給湯装置における給湯蓄熱併用運転に係る制御手順の別例のフローチャートを示す図である。図13および図14に基づいて、制御装置100が行う給湯蓄熱併用運転に係る制御について説明する。制御装置100は、給湯運転指令を受けると、圧縮機1および給湯ポンプ32の駆動を開始させる(S81)。また、第3膨張弁16の開度を全閉にさせ、蓄熱材が蓄熱用熱交換器4を通過するように三方弁43を切り換える(S82)。   FIG. 14 is a view showing a flowchart of another example of the control procedure for the hot water storage heat storage combined operation in the heat pump hot water supply apparatus according to Embodiment 2 of the present invention. Based on FIG. 13 and FIG. 14, the control which concerns on the hot water storage heat | fever combined use operation which the control apparatus 100 performs is demonstrated. When receiving the hot water supply operation command, control device 100 starts driving compressor 1 and hot water supply pump 32 (S81). Further, the opening degree of the third expansion valve 16 is fully closed, and the three-way valve 43 is switched so that the heat storage material passes through the heat storage heat exchanger 4 (S82).

制御装置100は、給湯用熱交換器出口冷媒温度センサ13が検出した出口冷媒温度Troを入力する(S83)。そして、制御装置100は、出口冷媒温度Troの温度値が第3設定値より大きいかどうかを判定する(S84)。たとえば、出口冷媒温度Troが高いと、給湯用熱交換器2から流出する冷媒のエンタルピーが十分大きいため、蓄熱運転が可能となる。そこで、制御装置100は、出口冷媒温度Troの温度値が第3設定値より大きいと判定すると、給湯蓄熱併用運転を開始させる(S85)。そして、蓄熱ポンプ42を駆動させて、蓄熱材を循環させて、蓄熱材に蓄熱させる(S86)。   The control device 100 inputs the outlet refrigerant temperature Tro detected by the hot water supply heat exchanger outlet refrigerant temperature sensor 13 (S83). Then, the control device 100 determines whether or not the temperature value of the outlet refrigerant temperature Tro is larger than the third set value (S84). For example, when the outlet refrigerant temperature Tro is high, the enthalpy of the refrigerant flowing out from the hot water supply heat exchanger 2 is sufficiently large, so that the heat storage operation is possible. Therefore, when determining that the temperature value of the outlet refrigerant temperature Tro is larger than the third set value, the control device 100 starts the hot water storage heat storage combined operation (S85). Then, the heat storage pump 42 is driven, the heat storage material is circulated, and heat is stored in the heat storage material (S86).

一方、出口冷媒温度Troが低いと、給湯用熱交換器2から流出する冷媒のエンタルピーが小さい。そこで、出口冷媒温度Troの温度値が第3設定値より大きくないと判定すると、蓄熱ポンプ42は駆動させず、給湯運転を行わせる(S87)。   On the other hand, when the outlet refrigerant temperature Tro is low, the enthalpy of the refrigerant flowing out of the hot water supply heat exchanger 2 is small. Therefore, if it is determined that the temperature value of the outlet refrigerant temperature Tro is not larger than the third set value, the heat storage pump 42 is not driven and a hot water supply operation is performed (S87).

制御装置100は、圧縮機吸入圧力センサ10が検出した圧縮機吸入圧力Psと圧縮機吸入温度センサ12が検出した圧縮機吸入温度Tsとを入力する(S88)。そして、制御装置100は、圧縮機吸入圧力Psの飽和温度f(Ps)を算出する。さらに、圧縮機吸入温度Tsから圧縮機吸入圧力Psの飽和温度f(Ps)を差し引いて圧縮機吸入過熱度SHsを算出する(S89)。   The control device 100 inputs the compressor suction pressure Ps detected by the compressor suction pressure sensor 10 and the compressor suction temperature Ts detected by the compressor suction temperature sensor 12 (S88). Then, the control device 100 calculates a saturation temperature f (Ps) of the compressor suction pressure Ps. Further, the compressor intake superheat degree SHs is calculated by subtracting the saturation temperature f (Ps) of the compressor intake pressure Ps from the compressor intake temperature Ts (S89).

制御装置100は、算出した圧縮機吸入過熱度SHsの値が、圧縮機吸入過熱度目標値としてあらかじめ設定された第2設定値よりも小さいかどうかを判定する(S90)。制御装置100は、圧縮機吸入過熱度SHsの値が第2設定値よりも小さいと判定すると、第2膨張弁5の開度を小さくさせる制御を行う(S91)。そして、S88に戻って制御を続ける。また、制御装置100は、圧縮機吸入過熱度SHsの値が第2設定値よりも小さくないと判定すると、第2膨張弁5の開度を大きくさせる制御を行う(S92)。そして、S88に戻って制御を続ける。   The control device 100 determines whether or not the calculated value of the compressor intake superheat degree SHs is smaller than a second set value preset as a compressor intake superheat degree target value (S90). When determining that the value of the compressor intake superheat degree SHs is smaller than the second set value, the control device 100 performs control to reduce the opening of the second expansion valve 5 (S91). And it returns to S88 and continues control. Further, when determining that the value of the compressor suction superheat degree SHs is not smaller than the second set value, the control device 100 performs control to increase the opening degree of the second expansion valve 5 (S92). And it returns to S88 and continues control.

図15は、この発明の実施の形態2のヒートポンプ給湯装置における蓄熱利用給湯運転を行う際の制御系のシステムを中心とする構成を示す図である。図15では、本実施の形態のヒートポンプ給湯装置が蓄熱利用給湯運転を行う際の制御に係る構成を示している。図15において、図8などと同じ符号を付している機器については、実施の形態1などにおいて説明したことと基本的に同様の動作を行う。本実施の形態に係るヒートポンプ給湯装置は、少なくとも制御装置100、圧縮機吸入圧力センサ10、圧縮機吸入温度センサ12および蓄熱材温度センサ14を制御に係る機器として有している。蓄熱材温度センサ14は、蓄熱槽41内の蓄熱材の温度となる蓄熱材温度Tstを検出する装置である。   FIG. 15 is a diagram showing a configuration centering on a system of a control system when performing a heat storage hot water supply operation in the heat pump hot water supply apparatus according to Embodiment 2 of the present invention. In FIG. 15, the structure which concerns on the control at the time of the heat pump hot water supply apparatus of this Embodiment performing a heat storage utilization hot water supply driving | operation is shown. In FIG. 15, devices having the same reference numerals as those in FIG. 8 perform basically the same operations as those described in the first embodiment. The heat pump hot water supply apparatus according to the present embodiment includes at least the control device 100, the compressor suction pressure sensor 10, the compressor suction temperature sensor 12, and the heat storage material temperature sensor 14 as control-related devices. The heat storage material temperature sensor 14 is a device that detects the heat storage material temperature Tst that is the temperature of the heat storage material in the heat storage tank 41.

図16は、この発明の実施の形態2のヒートポンプ給湯装置における蓄熱利用給湯運転に係る制御手順のフローチャートを示す図である。図15および図16に基づいて、制御装置100が行う蓄熱利用給湯運転に係る制御について説明する。制御装置100は、給湯運転指令を受けると、圧縮機1および給湯ポンプ32の駆動を開始させる(S101)。   FIG. 16 is a diagram showing a flowchart of a control procedure related to a heat storage hot water supply operation in the heat pump hot water supply apparatus according to Embodiment 2 of the present invention. Based on FIG. 15 and FIG. 16, the control which concerns on the thermal storage utilization hot water supply operation which the control apparatus 100 performs is demonstrated. When receiving the hot water supply operation command, control device 100 starts driving compressor 1 and hot water supply pump 32 (S101).

制御装置100は、蓄熱材温度センサ14が検出した蓄熱材温度Tstを入力する(S102)。そして、制御装置100は、蓄熱材温度Tstの温度値が第4設定値より大きいかどうかを判定する(S103)。   The control device 100 inputs the heat storage material temperature Tst detected by the heat storage material temperature sensor 14 (S102). And the control apparatus 100 determines whether the temperature value of the thermal storage material temperature Tst is larger than a 4th setting value (S103).

制御装置100は、蓄熱材温度Tstの温度値が第4設定値より大きいと判定すると、蓄熱利用給湯運転を開始させる(S104)。制御装置100は、第2膨張弁5の開度を全閉にさせる。また、第3膨張弁16を初期開度にさせる。そして、蓄熱材が採熱用熱交換器15を通過するように三方弁43を切り換える。そして、蓄熱ポンプ42を駆動させ、採熱用熱交換器15を通過させて、蓄熱材に放熱させる(S105)。   When determining that the temperature value of the heat storage material temperature Tst is larger than the fourth set value, the control device 100 starts the heat storage hot water supply operation (S104). The control device 100 causes the opening of the second expansion valve 5 to be fully closed. Further, the third expansion valve 16 is set to the initial opening degree. Then, the three-way valve 43 is switched so that the heat storage material passes through the heat collecting heat exchanger 15. Then, the heat storage pump 42 is driven to pass through the heat collecting heat exchanger 15 to dissipate heat to the heat storage material (S105).

制御装置100は、圧縮機吸入圧力センサ10が検出した圧縮機吸入圧力Psと圧縮機吸入温度センサ12が検出した圧縮機吸入温度Tsとを入力する(S106)。そして、制御装置100は、圧縮機吸入圧力Psの飽和温度f(Ps)を算出する。さらに、圧縮機吸入温度Tsから圧縮機吸入圧力Psの飽和温度f(Ps)を差し引いて圧縮機吸入過熱度SHsを算出する(S107)。   The control device 100 inputs the compressor suction pressure Ps detected by the compressor suction pressure sensor 10 and the compressor suction temperature Ts detected by the compressor suction temperature sensor 12 (S106). Then, the control device 100 calculates a saturation temperature f (Ps) of the compressor suction pressure Ps. Further, the compressor intake superheat degree SHs is calculated by subtracting the saturation temperature f (Ps) of the compressor intake pressure Ps from the compressor intake temperature Ts (S107).

制御装置100は、算出した圧縮機吸入過熱度SHsの値が、圧縮機吸入過熱度目標値としてあらかじめ設定された第2設定値よりも小さいかどうかを判定する(S108)。制御装置100は、圧縮機吸入過熱度SHsの値が第2設定値よりも小さいと判定すると、第3膨張弁16の開度を小さくさせる制御を行う(S109)。そして、S102に戻って制御を続ける。また、制御装置100は、圧縮機吸入過熱度SHsの値が第2設定値よりも小さくないと判定すると、第3膨張弁16の開度を大きくさせる制御を行う(S110)。そして、S102に戻って制御を続ける。   The control device 100 determines whether or not the calculated value of the compressor intake superheat degree SHs is smaller than a second set value preset as a compressor intake superheat degree target value (S108). When determining that the value of the compressor intake superheat degree SHs is smaller than the second set value, the control device 100 performs control to reduce the opening of the third expansion valve 16 (S109). And it returns to S102 and continues control. When determining that the value of the compressor intake superheat degree SHs is not smaller than the second set value, the control device 100 performs control to increase the opening of the third expansion valve 16 (S110). And it returns to S102 and continues control.

一方、制御装置100は、蓄熱材温度Tstの温度値が第4設定値より大きくないと判定すると、通常の給湯運転を行わせる(S111)。制御装置100は、第3膨張弁16の開度を全閉にさせる。また、蓄熱ポンプ42を駆動させないようにする(S112)。   On the other hand, when determining that the temperature value of the heat storage material temperature Tst is not larger than the fourth set value, the control device 100 performs a normal hot water supply operation (S111). The control device 100 causes the opening of the third expansion valve 16 to be fully closed. Further, the heat storage pump 42 is not driven (S112).

制御装置100は、圧縮機吸入圧力センサ10が検出した圧縮機吸入圧力Psと圧縮機吸入温度センサ12が検出した圧縮機吸入温度Tsとを入力する(S113)。そして、制御装置100は、圧縮機吸入圧力Psの飽和温度f(Ps)を算出する。さらに、圧縮機吸入温度Tsから圧縮機吸入圧力Psの飽和温度f(Ps)を差し引いて圧縮機吸入過熱度SHsを算出する(S114)。   The control device 100 inputs the compressor suction pressure Ps detected by the compressor suction pressure sensor 10 and the compressor suction temperature Ts detected by the compressor suction temperature sensor 12 (S113). Then, the control device 100 calculates a saturation temperature f (Ps) of the compressor suction pressure Ps. Further, the compressor intake superheat degree SHs is calculated by subtracting the saturation temperature f (Ps) of the compressor intake pressure Ps from the compressor intake temperature Ts (S114).

制御装置100は、算出した圧縮機吸入過熱度SHsの値が、圧縮機吸入過熱度目標値としてあらかじめ設定された第2設定値よりも小さいかどうかを判定する(S115)。制御装置100は、圧縮機吸入過熱度SHsの値が第2設定値よりも小さいと判定すると、第2膨張弁5の開度を小さくさせる制御を行う(S116)。そして、S102に戻って制御を続ける。また、制御装置100は、圧縮機吸入過熱度SHsの値が第2設定値よりも小さくないと判定すると、第2膨張弁5の開度を大きくさせる制御を行う(S117)。そして、S102に戻って制御を続ける。   The control device 100 determines whether or not the calculated value of the compressor intake superheat degree SHs is smaller than a second set value preset as a compressor intake superheat degree target value (S115). When determining that the value of the compressor intake superheat degree SHs is smaller than the second set value, the control device 100 performs control to reduce the opening of the second expansion valve 5 (S116). And it returns to S102 and continues control. When determining that the value of the compressor suction superheat degree SHs is not smaller than the second set value, the control device 100 performs control to increase the opening of the second expansion valve 5 (S117). And it returns to S102 and continues control.

以上のように、本実施の形態に係るヒートポンプ給湯装置は、冷媒が循環する冷媒回路、給湯側二次回路30および蓄熱側二次回路40を有し、制御装置100が、保温運転などのように、比較的高温の水を加熱する運転を行う場合など、給湯用熱交換器2から流出する冷媒が比エンタルピーの大きい状態になるかどうかを判定し、比エンタルピーが大きい状態になると判定すると、給湯蓄熱併用運転を行って蓄熱運転も行うことにより、ヒートポンプ給湯装置を運転することによって得られる熱エネルギーを有効利用することができる。また、蓄熱槽41に蓄熱した熱エネルギーを利用した蓄熱利用給湯運転を行うことができるので、外気温度によらず、空気熱交換器6における冷媒の蒸発温度を高く維持することができるので、冷媒から水への加熱能力を増強することができる。   As described above, the heat pump hot water supply apparatus according to the present embodiment includes the refrigerant circuit in which the refrigerant circulates, the hot water supply side secondary circuit 30 and the heat storage side secondary circuit 40, and the control apparatus 100 performs a heat insulation operation or the like. In addition, when performing an operation of heating relatively high temperature water, it is determined whether or not the refrigerant flowing out of the hot water supply heat exchanger 2 has a large specific enthalpy, and when it is determined that the specific enthalpy is large, By performing the hot water storage heat storage combined operation and performing the heat storage operation, the thermal energy obtained by operating the heat pump hot water supply apparatus can be used effectively. Further, since the heat storage hot water supply operation using the heat energy stored in the heat storage tank 41 can be performed, the evaporation temperature of the refrigerant in the air heat exchanger 6 can be kept high regardless of the outside air temperature. The heating capacity from water to water can be enhanced.

また、本実施の形態に係るヒートポンプ給湯装置は、中温で潜熱変化するスラリーなどの蓄熱材を、蓄熱側二次回路40内に循環させるようにしたので、蓄熱運転における効率を高くすることができる。また、蓄熱材が蓄熱用熱交換器4を直接通過するので、効率よく採熱などを行うことができる。また、蓄熱利用給湯運転において、外気温度が低く、空気熱交換器6が冷えている状態でも、蓄熱用熱交換器4で熱交換した後の低圧中温のガス冷媒が、空気熱交換器6側に流れない。このため、空気熱交換器6において冷媒が凝縮し、寝込むことを防止することができる。   Moreover, since the heat pump hot water supply apparatus according to the present embodiment circulates a heat storage material such as slurry that changes in latent heat at an intermediate temperature in the heat storage side secondary circuit 40, the efficiency in the heat storage operation can be increased. . Moreover, since the heat storage material passes directly through the heat storage heat exchanger 4, heat collection or the like can be performed efficiently. In the heat storage hot water supply operation, even when the outside air temperature is low and the air heat exchanger 6 is cold, the low-pressure medium-temperature gas refrigerant after heat exchange by the heat storage heat exchanger 4 is performed on the air heat exchanger 6 side. Does not flow. For this reason, it is possible to prevent the refrigerant from condensing and falling asleep in the air heat exchanger 6.

さらに、本実施の形態に係るヒートポンプ給湯装置は、給湯用熱交換器2と蓄熱用熱交換器4との間に膨張弁を有しない構成である。このため、給湯蓄熱併用運転において、給湯用熱交換器2から流出した、中温高圧の超臨界状態の冷媒について、圧力損失を生じることなく蓄熱用熱交換器4に流入させることができる。したがって、蓄熱用熱交換器4に流入する冷媒が、圧力損失によって温度が低下せず、蓄熱材に効率よく蓄熱させることができる。また、採熱用熱交換器15と圧縮機1の吸入側配管との間に弁を有しない構成である。このため、蓄熱利用給湯運転において、採熱用熱交換器15を流出した低温低圧のガス冷媒を、圧力損失を生じることなく圧縮機1に吸入させることができる。したがって、冷媒の圧力損失による効率低下を抑制することができる。   Furthermore, the heat pump hot water supply apparatus according to the present embodiment has a configuration that does not have an expansion valve between the hot water supply heat exchanger 2 and the heat storage heat exchanger 4. For this reason, in the hot water storage heat storage combined operation, the medium temperature and high pressure supercritical refrigerant that has flowed out of the hot water supply heat exchanger 2 can flow into the heat storage heat exchanger 4 without causing pressure loss. Therefore, the refrigerant flowing into the heat storage heat exchanger 4 does not decrease in temperature due to pressure loss, and can efficiently store heat in the heat storage material. In addition, the valve is not provided between the heat collecting heat exchanger 15 and the suction side piping of the compressor 1. For this reason, in the hot water supply operation using heat storage, the low-temperature and low-pressure gas refrigerant that has flowed out of the heat collecting heat exchanger 15 can be sucked into the compressor 1 without causing pressure loss. Accordingly, it is possible to suppress a decrease in efficiency due to the pressure loss of the refrigerant.

実施の形態3.
図17は、この発明の実施の形態3におけるヒートポンプ給湯装置の構成を示す図である。図17において、図1などと同じ符号を付している機器は、実施の形態1などにおいて説明したことと同様の動作を行う。本実施の形態のヒートポンプ給湯装置は、圧縮機1、給湯用熱交換器2、第1膨張弁3、蓄熱用熱交換器4A、第2膨張弁5および空気熱交換器6を、冷媒配管を介して環状に接続する。また、圧縮機1の吸入側と空気熱交換器6との間に逆止弁8が設置されている。このように、配管および機器を接続して、本実施の形態のヒートポンプ給湯装置は、冷媒を循環させる冷媒回路を構成している。
Embodiment 3 FIG.
FIG. 17 is a diagram showing a configuration of a heat pump hot water supply apparatus according to Embodiment 3 of the present invention. 17, devices having the same reference numerals as those in FIG. 1 perform the same operations as those described in the first embodiment. The heat pump hot water supply apparatus of the present embodiment includes a compressor 1, a hot water supply heat exchanger 2, a first expansion valve 3, a heat storage heat exchanger 4A, a second expansion valve 5, and an air heat exchanger 6, and a refrigerant pipe. It connects in a ring through. A check valve 8 is installed between the suction side of the compressor 1 and the air heat exchanger 6. Thus, the piping and equipment are connected, and the heat pump hot water supply apparatus of the present embodiment constitutes a refrigerant circuit that circulates the refrigerant.

本実施の形態において、蓄熱用熱交換器4Aは、高圧の冷媒が流れる第1流路51、低圧の冷媒が流れる第2流路52および蓄熱材が流れる蓄熱材用流路53による3種類の流路を独立して有する。第1流路51は、給湯用熱交換器2から流出した冷媒が第2膨張弁5に流れる流路となる。第2流路52は、給湯用熱交換器2から流出した冷媒が第1膨張弁3を介して圧縮機1の吸入側の配管に流れる流路となる。   In the present embodiment, the heat storage heat exchanger 4A includes three types, namely, a first flow path 51 through which a high-pressure refrigerant flows, a second flow path 52 through which a low-pressure refrigerant flows, and a heat storage material flow path 53 through which a heat storage material flows. It has a channel independently. The first flow path 51 is a flow path in which the refrigerant that has flowed out of the hot water supply heat exchanger 2 flows to the second expansion valve 5. The second flow path 52 is a flow path in which the refrigerant that has flowed out of the hot water supply heat exchanger 2 flows through the first expansion valve 3 to the suction side piping of the compressor 1.

図18は、この発明の実施の形態3における蓄熱用熱交換器4Aの一例を示す図である。本実施の形態の蓄熱用熱交換器4Aは、たとえば、複数枚の伝熱プレートを重ね合わせて多数積層した熱交換器である。積層した伝熱プレートの間には流路ができる。そして、流路の並びは、第1流路51、蓄熱材用流路53、第2流路52、蓄熱材用流路53の順となって、冷媒が通過する第1流路51と第2流路52とを蓄熱材用流路53で挟むようにする。   FIG. 18 is a diagram illustrating an example of a heat storage heat exchanger 4A according to Embodiment 3 of the present invention. The heat storage heat exchanger 4A of the present embodiment is, for example, a heat exchanger in which a plurality of heat transfer plates are stacked and stacked. A flow path is formed between the stacked heat transfer plates. The flow paths are arranged in the order of the first flow path 51, the heat storage material flow path 53, the second flow path 52, and the heat storage material flow path 53. The two flow paths 52 are sandwiched between the heat storage material flow paths 53.

図19、図20および図21は、この発明の実施の形態3における蓄熱用熱交換器4Aの別の一例を示す図である。図19、図20および図21の蓄熱用熱交換器4Aは、外管54a、中管54bおよび内管54cを有する構成である。外管54aの内部に中管54bが内挿され、また、中管54bの内部に内管54cが内挿された三重管式熱交換器である。内管54cの内側が低圧の冷媒が流れる第2流路52となる。また、内管54cと中管54bとの間が蓄熱材が流れる蓄熱材用流路53となる。そして、中管54bと外管54aとの間が高圧の冷媒が流れる第1流路51となる。   19, 20 and 21 are diagrams showing another example of the heat storage heat exchanger 4A according to Embodiment 3 of the present invention. The heat storage heat exchanger 4A shown in FIGS. 19, 20, and 21 includes an outer tube 54a, an intermediate tube 54b, and an inner tube 54c. This is a triple-tube heat exchanger in which an intermediate tube 54b is inserted inside the outer tube 54a, and an inner tube 54c is inserted inside the intermediate tube 54b. The inner side of the inner pipe 54c becomes the second flow path 52 through which the low-pressure refrigerant flows. Further, a heat storage material flow path 53 through which the heat storage material flows is formed between the inner tube 54c and the middle tube 54b. And between the middle pipe 54b and the outer pipe 54a becomes the first flow path 51 through which the high-pressure refrigerant flows.

図22、図23および図24は、この発明の実施の形態3における蓄熱用熱交換器4Aのさらに別の一例を示す図である。図22、図23および図24の蓄熱用熱交換器4Aは、外管54aと2本の内管54dおよび内管54eとを有する構成である。外管54aの内部に、内管54dおよび内管54eが内挿された二重管式熱交換器である。一方の内管54eの内側が高圧の冷媒が流れる第1流路51となる。また、もう一方の内管54dの内側が低圧の冷媒が流れる第2流路52となる。そして、外管54aと2本の内管54dおよび内管54eとの間が蓄熱材が流れる蓄熱材用流路53となる。   22, 23 and 24 are diagrams showing still another example of the heat storage heat exchanger 4A according to Embodiment 3 of the present invention. The heat storage heat exchanger 4A shown in FIGS. 22, 23, and 24 has an outer tube 54a, two inner tubes 54d, and an inner tube 54e. This is a double-tube heat exchanger in which an inner tube 54d and an inner tube 54e are inserted inside the outer tube 54a. The inner side of one inner pipe 54e is a first flow path 51 through which a high-pressure refrigerant flows. Further, the inside of the other inner pipe 54d becomes the second flow path 52 through which the low-pressure refrigerant flows. And between the outer tube 54a and the two inner tubes 54d and the inner tube 54e is a heat storage material flow path 53 through which the heat storage material flows.

図25、図26、図27および図28は、この発明の実施の形態3における蓄熱用熱交換器4Aの他の一例を示す図である。図25、図26、図27および図28の蓄熱用熱交換器4Aは、表面に凹状の溝を有した蓄熱材用円管54fと、凹状の溝に密着して配置される2系統の冷媒用円管54gおよび冷媒用円管54hとを有する構成である。蓄熱材用円管54fの内側が蓄熱材が流れる蓄熱材用流路53となる。また、一方の冷媒用円管54gの内側が高圧の冷媒が流れる第1流路51となる。そして、もう一方の冷媒用円管54hの内側が低圧の冷媒が流れる第2流路52となる。   25, 26, 27, and 28 are diagrams showing another example of the heat storage heat exchanger 4A according to Embodiment 3 of the present invention. The heat storage heat exchanger 4A shown in FIGS. 25, 26, 27, and 28 includes a heat storage material circular tube 54f having a concave groove on its surface and two systems of refrigerant arranged in close contact with the concave groove. The configuration includes a circular tube 54g and a refrigerant circular tube 54h. The inside of the heat storage material circular tube 54f is a heat storage material flow path 53 through which the heat storage material flows. The inside of one refrigerant circular tube 54g is a first flow path 51 through which a high-pressure refrigerant flows. The inside of the other refrigerant tube 54h is a second flow path 52 through which a low-pressure refrigerant flows.

次に図17〜図28を参照しながら、本実施の形態に係るヒートポンプ給湯装置における運転動作について説明する。   Next, the operation of the heat pump hot water supply apparatus according to the present embodiment will be described with reference to FIGS.

まず、通常の給湯運転について説明する。通常の給湯運転とは、水道水と同程度の温度の水を、たとえば80℃などの高温の水に沸き上げる運転である。ここで、蓄熱ポンプ42は停止しており、蓄熱用熱交換器4では、冷媒と蓄熱材の熱交換はなされない。   First, a normal hot water supply operation will be described. The normal hot water supply operation is an operation in which water having a temperature similar to that of tap water is boiled into high-temperature water such as 80 ° C. Here, the heat storage pump 42 is stopped, and the heat storage heat exchanger 4 does not exchange heat between the refrigerant and the heat storage material.

通常の給湯運転において、給湯側二次回路30側では、給湯ポンプ32が駆動すると、給湯タンク31内の低温水が給湯用熱交換器2に送られる。給湯用熱交換器2を通過した水は冷媒によって加熱されて高温水となり給湯タンク31に戻る。以上のようにして加熱された水が給湯タンク31内にたまる。   In a normal hot water supply operation, on the hot water supply side secondary circuit 30 side, when the hot water supply pump 32 is driven, the low temperature water in the hot water supply tank 31 is sent to the hot water supply heat exchanger 2. The water that has passed through the hot water supply heat exchanger 2 is heated by the refrigerant to become high temperature water and returns to the hot water supply tank 31. The water heated as described above accumulates in the hot water supply tank 31.

次に冷媒回路側の動作について説明する。ここで、通常の給湯運転においては、第1膨張弁3の開度は全閉とする。このため、蓄熱用熱交換器4Aの第2流路52には冷媒が流れない。圧縮機1が駆動すると、低温低圧のガス状態の冷媒が圧縮機1に吸入され、圧縮されて高温高圧の超臨界状態の冷媒となって吐出する。圧縮機1から吐出した、高温高圧の超臨界状態の冷媒は、給湯用熱交換器2に流入する。給湯用熱交換器2に流入した、高温高圧の超臨界状態冷媒は、被熱交換媒体である、給湯側二次回路30を循環する水に放熱し、低温高圧の超臨界状態の冷媒となる。   Next, the operation on the refrigerant circuit side will be described. Here, in the normal hot water supply operation, the opening of the first expansion valve 3 is fully closed. For this reason, the refrigerant does not flow through the second flow path 52 of the heat storage heat exchanger 4A. When the compressor 1 is driven, the low-temperature and low-pressure gaseous refrigerant is sucked into the compressor 1 and compressed to be discharged as a high-temperature and high-pressure supercritical refrigerant. The high-temperature and high-pressure supercritical refrigerant discharged from the compressor 1 flows into the hot water supply heat exchanger 2. The high-temperature and high-pressure supercritical refrigerant that has flowed into the hot water supply heat exchanger 2 radiates heat to the water circulating through the hot-water supply side secondary circuit 30, which is a heat exchange medium, and becomes a low-temperature and high-pressure supercritical refrigerant. .

給湯用熱交換器2を流出した、低温高圧の超臨界状態の冷媒は、蓄熱用熱交換器4Aの第1流路51を通過して第2膨張弁5に流入する。蓄熱用熱交換器4Aでは蓄熱材と冷媒との熱交換は行われない。第2膨張弁5に流入した冷媒は、第2膨張弁5に減圧膨張され、低温低圧の気液二相冷媒となって流出する。   The low-temperature and high-pressure supercritical refrigerant that has flowed out of the hot water supply heat exchanger 2 passes through the first flow path 51 of the heat storage heat exchanger 4A and flows into the second expansion valve 5. In the heat storage heat exchanger 4A, heat exchange between the heat storage material and the refrigerant is not performed. The refrigerant flowing into the second expansion valve 5 is decompressed and expanded by the second expansion valve 5 and flows out as a low-temperature and low-pressure gas-liquid two-phase refrigerant.

第2膨張弁5から流出した気液二相冷媒は、空気熱交換器6に流入する。空気熱交換器6を通過した気液二相冷媒は、被熱交換媒体である外気を冷却し、蒸発して低温低圧のガス冷媒となる。空気熱交換器6から流出した低温低圧のガス冷媒は、圧縮機1に再び吸入される。   The gas-liquid two-phase refrigerant that has flowed out of the second expansion valve 5 flows into the air heat exchanger 6. The gas-liquid two-phase refrigerant that has passed through the air heat exchanger 6 cools the outside air that is the heat exchange medium and evaporates to become a low-temperature and low-pressure gas refrigerant. The low-temperature and low-pressure gas refrigerant that has flowed out of the air heat exchanger 6 is sucked into the compressor 1 again.

次に、給湯蓄熱併用運転について説明する。ここで、給湯蓄熱併用運転とは、保温運転と蓄熱運転とを同時に行う運転である。保温運転は、たとえば放熱などにより給湯タンク31内の水の温度が60℃に低下した場合に、65℃へ5℃程度沸き上げる運転である。また、蓄熱運転は、蓄熱槽41内の蓄熱材に蓄熱する運転である。   Next, the hot water storage heat combined operation will be described. Here, the hot water storage heat storage combined operation is an operation in which the heat insulation operation and the heat storage operation are performed simultaneously. The heat insulation operation is an operation in which water is heated to 65 ° C. by about 5 ° C. when the temperature of the water in the hot water supply tank 31 is reduced to 60 ° C. due to, for example, heat radiation. The heat storage operation is an operation for storing heat in the heat storage material in the heat storage tank 41.

給湯蓄熱併用運転において、給湯側二次回路30側では、給湯ポンプ32が駆動すると、給湯タンク31内の中温水が給湯用熱交換器2に送られる。給湯用熱交換器2を通過した水は、冷媒によって加熱されて高温水となって給湯タンク31に戻る。以上のようにして加熱された水が給湯タンク31内にたまる。   In the hot water storage heat storage combined operation, when the hot water supply pump 32 is driven on the hot water supply side secondary circuit 30 side, the medium temperature water in the hot water supply tank 31 is sent to the hot water supply heat exchanger 2. The water that has passed through the hot water supply heat exchanger 2 is heated by the refrigerant to become high-temperature water and returns to the hot water supply tank 31. The water heated as described above accumulates in the hot water supply tank 31.

また、蓄熱側二次回路40側では、蓄熱ポンプ42が駆動すると、蓄熱槽41内の蓄熱材が蓄熱用熱交換器4Aに送られる。蓄熱用熱交換器4Aの蓄熱材用流路53を通過した蓄熱材は、冷媒によって加熱されて蓄熱槽41に戻る。以上のようにして加熱された蓄熱材が蓄熱槽41にたまって蓄熱する。   On the heat storage side secondary circuit 40 side, when the heat storage pump 42 is driven, the heat storage material in the heat storage tank 41 is sent to the heat storage heat exchanger 4A. The heat storage material that has passed through the heat storage material flow path 53 of the heat storage heat exchanger 4 </ b> A is heated by the refrigerant and returned to the heat storage tank 41. The heat storage material heated as described above accumulates in the heat storage tank 41 and stores heat.

次に冷媒回路側の動作について説明する。ここで、給湯蓄熱併用運転においては、第1膨張弁3の開度は全閉とする。このため、蓄熱用熱交換器4Aの第2流路52には冷媒が流れない。圧縮機1が駆動すると、低温低圧のガス状態の冷媒が圧縮機1に吸入され、圧縮されて高温高圧の超臨界状態の冷媒となって吐出する。圧縮機1から吐出した、高温高圧の超臨界状態の冷媒は、給湯用熱交換器2に流入する。給湯用熱交換器2に流入した、高温高圧の超臨界状態冷媒は、被熱交換媒体である、給湯側二次回路30を循環する水に放熱し、中温高圧の超臨界状態の冷媒となる。   Next, the operation on the refrigerant circuit side will be described. Here, in the hot water storage heat combined operation, the opening of the first expansion valve 3 is fully closed. For this reason, the refrigerant does not flow through the second flow path 52 of the heat storage heat exchanger 4A. When the compressor 1 is driven, the low-temperature and low-pressure gaseous refrigerant is sucked into the compressor 1 and compressed to be discharged as a high-temperature and high-pressure supercritical refrigerant. The high-temperature and high-pressure supercritical refrigerant discharged from the compressor 1 flows into the hot water supply heat exchanger 2. The high-temperature and high-pressure supercritical state refrigerant that has flowed into the hot water supply heat exchanger 2 radiates heat to the water circulating through the hot-water supply side secondary circuit 30, which is a heat exchange medium, and becomes a medium-temperature and high-pressure supercritical state refrigerant. .

給湯用熱交換器2を流出した、中温高圧の超臨界状態の冷媒は、蓄熱用熱交換器4Aに流入する。蓄熱用熱交換器4Aの第1流路51に流入した、中温高圧の超臨界状態冷媒は、蓄熱材用流路53を通過する、被熱交換媒体である蓄熱材に放熱し、低温高圧の超臨界状態の冷媒となる。蓄熱用熱交換器4Aの第1流路51を流出した、低温高圧の超臨界状態の冷媒は、第2膨張弁5に流入する。第2膨張弁5に流入した冷媒は、第2膨張弁5に減圧膨張され、低温低圧の気液二相冷媒となって流出する。   The medium temperature and high pressure supercritical refrigerant that has flowed out of the hot water supply heat exchanger 2 flows into the heat storage heat exchanger 4A. The medium-temperature and high-pressure supercritical refrigerant that has flowed into the first flow path 51 of the heat storage heat exchanger 4A passes through the heat storage material flow path 53 and radiates heat to the heat storage material that is the heat exchange medium. It becomes a supercritical refrigerant. The low-temperature high-pressure supercritical refrigerant that has flowed out of the first flow path 51 of the heat storage heat exchanger 4 </ b> A flows into the second expansion valve 5. The refrigerant flowing into the second expansion valve 5 is decompressed and expanded by the second expansion valve 5 and flows out as a low-temperature and low-pressure gas-liquid two-phase refrigerant.

第2膨張弁5から流出した気液二相冷媒は、空気熱交換器6に流入する。空気熱交換器6を通過した気液二相冷媒は、被熱交換媒体である外気を冷却し、蒸発して低温低圧のガス冷媒となる。空気熱交換器6から流出した低温低圧のガス冷媒は、圧縮機1に再び吸入される。   The gas-liquid two-phase refrigerant that has flowed out of the second expansion valve 5 flows into the air heat exchanger 6. The gas-liquid two-phase refrigerant that has passed through the air heat exchanger 6 cools the outside air that is the heat exchange medium and evaporates to become a low-temperature and low-pressure gas refrigerant. The low-temperature and low-pressure gas refrigerant that has flowed out of the air heat exchanger 6 is sucked into the compressor 1 again.

次に、蓄熱利用給湯運転について説明する。ここで、蓄熱利用給湯運転とは、蓄熱槽41において蓄熱された蓄熱材を熱源として、給湯運転を行う運転である。たとえば、低外気時における給湯能力低下の防止、給湯負荷が一時的に大きくなるときなどにおける給湯能力の増強などを目的として行う運転である。   Next, the heat storage hot water supply operation will be described. Here, the hot water storage operation using the heat storage is an operation for performing the hot water supply operation using the heat storage material stored in the heat storage tank 41 as a heat source. For example, the operation is performed for the purpose of preventing a decrease in hot water supply capacity during low outside air, and increasing the hot water supply capacity when the hot water supply load temporarily increases.

蓄熱利用給湯運転において、給湯側二次回路30側では、給湯ポンプ32が駆動すると、給湯タンク31内の低温水が給湯用熱交換器2に送られる。給湯用熱交換器2を通過した水は、冷媒によって加熱されて高温水となって給湯タンク31に戻る。以上のようにして加熱された水が給湯タンク31内にたまる。   In the hot water storage use hot water supply operation, on the hot water supply side secondary circuit 30 side, when the hot water supply pump 32 is driven, the low temperature water in the hot water supply tank 31 is sent to the hot water supply heat exchanger 2. The water that has passed through the hot water supply heat exchanger 2 is heated by the refrigerant to become high-temperature water and returns to the hot water supply tank 31. The water heated as described above accumulates in the hot water supply tank 31.

また、蓄熱側二次回路40側では、蓄熱ポンプ42が駆動すると、蓄熱槽41内の蓄熱材が蓄熱用熱交換器4Aに送られる。蓄熱用熱交換器4Aの蓄熱材用流路53を通過した蓄熱材は、冷媒に放熱して蓄熱槽41に戻る。以上のようにして放熱した蓄熱材が蓄熱槽41にたまる。   On the heat storage side secondary circuit 40 side, when the heat storage pump 42 is driven, the heat storage material in the heat storage tank 41 is sent to the heat storage heat exchanger 4A. The heat storage material that has passed through the heat storage material flow path 53 of the heat storage heat exchanger 4 </ b> A radiates heat to the refrigerant and returns to the heat storage tank 41. The heat storage material radiated as described above accumulates in the heat storage tank 41.

次に冷媒回路側の動作について説明する。ここで、第2膨張弁5の開度は全閉とする。このため、空気熱交換器6には冷媒が流れず、冷媒と外気との熱交換は行われない。   Next, the operation on the refrigerant circuit side will be described. Here, the opening degree of the second expansion valve 5 is fully closed. For this reason, a refrigerant | coolant does not flow into the air heat exchanger 6, and heat exchange with a refrigerant | coolant and external air is not performed.

圧縮機1が駆動すると、低温低圧のガス状態の冷媒が圧縮機1に吸入され、圧縮されて高温高圧の超臨界状態の冷媒となって吐出する。圧縮機1から吐出した、高温高圧の超臨界状態の冷媒は、給湯用熱交換器2に流入する。給湯用熱交換器2に流入した、高温高圧の超臨界状態冷媒は、被熱交換媒体である、給湯側二次回路30を循環する水に放熱し、低温高圧の超臨界状態の冷媒となる。   When the compressor 1 is driven, the low-temperature and low-pressure gaseous refrigerant is sucked into the compressor 1 and compressed to be discharged as a high-temperature and high-pressure supercritical refrigerant. The high-temperature and high-pressure supercritical refrigerant discharged from the compressor 1 flows into the hot water supply heat exchanger 2. The high-temperature and high-pressure supercritical refrigerant that has flowed into the hot water supply heat exchanger 2 radiates heat to the water circulating through the hot-water supply side secondary circuit 30, which is a heat exchange medium, and becomes a low-temperature and high-pressure supercritical refrigerant. .

給湯用熱交換器2を流出した、低温高圧の超臨界状態の冷媒は、第1膨張弁3に流入する。第1膨張弁3に流入した冷媒は、第1膨張弁3に減圧膨張され、低温低圧の気液二相冷媒となって流出する。第1膨張弁3から流出した気液二相冷媒は、蓄熱用熱交換器4Aに流入する。   The low-temperature and high-pressure supercritical refrigerant that has flowed out of the hot water supply heat exchanger 2 flows into the first expansion valve 3. The refrigerant flowing into the first expansion valve 3 is decompressed and expanded by the first expansion valve 3 and flows out as a low-temperature and low-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant that has flowed out of the first expansion valve 3 flows into the heat storage heat exchanger 4A.

蓄熱用熱交換器4Aの第2流路52に流入した低温低圧の気液二相冷媒は、蓄熱材用流路53を通過する、被熱交換媒体である蓄熱材から採熱し、低温低圧のガス冷媒となる。蓄熱用熱交換器4Aを流出した低温低圧のガス冷媒は、圧縮機1に再び吸入される。ここで、前述したように、圧縮機1の吸入側と空気熱交換器6との間には逆止弁8が設置されている。このため、外気の温度が低く、空気熱交換器6が冷えている状態でも、蓄熱用熱交換器4Aで熱交換した後の低圧低温のガス冷媒が、空気熱交換器6側に流れない。このため、空気熱交換器6において冷媒が凝縮し、寝込むことを防止することができる。   The low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed into the second flow path 52 of the heat storage heat exchanger 4A takes heat from the heat storage material that is a heat exchange medium that passes through the heat storage material flow path 53, and It becomes a gas refrigerant. The low-temperature and low-pressure gas refrigerant that has flowed out of the heat storage heat exchanger 4A is sucked into the compressor 1 again. Here, as described above, the check valve 8 is installed between the suction side of the compressor 1 and the air heat exchanger 6. For this reason, even when the temperature of the outside air is low and the air heat exchanger 6 is cold, the low-pressure and low-temperature gas refrigerant after heat exchange with the heat storage heat exchanger 4A does not flow to the air heat exchanger 6 side. For this reason, it is possible to prevent the refrigerant from condensing and falling asleep in the air heat exchanger 6.

図29は、この発明の実施の形態3のヒートポンプ給湯装置における給湯蓄熱併用運転を行う際の制御系のシステムを中心とする構成を示す図である。図29では、本実施の形態のヒートポンプ給湯装置が給湯蓄熱併用運転を行う際の制御に係る構成を示している。図29において、図4などと同じ符号を付している機器は、実施の形態1などにおいて説明したことと同様の動作を行う。図29に示すように、本実施の形態に係るヒートポンプ給湯装置は、少なくとも制御装置100、圧縮機吸入圧力センサ10、給湯用熱交換器入口水温センサ11および圧縮機吸入温度センサ12を制御に係る機器として有している。   FIG. 29 is a diagram showing a configuration centering on the system of the control system when performing the hot water storage heat storage combined operation in the heat pump hot water supply apparatus according to Embodiment 3 of the present invention. In FIG. 29, the structure which concerns on the control at the time of the heat pump hot water supply apparatus of this Embodiment performing hot water supply heat storage combined use driving | operation is shown. In FIG. 29, devices having the same reference numerals as those in FIG. 4 perform the same operations as those described in the first embodiment. As shown in FIG. 29, the heat pump hot water supply apparatus according to the present embodiment relates to control of at least the control apparatus 100, the compressor suction pressure sensor 10, the hot water supply heat exchanger inlet water temperature sensor 11, and the compressor suction temperature sensor 12. It has as equipment.

図30は、この発明の実施の形態3のヒートポンプ給湯装置における給湯蓄熱併用運転に係る制御手順のフローチャートを示す図である。図29および図30に基づいて、制御装置100が行う給湯蓄熱併用運転に係る制御について説明する。制御装置100は、給湯運転指令を受けると、圧縮機1および給湯ポンプ32の駆動を開始させる(S121)。また、第1膨張弁3の開度を全閉にさせる(S122)。   FIG. 30 is a diagram showing a flowchart of a control procedure related to hot water storage heat storage combined operation in the heat pump hot water supply apparatus according to Embodiment 3 of the present invention. Based on FIG. 29 and FIG. 30, the control which concerns on the hot water storage heat combined use operation which the control apparatus 100 performs is demonstrated. Upon receiving the hot water supply operation command, control device 100 starts driving compressor 1 and hot water supply pump 32 (S121). Further, the opening of the first expansion valve 3 is fully closed (S122).

制御装置100は、給湯用熱交換器入口水温センサ11が検出した入口水温Twiを入力する(S123)。そして、制御装置100は、入口水温Twiの温度値が第1設定値より大きいかどうかを判定する(S124)。たとえば、入口水温Twiが高いと、水と冷媒との熱交換量が少なく、給湯用熱交換器2から流出する冷媒のエンタルピーが十分大きくなるため、蓄熱運転が可能となる。そこで、制御装置100は、入口水温Twiの温度値が第1設定値より大きいと判定すると、給湯蓄熱併用運転を開始させる(S125)。そして、蓄熱ポンプ42を駆動させて、蓄熱材を循環させて、蓄熱材に蓄熱させる(S126)。   The control device 100 inputs the inlet water temperature Twi detected by the hot water supply heat exchanger inlet water temperature sensor 11 (S123). Then, the control device 100 determines whether or not the temperature value of the inlet water temperature Twi is greater than the first set value (S124). For example, if the inlet water temperature Twi is high, the amount of heat exchange between water and the refrigerant is small, and the enthalpy of the refrigerant flowing out of the hot water supply heat exchanger 2 becomes sufficiently large, so that the heat storage operation can be performed. Therefore, when determining that the temperature value of the inlet water temperature Twi is larger than the first set value, the control device 100 starts the hot water storage heat storage combined operation (S125). Then, the heat storage pump 42 is driven, the heat storage material is circulated, and heat is stored in the heat storage material (S126).

一方、入口水温Twiが低いと、熱交換量が多く、給湯用熱交換器2から流出する冷媒のエンタルピーが小さくなる。そこで、入口水温Twiの温度値が第1設定値より大きくないと判定すると、蓄熱ポンプ42は駆動させず、給湯運転を行わせる(S127)。   On the other hand, when the inlet water temperature Twi is low, the heat exchange amount is large, and the enthalpy of the refrigerant flowing out from the hot water supply heat exchanger 2 is small. Therefore, if it is determined that the temperature value of the inlet water temperature Twi is not greater than the first set value, the heat storage pump 42 is not driven and a hot water supply operation is performed (S127).

制御装置100は、圧縮機吸入圧力センサ10が検出した圧縮機吸入圧力Psと圧縮機吸入温度センサ12が検出した圧縮機吸入温度Tsとを入力する(S128)。そして、制御装置100は、圧縮機吸入圧力Psの飽和温度f(Ps)を算出する。さらに、圧縮機吸入温度Tsから圧縮機吸入圧力Psの飽和温度f(Ps)を差し引いて圧縮機吸入過熱度SHsを算出する(S129)。   The control device 100 inputs the compressor suction pressure Ps detected by the compressor suction pressure sensor 10 and the compressor suction temperature Ts detected by the compressor suction temperature sensor 12 (S128). Then, the control device 100 calculates a saturation temperature f (Ps) of the compressor suction pressure Ps. Further, the compressor intake superheat degree SHs is calculated by subtracting the saturation temperature f (Ps) of the compressor intake pressure Ps from the compressor intake temperature Ts (S129).

制御装置100は、算出した圧縮機吸入過熱度SHsの値が、圧縮機吸入過熱度目標値としてあらかじめ設定された第2設定値よりも小さいかどうかを判定する(S130)。制御装置100は、圧縮機吸入過熱度SHsの値が第2設定値よりも小さいと判定すると、第2膨張弁5の開度を小さくさせる制御を行う(S131)。そして、S128に戻って制御を続ける。また、制御装置100は、圧縮機吸入過熱度SHsの値が第2設定値よりも小さくないと判定すると、第2膨張弁5の開度を大きくさせる制御を行う(S132)。そして、S128に戻って制御を続ける。   The control device 100 determines whether or not the calculated value of the compressor intake superheat degree SHs is smaller than a second set value preset as a compressor intake superheat degree target value (S130). When determining that the value of the compressor intake superheat degree SHs is smaller than the second set value, the control device 100 performs control to decrease the opening of the second expansion valve 5 (S131). And it returns to S128 and continues control. When determining that the value of the compressor suction superheat degree SHs is not smaller than the second set value, the control device 100 performs control to increase the opening of the second expansion valve 5 (S132). And it returns to S128 and continues control.

図31は、この発明の実施の形態3のヒートポンプ給湯装置における給湯蓄熱併用運転を行う際の制御系の別例のシステムを中心とする構成を示す図である。図31において、図6などと同じ符号を付している機器については、実施の形態1などにおいて説明したことと基本的に同様の動作を行う。図27に示すように、本実施の形態に係るヒートポンプ給湯装置は、少なくとも制御装置100、圧縮機吸入圧力センサ10、給湯用熱交換器出口冷媒温度センサ13および圧縮機吸入温度センサ12を制御に係る機器として有している。給湯用熱交換器出口冷媒温度センサ13は、給湯用熱交換器2から流出する冷媒の温度となる出口冷媒温度Troを検出する装置である。   FIG. 31 is a diagram showing a configuration centering on another system of the control system when performing the hot water storage heat combined operation in the heat pump hot water supply apparatus according to Embodiment 3 of the present invention. 31, devices having the same reference numerals as those in FIG. 6 and the like perform basically the same operations as those described in the first embodiment. As shown in FIG. 27, the heat pump hot water supply apparatus according to the present embodiment controls at least the control device 100, the compressor suction pressure sensor 10, the hot water supply heat exchanger outlet refrigerant temperature sensor 13, and the compressor suction temperature sensor 12. As such equipment. The hot water supply heat exchanger outlet refrigerant temperature sensor 13 is a device that detects an outlet refrigerant temperature Tro that is the temperature of the refrigerant flowing out of the hot water supply heat exchanger 2.

図32は、この発明の実施の形態3のヒートポンプ給湯装置における給湯蓄熱併用運転に係る制御手順の別例のフローチャートを示す図である。図31および図32に基づいて、制御装置100が行う給湯蓄熱併用運転に係る制御について説明する。制御装置100は、給湯運転指令を受けると、圧縮機1および給湯ポンプ32の駆動を開始させる(S141)。また、第1膨張弁3の開度を全閉にさせる(S142)。   FIG. 32 is a view showing a flowchart of another example of the control procedure related to the hot water storage heat storage combined operation in the heat pump hot water supply apparatus according to Embodiment 3 of the present invention. Based on FIG. 31 and FIG. 32, the control which concerns on the hot water storage heat | fever combined use operation which the control apparatus 100 performs is demonstrated. Upon receiving the hot water supply operation command, control device 100 starts driving compressor 1 and hot water supply pump 32 (S141). Further, the opening of the first expansion valve 3 is fully closed (S142).

制御装置100は、給湯用熱交換器出口冷媒温度センサ13が検出した出口冷媒温度Troを入力する(S143)。そして、制御装置100は、出口冷媒温度Troの温度値が第3設定値より大きいかどうかを判定する(S144)。たとえば、出口冷媒温度Troが高いと、給湯用熱交換器2から流出する冷媒のエンタルピーが十分大きいため、蓄熱運転が可能となる。そこで、制御装置100は、出口冷媒温度Troの温度値が第3設定値より大きいと判定すると、給湯蓄熱併用運転を開始させる(S145)。そして、蓄熱ポンプ42を駆動させて、蓄熱材を循環させて、蓄熱材に蓄熱させる(S146)。   The control device 100 inputs the outlet refrigerant temperature Tro detected by the hot water supply heat exchanger outlet refrigerant temperature sensor 13 (S143). Then, the control device 100 determines whether or not the temperature value of the outlet refrigerant temperature Tro is larger than the third set value (S144). For example, when the outlet refrigerant temperature Tro is high, the enthalpy of the refrigerant flowing out from the hot water supply heat exchanger 2 is sufficiently large, so that the heat storage operation is possible. Therefore, when determining that the temperature value of the outlet refrigerant temperature Tro is larger than the third set value, the control device 100 starts the hot water storage heat storage combined operation (S145). Then, the heat storage pump 42 is driven, the heat storage material is circulated, and heat is stored in the heat storage material (S146).

一方、出口冷媒温度Troが低いと、給湯用熱交換器2から流出する冷媒のエンタルピーが小さい。そこで、出口冷媒温度Troの温度値が第3設定値より大きくないと判定すると、蓄熱ポンプ42は駆動させず、給湯運転を行わせる(S147)。   On the other hand, when the outlet refrigerant temperature Tro is low, the enthalpy of the refrigerant flowing out of the hot water supply heat exchanger 2 is small. Therefore, if it is determined that the temperature value of the outlet refrigerant temperature Tro is not larger than the third set value, the heat storage pump 42 is not driven and a hot water supply operation is performed (S147).

制御装置100は、圧縮機吸入圧力センサ10が検出した圧縮機吸入圧力Psと圧縮機吸入温度センサ12が検出した圧縮機吸入温度Tsとを入力する(S148)。そして、制御装置100は、圧縮機吸入圧力Psの飽和温度f(Ps)を算出する。さらに、圧縮機吸入温度Tsから圧縮機吸入圧力Psの飽和温度f(Ps)を差し引いて圧縮機吸入過熱度SHsを算出する(S149)。   The control device 100 inputs the compressor suction pressure Ps detected by the compressor suction pressure sensor 10 and the compressor suction temperature Ts detected by the compressor suction temperature sensor 12 (S148). Then, the control device 100 calculates a saturation temperature f (Ps) of the compressor suction pressure Ps. Further, the compressor intake superheat degree SHs is calculated by subtracting the saturation temperature f (Ps) of the compressor intake pressure Ps from the compressor intake temperature Ts (S149).

制御装置100は、算出した圧縮機吸入過熱度SHsの値が、圧縮機吸入過熱度目標値としてあらかじめ設定された第2設定値よりも小さいかどうかを判定する(S150)。制御装置100は、圧縮機吸入過熱度SHsの値が第2設定値よりも小さいと判定すると、第2膨張弁5の開度を小さくさせる制御を行う(S151)。そして、S148に戻って制御を続ける。また、制御装置100は、圧縮機吸入過熱度SHsの値が第2設定値よりも小さくないと判定すると、第2膨張弁5の開度を大きくさせる制御を行う(S152)。そして、S148に戻って制御を続ける。   The control device 100 determines whether or not the calculated value of the compressor intake superheat degree SHs is smaller than a second set value preset as a compressor intake superheat degree target value (S150). When determining that the value of the compressor suction superheat degree SHs is smaller than the second set value, the control device 100 performs control to reduce the opening of the second expansion valve 5 (S151). And it returns to S148 and continues control. When determining that the value of the compressor intake superheat degree SHs is not smaller than the second set value, the control device 100 performs control to increase the opening of the second expansion valve 5 (S152). And it returns to S148 and continues control.

図33は、この発明の実施の形態3のヒートポンプ給湯装置における蓄熱利用給湯運転を行う際の制御系のシステムを中心とする構成を示す図である。図33では、本実施の形態のヒートポンプ給湯装置が蓄熱利用給湯運転を行う際の制御に係る構成を示している。図33において、図8などと同じ符号を付している機器については、実施の形態1などにおいて説明したことと基本的に同様の動作を行う。本実施の形態に係るヒートポンプ給湯装置は、少なくとも制御装置100、圧縮機吸入圧力センサ10、圧縮機吸入温度センサ12および蓄熱材温度センサ14を制御に係る機器として有している。   FIG. 33 is a diagram showing a configuration centering on a system of a control system when performing a heat storage hot water supply operation in the heat pump hot water supply apparatus according to Embodiment 3 of the present invention. In FIG. 33, the structure which concerns on the control at the time of the heat pump hot-water supply apparatus of this Embodiment performing a heat storage utilization hot-water supply driving | operation is shown. In FIG. 33, devices having the same reference numerals as those in FIG. 8 perform basically the same operations as those described in the first embodiment. The heat pump hot water supply apparatus according to the present embodiment includes at least the control device 100, the compressor suction pressure sensor 10, the compressor suction temperature sensor 12, and the heat storage material temperature sensor 14 as control-related devices.

図34は、この発明の実施の形態3のヒートポンプ給湯装置における蓄熱利用給湯運転に係る制御手順のフローチャートを示す図である。図33および図34に基づいて、制御装置100が行う蓄熱利用給湯運転に係る制御について説明する。制御装置100は、給湯運転指令を受けると、圧縮機1および給湯ポンプ32の駆動を開始させる(S161)。   FIG. 34 is a diagram showing a flowchart of a control procedure related to a heat storage hot water supply operation in the heat pump hot water supply apparatus according to Embodiment 3 of the present invention. Based on FIG. 33 and FIG. 34, the control which concerns on the heat storage utilization hot water supply operation which the control apparatus 100 performs is demonstrated. When receiving the hot water supply operation command, control device 100 starts driving compressor 1 and hot water supply pump 32 (S161).

制御装置100は、蓄熱材温度センサ14が検出した蓄熱材温度Tstを入力する(S162)。そして、制御装置100は、蓄熱材温度Tstの温度値が第4設定値より大きいかどうかを判定する(S163)。   The control device 100 inputs the heat storage material temperature Tst detected by the heat storage material temperature sensor 14 (S162). And the control apparatus 100 determines whether the temperature value of the thermal storage material temperature Tst is larger than a 4th setting value (S163).

制御装置100は、蓄熱材温度Tstの温度値が第4設定値より大きいと判定すると、蓄熱利用給湯運転を開始させる(S164)。制御装置100は、第2膨張弁5の開度を全閉にさせる。そして、蓄熱ポンプ42を駆動させて、蓄熱材を循環させて、蓄熱材に放熱させる(S165)。   When determining that the temperature value of the heat storage material temperature Tst is larger than the fourth set value, the control device 100 starts the heat storage hot water supply operation (S164). The control device 100 causes the opening of the second expansion valve 5 to be fully closed. Then, the heat storage pump 42 is driven, the heat storage material is circulated, and the heat storage material is dissipated (S165).

制御装置100は、圧縮機吸入圧力センサ10が検出した圧縮機吸入圧力Psと圧縮機吸入温度センサ12が検出した圧縮機吸入温度Tsとを入力する(S166)。そして、制御装置100は、圧縮機吸入圧力Psの飽和温度f(Ps)を算出する。さらに、圧縮機吸入温度Tsから圧縮機吸入圧力Psの飽和温度f(Ps)を差し引いて圧縮機吸入過熱度SHsを算出する(S167)。   The control device 100 inputs the compressor suction pressure Ps detected by the compressor suction pressure sensor 10 and the compressor suction temperature Ts detected by the compressor suction temperature sensor 12 (S166). Then, the control device 100 calculates a saturation temperature f (Ps) of the compressor suction pressure Ps. Further, the compressor intake superheat degree SHs is calculated by subtracting the saturation temperature f (Ps) of the compressor intake pressure Ps from the compressor intake temperature Ts (S167).

制御装置100は、算出した圧縮機吸入過熱度SHsの値が、圧縮機吸入過熱度目標値としてあらかじめ設定された第2設定値よりも小さいかどうかを判定する(S168)。制御装置100は、圧縮機吸入過熱度SHsの値が第2設定値よりも小さいと判定すると、第1膨張弁3の開度を小さくさせる制御を行う(S169)。そして、S162に戻って制御を続ける。また、制御装置100は、圧縮機吸入過熱度SHsの値が第2設定値よりも小さくないと判定すると、第1膨張弁3の開度を大きくさせる制御を行う(S170)。そして、S162に戻って制御を続ける。   The control device 100 determines whether or not the calculated value of the compressor intake superheat degree SHs is smaller than a second set value preset as a compressor intake superheat degree target value (S168). When determining that the value of the compressor intake superheat degree SHs is smaller than the second set value, the control device 100 performs control to reduce the opening of the first expansion valve 3 (S169). And it returns to S162 and continues control. When determining that the value of the compressor intake superheat degree SHs is not smaller than the second set value, the control device 100 performs control to increase the opening of the first expansion valve 3 (S170). And it returns to S162 and continues control.

一方、制御装置100は、蓄熱材温度Tstの温度値が第4設定値より大きくないと判定すると、通常の給湯運転を行わせる(S171)。制御装置100は、第1膨張弁3の開度を全開にさせる。また、蓄熱ポンプ42を駆動させないようにする(S172)。   On the other hand, when determining that the temperature value of the heat storage material temperature Tst is not larger than the fourth set value, the control device 100 causes a normal hot water supply operation to be performed (S171). The control device 100 fully opens the opening of the first expansion valve 3. Further, the heat storage pump 42 is not driven (S172).

制御装置100は、圧縮機吸入圧力センサ10が検出した圧縮機吸入圧力Psと圧縮機吸入温度センサ12が検出した圧縮機吸入温度Tsとを入力する(S173)。そして、制御装置100は、圧縮機吸入圧力Psの飽和温度f(Ps)を算出する。さらに、圧縮機吸入温度Tsから圧縮機吸入圧力Psの飽和温度f(Ps)を差し引いて圧縮機吸入過熱度SHsを算出する(S174)。   The control device 100 inputs the compressor suction pressure Ps detected by the compressor suction pressure sensor 10 and the compressor suction temperature Ts detected by the compressor suction temperature sensor 12 (S173). Then, the control device 100 calculates a saturation temperature f (Ps) of the compressor suction pressure Ps. Further, the compressor intake superheat degree SHs is calculated by subtracting the saturation temperature f (Ps) of the compressor intake pressure Ps from the compressor intake temperature Ts (S174).

制御装置100は、算出した圧縮機吸入過熱度SHsの値が、圧縮機吸入過熱度目標値としてあらかじめ設定された第2設定値よりも小さいかどうかを判定する(S175)。制御装置100は、圧縮機吸入過熱度SHsの値が第2設定値よりも小さいと判定すると、第2膨張弁5の開度を小さくさせる制御を行う(S176)。そして、S162に戻って制御を続ける。また、制御装置100は、圧縮機吸入過熱度SHsの値が第2設定値よりも小さくないと判定すると、第2膨張弁5の開度を大きくさせる制御を行う(S177)。そして、S162に戻って制御を続ける。   The control device 100 determines whether or not the calculated value of the compressor intake superheat degree SHs is smaller than a second set value preset as a compressor intake superheat degree target value (S175). When determining that the value of the compressor suction superheat degree SHs is smaller than the second set value, the control device 100 performs control to decrease the opening of the second expansion valve 5 (S176). And it returns to S162 and continues control. When determining that the value of the compressor intake superheat degree SHs is not smaller than the second set value, the control device 100 performs control to increase the opening of the second expansion valve 5 (S177). And it returns to S162 and continues control.

以上のように、本実施の形態に係るヒートポンプ給湯装置は、冷媒が循環する冷媒回路、給湯側二次回路30および蓄熱側二次回路40を有し、制御装置100が、保温運転などのように、比較的高温の水を加熱する運転を行う場合など、給湯用熱交換器2から流出する冷媒が比エンタルピーの大きい状態になるかどうかを判定し、比エンタルピーが大きい状態になると判定すると、給湯蓄熱併用運転を行って蓄熱運転も行うことにより、ヒートポンプ給湯装置を運転することによって得られる熱エネルギーを有効利用することができる。また、蓄熱槽41に蓄熱した熱エネルギーを利用した蓄熱利用給湯運転を行うことができるので、外気温度によらず、空気熱交換器6における冷媒の蒸発温度を高く維持することができるので、冷媒から水への加熱能力を増強することができる。   As described above, the heat pump hot water supply apparatus according to the present embodiment includes the refrigerant circuit in which the refrigerant circulates, the hot water supply side secondary circuit 30 and the heat storage side secondary circuit 40, and the control apparatus 100 performs a heat insulation operation or the like. In addition, when performing an operation of heating relatively high temperature water, it is determined whether or not the refrigerant flowing out of the hot water supply heat exchanger 2 has a large specific enthalpy, and when it is determined that the specific enthalpy is large, By performing the hot water storage heat storage combined operation and performing the heat storage operation, the thermal energy obtained by operating the heat pump hot water supply apparatus can be used effectively. Further, since the heat storage hot water supply operation using the heat energy stored in the heat storage tank 41 can be performed, the evaporation temperature of the refrigerant in the air heat exchanger 6 can be kept high regardless of the outside air temperature. The heating capacity from water to water can be enhanced.

また、本実施の形態に係るヒートポンプ給湯装置は、中温で潜熱変化するスラリーなどの蓄熱材を、蓄熱側二次回路40内に循環させるようにしたので、蓄熱運転における効率を高くすることができる。また、蓄熱材が蓄熱用熱交換器4Aを直接通過するので、効率よく採熱などを行うことができる。また、蓄熱利用給湯運転において、外気温度が低く、空気熱交換器6が冷えている状態でも、蓄熱用熱交換器4Aで熱交換した後の低圧中温のガス冷媒が、空気熱交換器6側に流れない。このため、空気熱交換器6において冷媒が凝縮し、寝込むことを防止することができる。   Moreover, since the heat pump hot water supply apparatus according to the present embodiment circulates a heat storage material such as slurry that changes in latent heat at an intermediate temperature in the heat storage side secondary circuit 40, the efficiency in the heat storage operation can be increased. . Moreover, since the heat storage material passes directly through the heat storage heat exchanger 4A, heat can be collected efficiently. Further, in the heat storage hot water supply operation, even in a state where the outside air temperature is low and the air heat exchanger 6 is cold, the low-pressure medium temperature gas refrigerant after the heat exchange by the heat storage heat exchanger 4A is performed on the air heat exchanger 6 side. Does not flow. For this reason, it is possible to prevent the refrigerant from condensing and falling asleep in the air heat exchanger 6.

また、本実施の形態に係るヒートポンプ給湯装置は、給湯用熱交換器2を流出した高圧の冷媒が膨張弁を通過することなく、直接、蓄熱用熱交換器4Aに流入することができる。このため、給湯蓄熱併用運転において、給湯用熱交換器2から流出した、中温高圧の超臨界状態の冷媒について、圧力損失を生じることなく蓄熱用熱交換器4Aに流入させることができる。さらに、実施の形態3に係るヒートポンプ給湯装置は、蓄熱用熱交換器4Aと圧縮機1の吸入側配管との間に弁を有しない構成である。このため、蓄熱利用給湯運転において、蓄熱用熱交換器4Aを流出した低温低圧のガス冷媒を、圧力損失を生じることなく圧縮機1に吸入させることができる。したがって、冷媒の圧力損失による効率低下を抑制することができる。   In the heat pump hot water supply apparatus according to the present embodiment, the high-pressure refrigerant that has flowed out of the hot water supply heat exchanger 2 can flow directly into the heat storage heat exchanger 4A without passing through the expansion valve. For this reason, in the hot water storage heat storage combined operation, the medium temperature and high pressure supercritical refrigerant that has flowed out of the hot water supply heat exchanger 2 can flow into the heat storage heat exchanger 4A without causing pressure loss. Furthermore, the heat pump hot water supply apparatus according to Embodiment 3 has a configuration in which no valve is provided between the heat storage heat exchanger 4 </ b> A and the suction side piping of the compressor 1. For this reason, in the hot water storage operation using heat storage, the low-temperature and low-pressure gas refrigerant that has flowed out of the heat storage heat exchanger 4A can be sucked into the compressor 1 without causing pressure loss. Accordingly, it is possible to suppress a decrease in efficiency due to the pressure loss of the refrigerant.

そして、本実施の形態に係るヒートポンプ給湯装置の蓄熱用熱交換器4Aは、高圧の冷媒が流れる第1流路51と低圧の冷媒が流れる第2流路52とを、1台の中に独立して有する熱交換器である。このため、たとえば蓄熱用の熱交換器と採熱用の熱交換器とを別々に有する必要がない。したがって、ユニットを小型化、軽量化などすることが可能となる。   The heat storage heat exchanger 4A of the heat pump hot water supply apparatus according to the present embodiment includes the first flow path 51 through which the high-pressure refrigerant flows and the second flow path 52 through which the low-pressure refrigerant flow in one unit. A heat exchanger. For this reason, it is not necessary to have the heat exchanger for heat storage, and the heat exchanger for heat collection separately, for example. Therefore, the unit can be reduced in size and weight.

実施の形態4.
図35は、この発明の実施の形態4におけるヒートポンプ給湯装置の構成を示す図である。図35において、図1などと同じ符号を付している機器は、実施の形態1などにおいて説明したことと同様の動作を行う。本実施の形態のヒートポンプ給湯装置は、圧縮機1、給湯用熱交換器2、第1膨張弁3、蓄熱用熱交換器4B、第2膨張弁5および空気熱交換器6を、冷媒配管を介して環状に接続する。また、給湯用熱交換器2と蓄熱用熱交換器4Bとの間を、第1膨張弁3と並列に、第1二方弁17が設置された冷媒配管で接続する。第1二方弁17は、弁を開放することで、冷媒が第1膨張弁3を通過せず、バイパスさせることができる。さらに、給湯用熱交換器2と第2膨張弁5との間を、第1膨張弁3および蓄熱用熱交換器4Bと並列に、第2二方弁18が設置された蓄熱槽バイパス配管22で接続する。第2二方弁18は、弁を開放することで、蓄熱槽バイパス配管22に冷媒を通過させ、蓄熱槽41内の蓄熱用熱交換器4Bを通過させずにバイパスさせることができる。そして、本実施の形態のヒートポンプ給湯装置において、蓄熱用熱交換器4Bは、蓄熱材がためられた蓄熱槽41内に配置されている。蓄熱用熱交換器4Bは、たとえば一定間隔に配置された冷媒配管を有している。
Embodiment 4 FIG.
FIG. 35 is a diagram showing a configuration of a heat pump hot-water supply apparatus according to Embodiment 4 of the present invention. 35, devices having the same reference numerals as those in FIG. 1 and the like perform the same operations as those described in the first embodiment. The heat pump hot water supply apparatus of the present embodiment includes a compressor 1, a hot water supply heat exchanger 2, a first expansion valve 3, a heat storage heat exchanger 4B, a second expansion valve 5, and an air heat exchanger 6, and a refrigerant pipe. It connects in a ring through. Further, the hot water supply heat exchanger 2 and the heat storage heat exchanger 4B are connected in parallel with the first expansion valve 3 through a refrigerant pipe in which the first two-way valve 17 is installed. The first two-way valve 17 can bypass the refrigerant without passing through the first expansion valve 3 by opening the valve. Further, a heat storage tank bypass pipe 22 in which a second two-way valve 18 is installed between the hot water supply heat exchanger 2 and the second expansion valve 5 in parallel with the first expansion valve 3 and the heat storage heat exchanger 4B. Connect with. By opening the valve, the second two-way valve 18 allows the refrigerant to pass through the heat storage tank bypass pipe 22 and bypass the heat storage heat exchanger 4B in the heat storage tank 41 without passing through it. And in the heat pump hot-water supply apparatus of this Embodiment, the heat exchanger 4B for thermal storage is arrange | positioned in the thermal storage tank 41 in which the thermal storage material was stored. The heat storage heat exchanger 4B has, for example, refrigerant pipes arranged at regular intervals.

次に図35を参照しながら、本実施の形態に係るヒートポンプ給湯装置における運転動作について説明する。   Next, the operation of the heat pump hot water supply apparatus according to the present embodiment will be described with reference to FIG.

まず、通常の給湯運転について説明する。通常の給湯運転とは、水道水と同程度の温度の水を、たとえば80℃などの高温の水に沸き上げる運転である。ここで、蓄熱ポンプ42は停止しており、蓄熱用熱交換器4Bでは、冷媒と蓄熱材の熱交換はなされない。   First, a normal hot water supply operation will be described. The normal hot water supply operation is an operation in which water having a temperature similar to that of tap water is boiled into high-temperature water such as 80 ° C. Here, the heat storage pump 42 is stopped, and heat exchange between the refrigerant and the heat storage material is not performed in the heat storage heat exchanger 4B.

通常の給湯運転において、給湯側二次回路30側では、給湯ポンプ32が駆動すると、給湯タンク31内の低温水が給湯用熱交換器2に送られる。給湯用熱交換器2を通過した水は冷媒によって加熱されて高温水となり給湯タンク31に戻る。以上のようにして加熱された水が給湯タンク31内にたまる。   In a normal hot water supply operation, on the hot water supply side secondary circuit 30 side, when the hot water supply pump 32 is driven, the low temperature water in the hot water supply tank 31 is sent to the hot water supply heat exchanger 2. The water that has passed through the hot water supply heat exchanger 2 is heated by the refrigerant to become high temperature water and returns to the hot water supply tank 31. The water heated as described above accumulates in the hot water supply tank 31.

次に冷媒回路側の動作について説明する。ここで、通常の給湯運転においては、第2二方弁18は開放する。また、吸入バイパス弁7は閉止とする。このため、吸入バイパス配管9には冷媒が流れない。そして、第1膨張弁3の開度は全閉とし、第1二方弁17は閉止する。このため、蓄熱用熱交換器4Bには冷媒が流れず、冷媒と蓄熱材との熱交換は行われない。   Next, the operation on the refrigerant circuit side will be described. Here, in the normal hot water supply operation, the second two-way valve 18 is opened. The suction bypass valve 7 is closed. For this reason, the refrigerant does not flow through the suction bypass pipe 9. The opening degree of the first expansion valve 3 is fully closed, and the first two-way valve 17 is closed. For this reason, the refrigerant does not flow through the heat storage heat exchanger 4B, and heat exchange between the refrigerant and the heat storage material is not performed.

圧縮機1が駆動すると、低温低圧のガス状態の冷媒が圧縮機1に吸入され、圧縮されて高温高圧の超臨界状態の冷媒となって吐出する。圧縮機1から吐出した、高温高圧の超臨界状態の冷媒は、給湯用熱交換器2に流入する。給湯用熱交換器2に流入した、高温高圧の超臨界状態冷媒は、被熱交換媒体である、給湯側二次回路30を循環する水に放熱し、低温高圧の超臨界状態の冷媒となる。   When the compressor 1 is driven, the low-temperature and low-pressure gaseous refrigerant is sucked into the compressor 1 and compressed to be discharged as a high-temperature and high-pressure supercritical refrigerant. The high-temperature and high-pressure supercritical refrigerant discharged from the compressor 1 flows into the hot water supply heat exchanger 2. The high-temperature and high-pressure supercritical refrigerant that has flowed into the hot water supply heat exchanger 2 radiates heat to the water circulating through the hot-water supply side secondary circuit 30, which is a heat exchange medium, and becomes a low-temperature and high-pressure supercritical refrigerant. .

給湯用熱交換器2を流出した、低温高圧の超臨界状態の冷媒は、第2二方弁18を通過して第2膨張弁5に流入する。第2膨張弁5に流入した冷媒は、第2膨張弁5に減圧膨張され、低温低圧の気液二相冷媒となって流出する。   The low-temperature and high-pressure supercritical refrigerant that has flowed out of the hot water supply heat exchanger 2 passes through the second two-way valve 18 and flows into the second expansion valve 5. The refrigerant flowing into the second expansion valve 5 is decompressed and expanded by the second expansion valve 5 and flows out as a low-temperature and low-pressure gas-liquid two-phase refrigerant.

第2膨張弁5から流出した気液二相冷媒は、空気熱交換器6に流入する。空気熱交換器6を通過した気液二相冷媒は、被熱交換媒体である外気を冷却し、蒸発して低温低圧のガス冷媒となる。空気熱交換器6から流出した低温低圧のガス冷媒は、圧縮機1に再び吸入される。   The gas-liquid two-phase refrigerant that has flowed out of the second expansion valve 5 flows into the air heat exchanger 6. The gas-liquid two-phase refrigerant that has passed through the air heat exchanger 6 cools the outside air that is the heat exchange medium and evaporates to become a low-temperature and low-pressure gas refrigerant. The low-temperature and low-pressure gas refrigerant that has flowed out of the air heat exchanger 6 is sucked into the compressor 1 again.

次に、給湯蓄熱併用運転について説明する。ここで、給湯蓄熱併用運転とは、保温運転と蓄熱運転とを同時に行う運転である。保温運転は、たとえば放熱などにより給湯タンク31内の水の温度が60℃に低下した場合に、65℃へ5℃程度沸き上げる運転である。また、蓄熱運転は、蓄熱槽41内の蓄熱材に蓄熱する運転である。   Next, the hot water storage heat combined operation will be described. Here, the hot water storage heat storage combined operation is an operation in which the heat insulation operation and the heat storage operation are performed simultaneously. The heat insulation operation is an operation in which water is heated to 65 ° C. by about 5 ° C. when the temperature of the water in the hot water supply tank 31 is reduced to 60 ° C. due to, for example, heat radiation. The heat storage operation is an operation for storing heat in the heat storage material in the heat storage tank 41.

給湯蓄熱併用運転において、給湯側二次回路30側では、給湯ポンプ32が駆動すると、給湯タンク31内の中温水が給湯用熱交換器2に送られる。給湯用熱交換器2を通過した水は、冷媒によって加熱されて高温水となって給湯タンク31に戻る。以上のようにして加熱された水が給湯タンク31内にたまる。   In the hot water storage heat storage combined operation, when the hot water supply pump 32 is driven on the hot water supply side secondary circuit 30 side, the medium temperature water in the hot water supply tank 31 is sent to the hot water supply heat exchanger 2. The water that has passed through the hot water supply heat exchanger 2 is heated by the refrigerant to become high-temperature water and returns to the hot water supply tank 31. The water heated as described above accumulates in the hot water supply tank 31.

次に冷媒回路側の動作について説明する。ここで、給湯蓄熱併用運転においては、第1二方弁17は開放する。また、第2二方弁18は閉止し、第1膨張弁3の開度は全閉とする。また、吸入バイパス弁7は閉止とする。このため、吸入バイパス配管9には冷媒が流れない。給湯蓄熱併用運転においては、圧縮機1が駆動すると、低温低圧のガス状態の冷媒が圧縮機1に吸入され、圧縮されて高温高圧の超臨界状態の冷媒となって吐出する。圧縮機1から吐出した、高温高圧の超臨界状態の冷媒は、給湯用熱交換器2に流入する。給湯用熱交換器2に流入した高温高圧の超臨界状態冷媒は、被熱交換媒体である、給湯側二次回路30を循環する水に放熱し、中温高圧の超臨界状態の冷媒となる。   Next, the operation on the refrigerant circuit side will be described. Here, in the hot water storage heat storage combined operation, the first two-way valve 17 is opened. The second two-way valve 18 is closed, and the opening degree of the first expansion valve 3 is fully closed. The suction bypass valve 7 is closed. For this reason, the refrigerant does not flow through the suction bypass pipe 9. In the hot water storage heat storage combined operation, when the compressor 1 is driven, the refrigerant in the low-temperature and low-pressure gas state is sucked into the compressor 1 and is compressed and discharged as a high-temperature and high-pressure supercritical refrigerant. The high-temperature and high-pressure supercritical refrigerant discharged from the compressor 1 flows into the hot water supply heat exchanger 2. The high-temperature and high-pressure supercritical refrigerant flowing into the hot water supply heat exchanger 2 dissipates heat to the water circulating through the hot-water supply side secondary circuit 30, which is a heat exchange medium, and becomes a medium-temperature and high-pressure supercritical refrigerant.

給湯用熱交換器2を流出した、中温高圧の超臨界状態の冷媒は、第1二方弁17を通過して蓄熱用熱交換器4Bに流入する。このとき、第1二方弁17は開放している。蓄熱用熱交換器4Bに流入した、中温高圧の超臨界状態冷媒は、被熱交換媒体である、蓄熱槽41内の蓄熱材に放熱し、低温高圧の超臨界状態の冷媒となる。蓄熱用熱交換器4Bを流出した、低温高圧の超臨界状態の冷媒は、第2膨張弁5に流入する。第2膨張弁5に流入した冷媒は、第2膨張弁5に減圧膨張され、低温低圧の気液二相冷媒となって流出する。   The medium-temperature and high-pressure supercritical refrigerant that has flowed out of the hot water supply heat exchanger 2 passes through the first two-way valve 17 and flows into the heat storage heat exchanger 4B. At this time, the first two-way valve 17 is open. The medium-temperature and high-pressure supercritical refrigerant that has flowed into the heat storage heat exchanger 4B dissipates heat to the heat storage material in the heat storage tank 41, which is a heat exchange medium, and becomes a low-temperature and high-pressure supercritical refrigerant. The low-temperature and high-pressure supercritical refrigerant that has flowed out of the heat storage heat exchanger 4 </ b> B flows into the second expansion valve 5. The refrigerant flowing into the second expansion valve 5 is decompressed and expanded by the second expansion valve 5 and flows out as a low-temperature and low-pressure gas-liquid two-phase refrigerant.

第2膨張弁5から流出した気液二相冷媒は、空気熱交換器6に流入する。空気熱交換器6を通過した気液二相冷媒は、被熱交換媒体である外気を冷却し、蒸発して低温低圧のガス冷媒となる。空気熱交換器6から流出した低温低圧のガス冷媒は、圧縮機1に再び吸入される。   The gas-liquid two-phase refrigerant that has flowed out of the second expansion valve 5 flows into the air heat exchanger 6. The gas-liquid two-phase refrigerant that has passed through the air heat exchanger 6 cools the outside air that is the heat exchange medium and evaporates to become a low-temperature and low-pressure gas refrigerant. The low-temperature and low-pressure gas refrigerant that has flowed out of the air heat exchanger 6 is sucked into the compressor 1 again.

次に、蓄熱利用給湯運転について説明する。ここで、蓄熱利用給湯運転とは、蓄熱槽41において蓄熱された蓄熱材を熱源として、給湯運転を行う運転である。たとえば、低外気時における給湯能力低下の防止、給湯負荷が一時的に大きくなるときなどにおける給湯能力の増強などを目的として行う運転である。   Next, the heat storage hot water supply operation will be described. Here, the hot water storage operation using the heat storage is an operation for performing the hot water supply operation using the heat storage material stored in the heat storage tank 41 as a heat source. For example, the operation is performed for the purpose of preventing a decrease in hot water supply capacity during low outside air, and increasing the hot water supply capacity when the hot water supply load temporarily increases.

蓄熱利用給湯運転において、給湯側二次回路30側では、給湯ポンプ32が駆動すると、給湯タンク31内の低温水が給湯用熱交換器2に送られる。給湯用熱交換器2を通過した水は、冷媒によって加熱されて高温水となって給湯タンク31に戻る。以上のようにして加熱された水が給湯タンク31内にたまる。   In the hot water storage use hot water supply operation, on the hot water supply side secondary circuit 30 side, when the hot water supply pump 32 is driven, the low temperature water in the hot water supply tank 31 is sent to the hot water supply heat exchanger 2. The water that has passed through the hot water supply heat exchanger 2 is heated by the refrigerant to become high-temperature water and returns to the hot water supply tank 31. The water heated as described above accumulates in the hot water supply tank 31.

次に冷媒回路側の動作について説明する。ここで、蓄熱利用給湯運転においては、第1二方弁17および第2二方弁18は閉止とする。また、吸入バイパス弁7は開放とする。このため、吸入バイパス配管9に冷媒が流れる。さらに、第2膨張弁5の開度は全閉とする。このため、空気熱交換器6には冷媒が流れず、冷媒と外気との熱交換は行われない。   Next, the operation on the refrigerant circuit side will be described. Here, in the hot water storage operation using heat storage, the first two-way valve 17 and the second two-way valve 18 are closed. The suction bypass valve 7 is opened. For this reason, the refrigerant flows through the suction bypass pipe 9. Further, the opening of the second expansion valve 5 is fully closed. For this reason, a refrigerant | coolant does not flow into the air heat exchanger 6, and heat exchange with a refrigerant | coolant and external air is not performed.

圧縮機1が駆動すると、低温低圧のガス状態の冷媒が圧縮機1に吸入され、圧縮されて高温高圧の超臨界状態の冷媒となって吐出する。圧縮機1から吐出した、高温高圧の超臨界状態の冷媒は、給湯用熱交換器2に流入する。給湯用熱交換器2に流入した、高温高圧の超臨界状態冷媒は、被熱交換媒体である、給湯側二次回路30を循環する水に放熱し、低温高圧の超臨界状態の冷媒となる。   When the compressor 1 is driven, the low-temperature and low-pressure gaseous refrigerant is sucked into the compressor 1 and compressed to be discharged as a high-temperature and high-pressure supercritical refrigerant. The high-temperature and high-pressure supercritical refrigerant discharged from the compressor 1 flows into the hot water supply heat exchanger 2. The high-temperature and high-pressure supercritical refrigerant that has flowed into the hot water supply heat exchanger 2 radiates heat to the water circulating through the hot-water supply side secondary circuit 30, which is a heat exchange medium, and becomes a low-temperature and high-pressure supercritical refrigerant. .

給湯用熱交換器2を流出した、低温高圧の超臨界状態の冷媒は、第1膨張弁3に流入する。第1膨張弁3に流入した冷媒は、第1膨張弁3に減圧膨張され、低温低圧の気液二相冷媒となって流出する。第1膨張弁3から流出した気液二相冷媒は、蓄熱用熱交換器4Bに流入する。   The low-temperature and high-pressure supercritical refrigerant that has flowed out of the hot water supply heat exchanger 2 flows into the first expansion valve 3. The refrigerant flowing into the first expansion valve 3 is decompressed and expanded by the first expansion valve 3 and flows out as a low-temperature and low-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant that has flowed out of the first expansion valve 3 flows into the heat storage heat exchanger 4B.

蓄熱用熱交換器4Bに流入した低温低圧の気液二相冷媒は、蓄熱槽41内の蓄熱材から採熱し、中温低圧のガス冷媒となる。蓄熱用熱交換器4Bを流出した中温低圧のガス冷媒は、吸入バイパス弁7を介して吸入バイパス配管9を通過し、圧縮機1に再び吸入される。ここで、前述したように、吸入バイパス配管9の接続部分と空気熱交換器6との間には逆止弁8が設置されている。このため、外気の温度が低く、空気熱交換器6が冷えている状態でも、蓄熱用熱交換器4Bで熱交換した後の低圧中温のガス冷媒が、空気熱交換器6側に流れない。このため、空気熱交換器6において冷媒が凝縮し、寝込むことを防止することができる。   The low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed into the heat storage heat exchanger 4B collects heat from the heat storage material in the heat storage tank 41 and becomes a medium-temperature and low-pressure gas refrigerant. The medium-temperature and low-pressure gas refrigerant that has flowed out of the heat storage heat exchanger 4B passes through the suction bypass pipe 9 via the suction bypass valve 7 and is sucked into the compressor 1 again. Here, as described above, the check valve 8 is installed between the connection portion of the suction bypass pipe 9 and the air heat exchanger 6. For this reason, even when the temperature of the outside air is low and the air heat exchanger 6 is cold, the low-pressure and medium-temperature gas refrigerant after heat exchange by the heat storage heat exchanger 4B does not flow to the air heat exchanger 6 side. For this reason, it is possible to prevent the refrigerant from condensing and falling asleep in the air heat exchanger 6.

図36は、この発明の実施の形態4のヒートポンプ給湯装置における給湯蓄熱併用運転を行う際の制御系のシステムを中心とする構成を示す図である。図36では、本実施の形態のヒートポンプ給湯装置が給湯蓄熱併用運転を行う際の制御に係る構成を示している。図36において、図4などと同じ符号を付している機器は、実施の形態1などにおいて説明したことと同様の動作を行う。図36に示すように、本実施の形態に係るヒートポンプ給湯装置は、少なくとも制御装置100、圧縮機吸入圧力センサ10、給湯用熱交換器入口水温センサ11および圧縮機吸入温度センサ12を制御に係る機器として有している。   FIG. 36 is a diagram showing a configuration centering on the system of the control system when performing the hot water storage heat combined operation in the heat pump hot water supply apparatus according to Embodiment 4 of the present invention. In FIG. 36, the structure which concerns on the control at the time of the heat pump hot-water supply apparatus of this Embodiment performing hot-water supply heat storage combined operation is shown. In FIG. 36, devices having the same reference numerals as those in FIG. 4 perform the same operations as those described in the first embodiment. As shown in FIG. 36, the heat pump hot water supply apparatus according to the present embodiment relates to control of at least the control apparatus 100, the compressor suction pressure sensor 10, the hot water supply heat exchanger inlet water temperature sensor 11, and the compressor suction temperature sensor 12. It has as equipment.

図37は、この発明の実施の形態4のヒートポンプ給湯装置における給湯蓄熱併用運転に係る制御手順のフローチャートを示す図である。図36および図37に基づいて、制御装置100が行う給湯蓄熱併用運転に係る制御について説明する。制御装置100は、給湯運転指令を受けると、圧縮機1および給湯ポンプ32の駆動を開始させる(S181)。また、第1膨張弁3の開度を全閉させ、吸入バイパス弁7を閉止させる(S182)。   FIG. 37 is a diagram showing a flowchart of a control procedure related to the hot water storage heat storage combined operation in the heat pump hot water supply apparatus according to Embodiment 4 of the present invention. Based on FIG. 36 and FIG. 37, the control which concerns on the hot water storage heat | fever combined use operation which the control apparatus 100 performs is demonstrated. Upon receiving the hot water supply operation command, control device 100 starts driving compressor 1 and hot water supply pump 32 (S181). Further, the opening of the first expansion valve 3 is fully closed, and the suction bypass valve 7 is closed (S182).

制御装置100は、給湯用熱交換器入口水温センサ11が検出した入口水温Twiを入力する(S183)。そして、制御装置100は、入口水温Twiの温度値が第1設定値より大きいかどうかを判定する(S184)。たとえば、入口水温Twiが高いと、水と冷媒との熱交換量が少なく、給湯用熱交換器2から流出する冷媒のエンタルピーが十分大きくなるため、蓄熱運転が可能となる。そこで、制御装置100は、入口水温Twiの温度値が第1設定値より大きいと判定すると、給湯蓄熱併用運転を開始させる(S185)。そして、第1二方弁17を開放させる。また、第2二方弁18を閉止させて、蓄熱用熱交換器4Bに冷媒を通過させて蓄熱材に蓄熱させる(S186)。   The control device 100 inputs the inlet water temperature Twi detected by the hot water supply heat exchanger inlet water temperature sensor 11 (S183). And the control apparatus 100 determines whether the temperature value of the inlet water temperature Twi is larger than a 1st setting value (S184). For example, if the inlet water temperature Twi is high, the amount of heat exchange between water and the refrigerant is small, and the enthalpy of the refrigerant flowing out of the hot water supply heat exchanger 2 becomes sufficiently large, so that the heat storage operation can be performed. Therefore, when determining that the temperature value of the inlet water temperature Twi is larger than the first set value, the control device 100 starts the hot water storage heat storage combined operation (S185). Then, the first two-way valve 17 is opened. Further, the second two-way valve 18 is closed, and the refrigerant is passed through the heat storage heat exchanger 4B to store heat in the heat storage material (S186).

一方、入口水温Twiが低いと、熱交換量が多く、給湯用熱交換器2から流出する冷媒のエンタルピーが小さくなる。そこで、入口水温Twiの温度値が第1設定値より大きくないと判定すると、給湯運転だけを行う(S187)。   On the other hand, when the inlet water temperature Twi is low, the heat exchange amount is large, and the enthalpy of the refrigerant flowing out from the hot water supply heat exchanger 2 is small. Therefore, if it is determined that the temperature value of the inlet water temperature Twi is not larger than the first set value, only the hot water supply operation is performed (S187).

制御装置100は、圧縮機吸入圧力センサ10が検出した圧縮機吸入圧力Psと圧縮機吸入温度センサ12が検出した圧縮機吸入温度Tsとを入力する(S188)。そして、制御装置100は、圧縮機吸入圧力Psの飽和温度f(Ps)を算出する。さらに、圧縮機吸入温度Tsから圧縮機吸入圧力Psの飽和温度f(Ps)を差し引いて圧縮機吸入過熱度SHsを算出する(S189)。   The control device 100 inputs the compressor suction pressure Ps detected by the compressor suction pressure sensor 10 and the compressor suction temperature Ts detected by the compressor suction temperature sensor 12 (S188). Then, the control device 100 calculates a saturation temperature f (Ps) of the compressor suction pressure Ps. Further, the compressor intake superheat degree SHs is calculated by subtracting the saturation temperature f (Ps) of the compressor intake pressure Ps from the compressor intake temperature Ts (S189).

制御装置100は、算出した圧縮機吸入過熱度SHsの値が、圧縮機吸入過熱度目標値としてあらかじめ設定された第2設定値よりも小さいかどうかを判定する(S190)。制御装置100は、圧縮機吸入過熱度SHsの値が第2設定値よりも小さいと判定すると、第2膨張弁5の開度を小さくさせる制御を行う(S191)。そして、S188に戻って制御を続ける。また、制御装置100は、圧縮機吸入過熱度SHsの値が第2設定値よりも小さくないと判定すると、第2膨張弁5の開度を大きくさせる制御を行う(S192)。そして、S188に戻って制御を続ける。   The control device 100 determines whether or not the calculated value of the compressor intake superheat degree SHs is smaller than a second set value preset as a compressor intake superheat degree target value (S190). When determining that the value of the compressor intake superheat degree SHs is smaller than the second set value, the control device 100 performs control to reduce the opening of the second expansion valve 5 (S191). And it returns to S188 and continues control. When determining that the value of the compressor intake superheat degree SHs is not smaller than the second set value, the control device 100 performs control to increase the opening of the second expansion valve 5 (S192). And it returns to S188 and continues control.

図38は、この発明の実施の形態4のヒートポンプ給湯装置における給湯蓄熱併用運転を行う際の制御系の別例のシステムを中心とする構成を示す図である。図38において、図6などと同じ符号を付している機器については、実施の形態1などにおいて説明したことと基本的に同様の動作を行う。図38に示すように、本実施の形態に係るヒートポンプ給湯装置は、少なくとも制御装置100、圧縮機吸入圧力センサ10、給湯用熱交換器出口冷媒温度センサ13および圧縮機吸入温度センサ12を制御に係る機器として有している。   FIG. 38 is a diagram showing a configuration centering on another system of the control system when performing the hot water storage heat combined operation in the heat pump hot water supply apparatus according to Embodiment 4 of the present invention. In FIG. 38, devices having the same reference numerals as those in FIG. 6 and the like perform basically the same operations as those described in the first embodiment. As shown in FIG. 38, the heat pump hot water supply apparatus according to the present embodiment controls at least the control device 100, the compressor suction pressure sensor 10, the hot water supply heat exchanger outlet refrigerant temperature sensor 13, and the compressor suction temperature sensor 12. As such equipment.

図39は、この発明の実施の形態4のヒートポンプ給湯装置における給湯蓄熱併用運転に係る制御手順の別例のフローチャートを示す図である。図38および図39に基づいて、制御装置100が行う給湯蓄熱併用運転に係る制御について説明する。制御装置100は、給湯運転指令を受けると、圧縮機1および給湯ポンプ32の駆動を開始させる(S201)。また、第1膨張弁3の開度を全開にさせ、吸入バイパス弁7を閉止させる(S202)。   FIG. 39 is a view showing a flowchart of another example of the control procedure related to the hot water storage heat storage combined operation in the heat pump hot water supply apparatus according to Embodiment 4 of the present invention. Based on FIG. 38 and FIG. 39, the control which concerns on the hot water storage heat combined use operation which the control apparatus 100 performs is demonstrated. Upon receiving the hot water supply operation command, control device 100 starts driving compressor 1 and hot water supply pump 32 (S201). Further, the opening of the first expansion valve 3 is fully opened, and the suction bypass valve 7 is closed (S202).

制御装置100は、給湯用熱交換器出口冷媒温度センサ13が検出した出口冷媒温度Troを入力する(S203)。そして、制御装置100は、出口冷媒温度Troの温度値が第3設定値より大きいかどうかを判定する(S204)。たとえば、出口冷媒温度Troが高いと、給湯用熱交換器2から流出する冷媒のエンタルピーが十分大きいため、蓄熱運転が可能となる。そこで、制御装置100は、出口冷媒温度Troの温度値が第3設定値より大きいと判定すると、給湯蓄熱併用運転を開始させる(S205)。そして、第1二方弁17を開放させる。また、第2二方弁18を閉止させて、蓄熱用熱交換器4Bに冷媒を通過させて蓄熱材に蓄熱させる(S206)。   The control apparatus 100 inputs the outlet refrigerant temperature Tro detected by the hot water supply heat exchanger outlet refrigerant temperature sensor 13 (S203). Then, the control device 100 determines whether or not the temperature value of the outlet refrigerant temperature Tro is larger than the third set value (S204). For example, when the outlet refrigerant temperature Tro is high, the enthalpy of the refrigerant flowing out from the hot water supply heat exchanger 2 is sufficiently large, so that the heat storage operation is possible. Therefore, when determining that the temperature value of the outlet refrigerant temperature Tro is larger than the third set value, the control device 100 starts the hot water storage heat storage combined operation (S205). Then, the first two-way valve 17 is opened. Further, the second two-way valve 18 is closed, and the refrigerant is passed through the heat storage heat exchanger 4B to store heat in the heat storage material (S206).

一方、出口冷媒温度Troが低いと、給湯用熱交換器2から流出する冷媒のエンタルピーが小さい。そこで、出口冷媒温度Troの温度値が第3設定値より大きくないと判定すると、給湯運転だけを行う(S207)。   On the other hand, when the outlet refrigerant temperature Tro is low, the enthalpy of the refrigerant flowing out of the hot water supply heat exchanger 2 is small. Therefore, if it is determined that the temperature value of the outlet refrigerant temperature Tro is not larger than the third set value, only the hot water supply operation is performed (S207).

制御装置100は、圧縮機吸入圧力センサ10が検出した圧縮機吸入圧力Psと圧縮機吸入温度センサ12が検出した圧縮機吸入温度Tsとを入力する(S208)。そして、制御装置100は、圧縮機吸入圧力Psの飽和温度f(Ps)を算出する。さらに、圧縮機吸入温度Tsから圧縮機吸入圧力Psの飽和温度f(Ps)を差し引いて圧縮機吸入過熱度SHsを算出する(S209)。   The control device 100 inputs the compressor suction pressure Ps detected by the compressor suction pressure sensor 10 and the compressor suction temperature Ts detected by the compressor suction temperature sensor 12 (S208). Then, the control device 100 calculates a saturation temperature f (Ps) of the compressor suction pressure Ps. Further, the compressor intake superheat degree SHs is calculated by subtracting the saturation temperature f (Ps) of the compressor intake pressure Ps from the compressor intake temperature Ts (S209).

制御装置100は、算出した圧縮機吸入過熱度SHsの値が、圧縮機吸入過熱度目標値としてあらかじめ設定された第2設定値よりも小さいかどうかを判定する(S210)。制御装置100は、圧縮機吸入過熱度SHsの値が第2設定値よりも小さいと判定すると、第2膨張弁5の開度を小さくさせる制御を行う(S211)。そして、S208に戻って制御を続ける。また、制御装置100は、圧縮機吸入過熱度SHsの値が第2設定値よりも小さくないと判定すると、第2膨張弁5の開度を大きくさせる制御を行う(S212)。そして、S208に戻って制御を続ける。   The control device 100 determines whether or not the calculated value of the compressor intake superheat degree SHs is smaller than a second set value preset as a compressor intake superheat degree target value (S210). When determining that the value of the compressor intake superheat degree SHs is smaller than the second set value, the control device 100 performs control to reduce the opening of the second expansion valve 5 (S211). And it returns to S208 and continues control. When determining that the value of the compressor intake superheat degree SHs is not smaller than the second set value, the control device 100 performs control to increase the opening degree of the second expansion valve 5 (S212). And it returns to S208 and continues control.

図40は、この発明の実施の形態4のヒートポンプ給湯装置における蓄熱利用給湯運転を行う際の制御系のシステムを中心とする構成を示す図である。図40では、本実施の形態のヒートポンプ給湯装置が蓄熱利用給湯運転を行う際の制御に係る構成を示している。図40において、図8などと同じ符号を付している機器については、実施の形態1などにおいて説明したことと基本的に同様の動作を行う。本実施の形態に係るヒートポンプ給湯装置は、少なくとも制御装置100、圧縮機吸入圧力センサ10、圧縮機吸入温度センサ12および蓄熱材温度センサ14を制御に係る機器として有している。   FIG. 40 is a diagram showing a configuration centering on the system of the control system when performing the heat storage hot water supply operation in the heat pump hot water supply apparatus according to Embodiment 4 of the present invention. In FIG. 40, the structure which concerns on the control at the time of the heat pump hot-water supply apparatus of this Embodiment performing a heat storage utilization hot-water supply driving | operation is shown. In FIG. 40, devices having the same reference numerals as those in FIG. 8 and the like perform basically the same operations as those described in the first embodiment. The heat pump hot water supply apparatus according to the present embodiment includes at least the control device 100, the compressor suction pressure sensor 10, the compressor suction temperature sensor 12, and the heat storage material temperature sensor 14 as control-related devices.

図41は、この発明の実施の形態4のヒートポンプ給湯装置における蓄熱利用給湯運転に係る制御手順のフローチャートを示す図である。図40および図41に基づいて、制御装置100が行う蓄熱利用給湯運転に係る制御について説明する。制御装置100は、給湯運転指令を受けると、圧縮機1および給湯ポンプ32の駆動を開始させる(S221)。   FIG. 41 is a diagram showing a flowchart of a control procedure related to the heat storage hot water supply operation in the heat pump hot water supply apparatus according to Embodiment 4 of the present invention. Based on FIG. 40 and FIG. 41, the control which concerns on the thermal storage utilization hot water supply operation which the control apparatus 100 performs is demonstrated. Upon receiving the hot water supply operation command, control device 100 starts driving compressor 1 and hot water supply pump 32 (S221).

制御装置100は、蓄熱材温度センサ14が検出した蓄熱材温度Tstを入力する(S222)。そして、制御装置100は、蓄熱材温度Tstの温度値が第4設定値より大きいかどうかを判定する(S223)。   The control device 100 inputs the heat storage material temperature Tst detected by the heat storage material temperature sensor 14 (S222). And the control apparatus 100 determines whether the temperature value of the thermal storage material temperature Tst is larger than a 4th setting value (S223).

制御装置100は、蓄熱材温度Tstの温度値が第4設定値より大きいと判定すると、蓄熱利用給湯運転を開始させる(S224)。制御装置100は、第2膨張弁5の開度を全閉にさせ、吸入バイパス弁7を開放させる。また、第1二方弁17および第2二方弁18を閉止させる。そして、第1膨張弁3の開度を制御して、蓄熱用熱交換器4Bに冷媒を通過させて蓄熱材に放熱させる(S225)。   When determining that the temperature value of the heat storage material temperature Tst is larger than the fourth set value, the control device 100 starts the heat storage hot water supply operation (S224). The control device 100 causes the opening of the second expansion valve 5 to be fully closed and opens the suction bypass valve 7. Further, the first two-way valve 17 and the second two-way valve 18 are closed. Then, the opening degree of the first expansion valve 3 is controlled, and the refrigerant is passed through the heat storage heat exchanger 4B to dissipate heat to the heat storage material (S225).

制御装置100は、圧縮機吸入圧力センサ10が検出した圧縮機吸入圧力Psと圧縮機吸入温度センサ12が検出した圧縮機吸入温度Tsとを入力する(S226)。そして、制御装置100は、圧縮機吸入圧力Psの飽和温度f(Ps)を算出する。さらに、圧縮機吸入温度Tsから圧縮機吸入圧力Psの飽和温度f(Ps)を差し引いて圧縮機吸入過熱度SHsを算出する(S227)。   The control device 100 inputs the compressor suction pressure Ps detected by the compressor suction pressure sensor 10 and the compressor suction temperature Ts detected by the compressor suction temperature sensor 12 (S226). Then, the control device 100 calculates a saturation temperature f (Ps) of the compressor suction pressure Ps. Further, the compressor intake superheat degree SHs is calculated by subtracting the saturation temperature f (Ps) of the compressor intake pressure Ps from the compressor intake temperature Ts (S227).

制御装置100は、算出した圧縮機吸入過熱度SHsの値が、圧縮機吸入過熱度目標値としてあらかじめ設定された第2設定値よりも小さいかどうかを判定する(S228)。制御装置100は、圧縮機吸入過熱度SHsの値が第2設定値よりも小さいと判定すると、第1膨張弁3の開度を小さくさせる制御を行う(S229)。そして、S222に戻って制御を続ける。また、制御装置100は、圧縮機吸入過熱度SHsの値が第2設定値よりも小さくないと判定すると、第1膨張弁3の開度を大きくさせる制御を行う(S230)。そして、S222に戻って制御を続ける。   The control device 100 determines whether or not the calculated value of the compressor intake superheat degree SHs is smaller than a second set value preset as a compressor intake superheat degree target value (S228). When determining that the value of the compressor intake superheat degree SHs is smaller than the second set value, the control device 100 performs control to reduce the opening of the first expansion valve 3 (S229). And it returns to S222 and continues control. Further, when determining that the value of the compressor intake superheat degree SHs is not smaller than the second set value, the control device 100 performs control to increase the opening of the first expansion valve 3 (S230). And it returns to S222 and continues control.

一方、制御装置100は、蓄熱材温度Tstの温度値が第4設定値より大きくないと判定すると、通常の給湯運転を行わせる(S231)。制御装置100は、第1膨張弁3の開度を全閉にさせ、吸入バイパス弁7を閉止させる。また、第1二方弁17も閉止させて蓄熱用熱交換器4Bに冷媒が流れないようにする。第2二方弁18は開放させる(S232)。   On the other hand, when determining that the temperature value of the heat storage material temperature Tst is not larger than the fourth set value, the control device 100 causes a normal hot water supply operation to be performed (S231). The control device 100 causes the opening of the first expansion valve 3 to be fully closed and closes the suction bypass valve 7. Further, the first two-way valve 17 is also closed so that the refrigerant does not flow into the heat storage heat exchanger 4B. The second two-way valve 18 is opened (S232).

制御装置100は、圧縮機吸入圧力センサ10が検出した圧縮機吸入圧力Psと圧縮機吸入温度センサ12が検出した圧縮機吸入温度Tsとを入力する(S233)。そして、制御装置100は、圧縮機吸入圧力Psの飽和温度f(Ps)を算出する。さらに、圧縮機吸入温度Tsから圧縮機吸入圧力Psの飽和温度f(Ps)を差し引いて圧縮機吸入過熱度SHsを算出する(S234)。   The control device 100 inputs the compressor suction pressure Ps detected by the compressor suction pressure sensor 10 and the compressor suction temperature Ts detected by the compressor suction temperature sensor 12 (S233). Then, the control device 100 calculates a saturation temperature f (Ps) of the compressor suction pressure Ps. Further, the compressor intake superheat degree SHs is calculated by subtracting the saturation temperature f (Ps) of the compressor intake pressure Ps from the compressor intake temperature Ts (S234).

制御装置100は、算出した圧縮機吸入過熱度SHsの値が、圧縮機吸入過熱度目標値としてあらかじめ設定された第2設定値よりも小さいかどうかを判定する(S235)。制御装置100は、圧縮機吸入過熱度SHsの値が第2設定値よりも小さいと判定すると、第2膨張弁5の開度を小さくさせる制御を行う(S236)。そして、S222に戻って制御を続ける。また、制御装置100は、圧縮機吸入過熱度SHsの値が第2設定値よりも小さくないと判定すると、第2膨張弁5の開度を大きくさせる制御を行う(S237)。そして、S222に戻って制御を続ける。   The control device 100 determines whether or not the calculated value of the compressor intake superheat degree SHs is smaller than a second set value preset as a compressor intake superheat degree target value (S235). When determining that the value of the compressor intake superheat degree SHs is smaller than the second set value, the control device 100 performs control to decrease the opening of the second expansion valve 5 (S236). And it returns to S222 and continues control. When determining that the value of the compressor intake superheat degree SHs is not smaller than the second set value, the control device 100 performs control to increase the opening of the second expansion valve 5 (S237). And it returns to S222 and continues control.

以上のように、本実施の形態に係るヒートポンプ給湯装置は、冷媒が循環する冷媒回路、給湯側二次回路30および蓄熱側二次回路40を有し、制御装置100が、保温運転などのように、比較的高温の水を加熱する運転を行う場合など、給湯用熱交換器2から流出する冷媒が比エンタルピーの大きい状態になるかどうかを判定し、比エンタルピーが大きい状態になると判定すると、給湯蓄熱併用運転を行って蓄熱運転も行うことにより、ヒートポンプ給湯装置を運転することによって得られる熱エネルギーを有効利用することができる。また、蓄熱槽41に蓄熱した熱エネルギーを利用した蓄熱利用給湯運転を行うことができるので、外気温度によらず、空気熱交換器6における冷媒の蒸発温度を高く維持することができるので、冷媒から水への加熱能力を増強することができる。   As described above, the heat pump hot water supply apparatus according to the present embodiment includes the refrigerant circuit in which the refrigerant circulates, the hot water supply side secondary circuit 30 and the heat storage side secondary circuit 40, and the control apparatus 100 performs a heat insulation operation or the like. In addition, when performing an operation of heating relatively high temperature water, it is determined whether or not the refrigerant flowing out of the hot water supply heat exchanger 2 has a large specific enthalpy, and when it is determined that the specific enthalpy is large, By performing the hot water storage heat storage combined operation and performing the heat storage operation, the thermal energy obtained by operating the heat pump hot water supply apparatus can be used effectively. Further, since the heat storage hot water supply operation using the heat energy stored in the heat storage tank 41 can be performed, the evaporation temperature of the refrigerant in the air heat exchanger 6 can be kept high regardless of the outside air temperature. The heating capacity from water to water can be enhanced.

また、本実施の形態に係るヒートポンプ給湯装置は、中温で潜熱変化するスラリーなどの蓄熱材を、蓄熱側二次回路40内に循環させるようにしたので、蓄熱運転における効率を高くすることができる。また、蓄熱用熱交換器4Bが蓄熱槽41内にあるので、効率よく採熱などを行うことができる。また、蓄熱利用給湯運転において、外気温度が低く、空気熱交換器6が冷えている状態でも、蓄熱用熱交換器4Bで熱交換した後の低圧中温のガス冷媒が、空気熱交換器6側に流れない。このため、空気熱交換器6において冷媒が凝縮し、寝込むことを防止することができる。   Moreover, since the heat pump hot water supply apparatus according to the present embodiment circulates a heat storage material such as slurry that changes in latent heat at an intermediate temperature in the heat storage side secondary circuit 40, the efficiency in the heat storage operation can be increased. . Further, since the heat storage heat exchanger 4B is in the heat storage tank 41, heat can be collected efficiently. Further, in the hot water storage operation using the heat storage, even when the outside air temperature is low and the air heat exchanger 6 is cold, the low-pressure medium-temperature gas refrigerant after the heat exchange with the heat storage heat exchanger 4B is performed on the air heat exchanger 6 side. Does not flow. For this reason, it is possible to prevent the refrigerant from condensing and falling asleep in the air heat exchanger 6.

また、本実施の形態に係るヒートポンプ給湯装置は、給湯用熱交換器2を流出した高圧の冷媒が膨張弁を通過することなく、第1二方弁17を介して蓄熱用熱交換器4Bに流入させる構成である。このため、給湯蓄熱併用運転において、給湯用熱交換器2から流出した、中温高圧の超臨界状態の冷媒について、圧力損失を生じることなく、蓄熱用熱交換器4Bに流入させることができる。そして、実施の形態4に係るヒートポンプ給湯装置は、蓄熱用熱交換器4Bが蓄熱槽41内に収納されているので、装置を小型化することができる。   Moreover, the heat pump hot water supply apparatus according to the present embodiment allows the high-pressure refrigerant that has flowed out of the hot water supply heat exchanger 2 to pass through the first two-way valve 17 to the heat storage heat exchanger 4B without passing through the expansion valve. It is the structure made to flow in. For this reason, in the hot water storage heat storage combined operation, the medium temperature and high pressure supercritical refrigerant that has flowed out of the hot water supply heat exchanger 2 can flow into the heat storage heat exchanger 4B without causing pressure loss. And since the heat exchanger 4B for heat storage is accommodated in the thermal storage tank 41, the heat pump hot-water supply apparatus which concerns on Embodiment 4 can reduce an apparatus in size.

1 圧縮機、2 給湯用熱交換器、3 第1膨張弁、4,4A,4B 蓄熱用熱交換器、5 第2膨張弁、6 空気熱交換器、7 吸入バイパス弁、8 逆止弁、9,21 吸入バイパス配管、10 圧縮機吸入圧力センサ、11 給湯用熱交換器入口水温センサ、12 圧縮機吸入温度センサ、13 給湯用熱交換器出口冷媒温度センサ、14 蓄熱材温度センサ、15 採熱用熱交換器、16 第3膨張弁、17 第1二方弁、18 第2二方弁、20 採熱バイパス配管、22 蓄熱槽バイパス配管、30 給湯側二次回路、31 給湯タンク、32 給湯ポンプ、40 蓄熱側二次回路、41 蓄熱槽、42 蓄熱ポンプ、43 三方弁、51 第1流路、52 第2流路、53 蓄熱材用流路、54a 外管、54b 中管、54c,54d,54e 内管、54f 蓄熱材用円管、54g,54h 冷媒用円管、100 制御装置。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 Hot water supply heat exchanger, 3 1st expansion valve, 4, 4A, 4B Heat storage heat exchanger, 5 2nd expansion valve, 6 Air heat exchanger, 7 Suction bypass valve, 8 Check valve, 9, 21 Suction bypass piping, 10 Compressor suction pressure sensor, 11 Hot water supply heat exchanger inlet water temperature sensor, 12 Compressor suction temperature sensor, 13 Hot water supply heat exchanger outlet refrigerant temperature sensor, 14 Heat storage material temperature sensor, 15 Heat exchanger for heat, 16 Third expansion valve, 17 First two-way valve, 18 Second two-way valve, 20 Heat collection bypass pipe, 22 Heat storage tank bypass pipe, 30 Hot water supply side secondary circuit, 31 Hot water tank, 32 Hot water supply pump, 40 Heat storage side secondary circuit, 41 Heat storage tank, 42 Heat storage pump, 43 Three-way valve, 51 First flow path, 52 Second flow path, 53 Heat storage material flow path, 54a Outer pipe, 54b Middle pipe, 54c , 54d, 54e , 54f heat storage material for a circular tube, 54 g, 54h refrigerant circular tube, 100 controller.

この発明に係るヒートポンプ給湯装置は、圧縮機、給湯用熱交換器蓄熱用熱交換器、主絞り装置および空気熱交換器を冷媒配管で環状に接続し、また、採熱用絞り装置および採熱用熱交換器が設置され、蓄熱用熱交換器から流出する冷媒を、圧縮機の吸入側に流す採熱用バイパス配管を接続して構成する冷媒回路と、蓄熱用熱交換器、蓄熱材をためる蓄熱槽蓄熱材を循環させる蓄熱ポンプおよび蓄熱槽と採熱用熱交換器または蓄熱槽と蓄熱用熱交換器との接続を切り換える切換装置を有する蓄熱側二次回路と、給湯用熱交換器における冷媒との熱交換により、給湯に係る水に加熱させるとともに、蓄熱用熱交換器での熱交換による蓄熱材への蓄熱または採熱用熱交換器による蓄熱材からの採熱を行わせる運転制御を行う制御装置とを備えるものである。 The heat pump water heater according to the present invention, a compressor, a heat exchanger for hot water supply, heat storage heat exchanger, a main expansion device and an air heat exchanger connected to the annular refrigerant piping, also, the iris and adopted for Tonetsu is installed heat heat exchanger, the refrigerant flowing from the heat storage heat exchanger, a refrigerant circuit configured by connecting Tonetsu bypass pipe to flow to the suction side of the compressors, the heat storage heat exchanger, the heat storage A heat storage side secondary circuit having a heat storage tank for storing materials, a heat storage pump for circulating the heat storage material, and a switching device for switching the connection between the heat storage tank and the heat collecting heat exchanger or the heat storage tank and the heat storage heat exchanger, Heat exchange with the refrigerant in the heat exchanger causes the water related to the hot water supply to be heated, and heat storage in the heat storage material by heat exchange in the heat storage heat exchanger or heat collection from the heat storage material by the heat collection heat exchanger And a control device that performs operation control to be performed It is intended.

Claims (27)

圧縮機、給湯用熱交換器、採熱用絞り装置、蓄熱用熱交換器、主絞り装置および空気熱交換器を冷媒配管で環状に接続し、また、前記蓄熱用熱交換器から流出する冷媒を、前記空気熱交換器をバイパスさせて、前記圧縮機の吸入側に流す吸入バイパス配管を接続して構成する冷媒回路と、
前記蓄熱用熱交換器、蓄熱材をためる蓄熱槽および前記蓄熱用熱交換器と前記蓄熱槽との間で前記蓄熱材を循環させる蓄熱ポンプを有する蓄熱側二次回路と、
前記給湯用熱交換器における前記冷媒との熱交換により、給湯に係る水に加熱させるとともに、前記蓄熱材への蓄熱または前記蓄熱材からの採熱を行わせる運転制御を行う制御装置と
を備えるヒートポンプ給湯装置。
A compressor, a hot water supply heat exchanger, a heat extraction throttle device, a heat storage heat exchanger, a main throttle device, and an air heat exchanger are connected in a ring shape with a refrigerant pipe, and the refrigerant flows out of the heat storage heat exchanger. A refrigerant circuit configured to connect an intake bypass pipe that bypasses the air heat exchanger and flows to the intake side of the compressor;
A heat storage side secondary circuit having the heat storage heat exchanger, a heat storage tank storing the heat storage material, and a heat storage pump for circulating the heat storage material between the heat storage heat exchanger and the heat storage tank;
And a controller for performing operation control to heat the water related to hot water supply and to store heat in the heat storage material or to collect heat from the heat storage material by heat exchange with the refrigerant in the heat exchanger for hot water supply. Heat pump water heater.
前記吸入バイパス配管と前記圧縮機の吸入側配管との合流部と、前記空気熱交換器の間に設置され、前記圧縮機の吸入側から前記空気熱交換器側に前記冷媒が流れないようにする逆止弁をさらに備える請求項1に記載のヒートポンプ給湯装置。   It is installed between the junction of the suction bypass pipe and the suction side pipe of the compressor and the air heat exchanger so that the refrigerant does not flow from the suction side of the compressor to the air heat exchanger side. The heat pump hot-water supply apparatus of Claim 1 further provided with the non-return valve which performs. 前記給湯用熱交換器に流入する前記水の温度を検出する給湯用熱交換器入口水温センサをさらに備え、
前記制御装置は、前記給湯用熱交換器に流入する前記水の温度が、第1設定温度よりも高いと判定すると、前記採熱用絞り装置を全開とし、前記蓄熱側二次回路が有する前記蓄熱ポンプを駆動させて、前記給湯用熱交換器を通過する前記水に加熱させるとともに、前記蓄熱材に蓄熱させる給湯蓄熱併用運転を行わせる請求項1または請求項2に記載のヒートポンプ給湯装置。
A hot water supply heat exchanger inlet water temperature sensor for detecting the temperature of the water flowing into the hot water supply heat exchanger;
When the control device determines that the temperature of the water flowing into the hot water supply heat exchanger is higher than the first set temperature, the heat extraction throttle device is fully opened, and the heat storage side secondary circuit has the The heat pump hot water supply device according to claim 1 or 2, wherein a heat storage pump is driven to heat the water passing through the hot water supply heat exchanger, and a hot water storage heat combined operation for storing heat in the heat storage material is performed.
前記給湯用熱交換器から流出する前記冷媒の温度を検出する給湯用熱交換器出口冷媒温度センサをさらに備え、
前記制御装置は、前記給湯用熱交換器から流出する前記冷媒の温度が、第2設定温度よりも高いと判定すると、前記採熱用絞り装置を全開とし、前記蓄熱側二次回路が有する前記蓄熱ポンプを駆動させて、前記給湯用熱交換器を通過する前記水に加熱させるとともに、前記蓄熱材に蓄熱させる給湯蓄熱併用運転を行わせる請求項1または請求項2に記載のヒートポンプ給湯装置。
A hot water supply heat exchanger outlet refrigerant temperature sensor for detecting the temperature of the refrigerant flowing out of the hot water supply heat exchanger;
When the control device determines that the temperature of the refrigerant flowing out of the hot water supply heat exchanger is higher than a second set temperature, the control device opens the heat collecting throttle device, and the heat storage side secondary circuit has the The heat pump hot water supply device according to claim 1 or 2, wherein a heat storage pump is driven to heat the water passing through the hot water supply heat exchanger, and a hot water storage heat combined operation for storing heat in the heat storage material is performed.
前記蓄熱槽内の前記蓄熱材の温度を検出する蓄熱材温度センサをさらに備え、
前記制御装置は、前記蓄熱槽内の前記蓄熱材の温度が第3設定値よりも高いと判定すると、前記主絞り装置を前記冷媒が通過しないようにし、前記吸入バイパス配管を前記冷媒が流れるようにして、前記採熱用絞り装置の開度を制御し、また、前記蓄熱側二次回路が有する前記蓄熱ポンプを駆動させて、前記蓄熱材から採熱させる蓄熱利用運転を行わせる請求項1または請求項2に記載のヒートポンプ給湯装置。
A heat storage material temperature sensor for detecting the temperature of the heat storage material in the heat storage tank;
If the control device determines that the temperature of the heat storage material in the heat storage tank is higher than a third set value, the control device prevents the refrigerant from passing through the main throttle device and causes the refrigerant to flow through the suction bypass pipe. Then, the opening degree of the heat collecting throttle device is controlled, and the heat storage pump that the heat storage side secondary circuit has is driven to perform a heat storage use operation in which heat is collected from the heat storage material. Or the heat pump hot-water supply apparatus of Claim 2.
圧縮機、給湯用熱交換器、蓄熱用熱交換器、主絞り装置および空気熱交換器を冷媒配管で環状に接続し、また、採熱用絞り装置および採熱用熱交換器が設置され、前記蓄熱用熱交換器から流出する冷媒を、前記圧縮機の吸入側に流す採熱用バイパス配管を接続して構成する冷媒回路と、
前記蓄熱用熱交換器、蓄熱材をためる蓄熱槽、前記蓄熱材を循環させる蓄熱ポンプおよび前記蓄熱槽と前記採熱用熱交換器または前記蓄熱槽と前記蓄熱用熱交換器との接続を切り換える切換装置を有する蓄熱側二次回路と、
前記給湯用熱交換器における前記冷媒との熱交換により、給湯に係る水に加熱させるとともに、前記蓄熱用熱交換器での熱交換による前記蓄熱材への蓄熱または前記採熱用熱交換器による前記蓄熱材からの採熱を行わせる運転制御を行う制御装置と
を備えるヒートポンプ給湯装置。
A compressor, a hot water supply heat exchanger, a heat storage heat exchanger, a main throttle device, and an air heat exchanger are connected in an annular shape with a refrigerant pipe, and a heat collecting throttle device and a heat collecting heat exchanger are installed, A refrigerant circuit configured by connecting a bypass pipe for heat collection for flowing the refrigerant flowing out of the heat storage heat exchanger to the suction side of the compressor;
The heat storage heat exchanger, the heat storage tank for storing the heat storage material, the heat storage pump for circulating the heat storage material, and the connection between the heat storage tank and the heat collecting heat exchanger or the heat storage tank and the heat storage heat exchanger are switched. A heat storage side secondary circuit having a switching device;
By heat exchange with the refrigerant in the hot water supply heat exchanger, the water related to the hot water supply is heated, and heat is stored in the heat storage material by heat exchange in the heat storage heat exchanger or by the heat collecting heat exchanger A heat pump hot water supply apparatus comprising: a control device that performs operation control for performing heat collection from the heat storage material.
前記採熱用バイパス配管と前記圧縮機の吸入側配管との合流部と、前記空気熱交換器の間に設置され、前記圧縮機の吸入側から前記空気熱交換器側に前記冷媒が流れないようにする逆止弁をさらに備える請求項6に記載のヒートポンプ給湯装置。   The refrigerant is not flown from the suction side of the compressor to the air heat exchanger side, and is installed between the junction of the bypass pipe for heat collection and the suction side pipe of the compressor and the air heat exchanger. The heat pump hot-water supply apparatus of Claim 6 further equipped with the non-return valve which makes it do. 前記給湯用熱交換器に流入する前記水の温度を検出する給湯用熱交換器入口水温センサをさらに備え、
前記制御装置は、前記給湯用熱交換器に流入する前記水の温度が、第1設定温度よりも高いと判定すると、前記採熱用絞り装置を全閉し、前記主絞り装置の開度を制御し、前記蓄熱槽と前記蓄熱用熱交換器とを接続させるように前記切換装置を切り換え、前記蓄熱ポンプを駆動させて、前記給湯用熱交換器を通過する前記水に加熱させるとともに、前記蓄熱材に蓄熱させる給湯蓄熱併用運転を行わせる請求項6または請求項7に記載のヒートポンプ給湯装置。
A hot water supply heat exchanger inlet water temperature sensor for detecting the temperature of the water flowing into the hot water supply heat exchanger;
When the control device determines that the temperature of the water flowing into the hot water supply heat exchanger is higher than the first set temperature, the control device fully closes the heat collecting throttle device and sets the opening of the main throttle device. Controlling, switching the switching device to connect the heat storage tank and the heat storage heat exchanger, driving the heat storage pump, heating the water passing through the hot water supply heat exchanger, and The heat pump hot water supply apparatus according to claim 6 or 7, wherein a hot water storage heat storage combined operation for storing heat in the heat storage material is performed.
前記給湯用熱交換器から流出する前記冷媒の温度を検出する給湯用熱交換器出口冷媒温度センサをさらに備え、
前記制御装置は、前記給湯用熱交換器から流出する前記冷媒の温度が、第2設定温度よりも高いと判定すると、前記採熱用絞り装置を全閉し、前記主絞り装置の開度を制御し、前記蓄熱槽と前記蓄熱用熱交換器とを接続させるように前記切換装置を切り換え、前記蓄熱ポンプを駆動させて、前記給湯用熱交換器を通過する前記水に加熱させるとともに、前記蓄熱材に蓄熱させる給湯蓄熱併用運転を行わせる請求項6または請求項7に記載のヒートポンプ給湯装置。
A hot water supply heat exchanger outlet refrigerant temperature sensor for detecting the temperature of the refrigerant flowing out of the hot water supply heat exchanger;
When the control device determines that the temperature of the refrigerant flowing out of the hot water supply heat exchanger is higher than a second set temperature, the control device fully closes the heat collecting throttle device and sets the opening of the main throttle device. Controlling, switching the switching device to connect the heat storage tank and the heat storage heat exchanger, driving the heat storage pump, heating the water passing through the hot water supply heat exchanger, and The heat pump hot water supply apparatus according to claim 6 or 7, wherein a hot water storage heat storage combined operation for storing heat in the heat storage material is performed.
前記蓄熱槽内の前記蓄熱材の温度を検出する蓄熱材温度センサをさらに備え、
前記制御装置は、前記蓄熱槽内の前記蓄熱材の温度が第3設定値よりも高いと判定すると、前記主絞り装置を前記冷媒が通過しないようにし、前記採熱用絞り装置の開度を制御して、前記採熱用バイパス配管を前記冷媒が流れるようにし、また、前記蓄熱槽と前記採熱用熱交換器とを接続させるように前記切換装置を切り換え、前記蓄熱ポンプを駆動させて、前記給湯用熱交換器を通過する前記水に加熱させるとともに、前記蓄熱材に採熱させる蓄熱利用運転を行わせる請求項6または請求項7に記載のヒートポンプ給湯装置。
A heat storage material temperature sensor for detecting the temperature of the heat storage material in the heat storage tank;
When the control device determines that the temperature of the heat storage material in the heat storage tank is higher than a third set value, the control device prevents the refrigerant from passing through the main expansion device and sets the opening of the heat collection expansion device. And the switching device is switched so as to connect the heat storage tank and the heat collecting heat exchanger, and the heat storage pump is driven so that the refrigerant flows through the heat collecting bypass pipe. The heat pump hot water supply apparatus according to claim 6 or 7, wherein the water passing through the hot water supply heat exchanger is heated and the heat storage use operation is performed to collect heat from the heat storage material.
圧縮機、給湯用熱交換器、採熱用絞り装置、蓄熱用熱交換器、主絞り装置および空気熱交換器を冷媒配管で接続して構成する冷媒回路と、
前記蓄熱用熱交換器、蓄熱材をためる蓄熱槽および前記蓄熱用熱交換器と前記蓄熱槽との間で前記蓄熱材を循環させる蓄熱ポンプを有する蓄熱側二次回路と、
前記給湯用熱交換器における冷媒との熱交換により、給湯に係る水に加熱させるとともに、前記蓄熱材への蓄熱または前記蓄熱材からの採熱を行わせる運転制御を行う制御装置とを備え、
前記蓄熱用熱交換器は、2系統の冷媒用流路を有し、
前記冷媒回路は、前記圧縮機、前記給湯用熱交換器、前記採熱用絞り装置、前記蓄熱用熱交換器における一方の系統の冷媒用流路を環状に配管接続して構成する回路と、前記圧縮機、前記給湯用熱交換器、前記蓄熱用熱交換器における他方の系統の冷媒用流路、前記主絞り装置および前記空気熱交換器を環状に配管接続して構成する回路とを有するヒートポンプ給湯装置。
A refrigerant circuit configured by connecting a compressor, a hot water heat exchanger, a heat extraction throttle device, a heat storage heat exchanger, a main throttle device, and an air heat exchanger with refrigerant piping;
A heat storage side secondary circuit having the heat storage heat exchanger, a heat storage tank storing the heat storage material, and a heat storage pump for circulating the heat storage material between the heat storage heat exchanger and the heat storage tank;
A controller for performing operation control to heat water to the hot water supply or to store heat to the heat storage material or to collect heat from the heat storage material by heat exchange with the refrigerant in the heat exchanger for hot water supply,
The heat storage heat exchanger has two systems of refrigerant flow paths,
The refrigerant circuit is a circuit configured by annularly connecting the refrigerant flow path of one system in the compressor, the hot water supply heat exchanger, the heat collecting throttle device, and the heat storage heat exchanger; The compressor, the hot water supply heat exchanger, the refrigerant flow path of the other system in the heat storage heat exchanger, the main throttle device, and a circuit configured by pipe connection of the air heat exchanger. Heat pump water heater.
前記蓄熱用熱交換器は、複数枚の伝熱プレートを重ね合わせ、高圧の冷媒が流れる前記冷媒用流路、低圧の冷媒とが流れる前記冷媒用流路および前記蓄熱材が流れる蓄熱材用流路を構成したプレート式熱交換器である請求項11に記載のヒートポンプ給湯装置。   The heat storage heat exchanger includes a plurality of heat transfer plates stacked, the refrigerant channel through which a high-pressure refrigerant flows, the refrigerant channel through which a low-pressure refrigerant flows, and the heat storage material flow through which the heat storage material flows. The heat pump hot water supply device according to claim 11, which is a plate heat exchanger constituting a path. 前記蓄熱用熱交換器は、外管、該外管に内挿される中管および該中管に内挿される内管を有する三重管式熱交換器であり、前記内管の内側は、低圧の冷媒が流れる前記冷媒用流路となり、前記内管と前記中管との間は、前記蓄熱材が流れる流路となり、前記中管と前記外管との間は高圧の冷媒が流れる前記冷媒用流路となる請求項11に記載のヒートポンプ給湯装置。   The heat storage heat exchanger is a triple-pipe heat exchanger having an outer tube, an inner tube inserted into the outer tube, and an inner tube inserted into the inner tube. The refrigerant flow path through which the refrigerant flows, the flow path through which the heat storage material flows between the inner pipe and the middle pipe, and the high pressure refrigerant flows between the middle pipe and the outer pipe. The heat pump hot-water supply apparatus of Claim 11 used as a flow path. 前記蓄熱用熱交換器は、外管および該外管に内挿される2本の内管を有する二重管式熱交換器であり、一方の前記内管の内側は、高圧の冷媒が流れる前記冷媒用流路となり、他方の前記内管の内側は、低圧の冷媒が流れる前記冷媒用流路となり、前記外管と2本の前記内管との間は、前記蓄熱材が流れる流路となる請求項11に記載のヒートポンプ給湯装置。   The heat storage heat exchanger is a double-tube heat exchanger having an outer tube and two inner tubes inserted into the outer tube, and a high-pressure refrigerant flows inside the inner tube. A refrigerant flow path, the inner side of the other inner pipe serves as the refrigerant flow path through which low-pressure refrigerant flows, and a flow path through which the heat storage material flows between the outer pipe and the two inner pipes The heat pump hot-water supply apparatus according to claim 11. 前記蓄熱用熱交換器は、表面に凹状の溝を有した蓄熱材用円管と、前記凹状の溝に密着して配置される2系統の冷媒用円管とを有し、前記蓄熱材用円管の内側は、前記蓄熱材が流れる流路となり、一方の前記冷媒用円管の内側は、高圧の冷媒が流れる前記冷媒用流路となり、他方の前記冷媒用円管の内側は、低圧の冷媒が流れる前記冷媒用流路となる請求項11に記載のヒートポンプ給湯装置。   The heat storage heat exchanger has a circular tube for a heat storage material having a concave groove on a surface thereof, and two refrigerant circular tubes arranged in close contact with the concave groove, for the heat storage material. The inside of the circular pipe is a flow path through which the heat storage material flows, the inside of one of the refrigerant circular pipes is the flow path for refrigerant through which a high-pressure refrigerant flows, and the inside of the other circular pipe for refrigerant is a low pressure The heat pump hot-water supply apparatus according to claim 11, which becomes the refrigerant flow path through which the refrigerant flows. 前記給湯用熱交換器に流入する前記水の温度を検出する給湯用熱交換器入口水温センサをさらに備え、
前記制御装置は、前記給湯用熱交換器に流入する前記水の温度が、第1設定温度よりも高いと判定すると、前記採熱用絞り装置を全閉とし、前記蓄熱側二次回路が有する前記蓄熱ポンプを駆動させて、前記給湯用熱交換器を通過する前記水に加熱させるとともに、前記蓄熱材に蓄熱させる給湯蓄熱併用運転を行わせる請求項11〜請求項15のいずれか一項に記載のヒートポンプ給湯装置。
A hot water supply heat exchanger inlet water temperature sensor for detecting the temperature of the water flowing into the hot water supply heat exchanger;
When the control device determines that the temperature of the water flowing into the hot water supply heat exchanger is higher than the first set temperature, the control device closes the heat collecting throttle device, and the heat storage side secondary circuit has The hot water storage combined use operation which drives the heat storage pump to heat the water passing through the hot water supply heat exchanger and stores the heat in the heat storage material is performed. The heat pump hot-water supply apparatus of description.
前記給湯用熱交換器から流出する前記冷媒の温度を検出する給湯用熱交換器出口冷媒温度センサをさらに備え、
前記制御装置は、前記給湯用熱交換器から流出する前記冷媒の温度が、第2設定温度よりも高いと判定すると、前記採熱用絞り装置を全閉とし、前記蓄熱側二次回路が有する前記蓄熱ポンプを駆動させて、前記給湯用熱交換器を通過する前記水に加熱させるとともに、前記蓄熱材に蓄熱させる給湯蓄熱併用運転を行わせる請求項11〜請求項15のいずれか一項に記載のヒートポンプ給湯装置。
A hot water supply heat exchanger outlet refrigerant temperature sensor for detecting the temperature of the refrigerant flowing out of the hot water supply heat exchanger;
When the control device determines that the temperature of the refrigerant flowing out of the hot water supply heat exchanger is higher than a second set temperature, the control device closes the heat collecting throttle device, and the heat storage side secondary circuit has The hot water storage combined use operation which drives the heat storage pump to heat the water passing through the hot water supply heat exchanger and stores the heat in the heat storage material is performed. The heat pump hot-water supply apparatus of description.
前記蓄熱槽内の前記蓄熱材の温度を検出する蓄熱材温度センサをさらに備え、
前記制御装置は、前記蓄熱槽内の前記蓄熱材の温度が第3設定値よりも高いと判定すると、前記主絞り装置を冷媒が通過しないようにし、前記採熱用絞り装置の開度を制御し、また、前記蓄熱側二次回路が有する前記蓄熱ポンプを駆動させて、前記蓄熱材から採熱させる蓄熱利用運転を行わせる請求項11〜請求項15のいずれか一項に記載のヒートポンプ給湯装置。
A heat storage material temperature sensor for detecting the temperature of the heat storage material in the heat storage tank;
When the control device determines that the temperature of the heat storage material in the heat storage tank is higher than a third set value, the control device prevents the refrigerant from passing through the main throttle device and controls the opening degree of the heat collecting throttle device. And heat pump hot water supply as described in any one of Claims 11-15 which drive the said heat storage pump which the said heat storage side secondary circuit has, and perform the heat storage utilization driving | operation which heat-collects from the said heat storage material. apparatus.
蓄熱材を有する蓄熱槽と、
圧縮機、給湯用熱交換器、前記蓄熱槽内に配置された蓄熱用熱交換器、主絞り装置および空気熱交換器を冷媒配管で接続し、また、前記蓄熱用熱交換器から流出する冷媒を、前記空気熱交換器をバイパスさせて、前記圧縮機の吸入側に流す吸入バイパス配管および前記給湯用熱交換器から流出する前記冷媒を、前記蓄熱用熱交換器をバイパスさせて、前記主絞り装置に流す蓄熱槽バイパス配管を接続して構成する冷媒回路と、
前記給湯用熱交換器における前記冷媒との熱交換により、給湯に係る水に加熱させるとともに、前記蓄熱材への蓄熱または前記蓄熱材からの採熱を行わせる運転制御を行う制御装置とを備え、
前記冷媒回路は、
採熱用絞り装置、該採熱用絞り装置における前記冷媒の通過を制御する第1二方弁および前記蓄熱槽バイパス配管における前記冷媒の通過を制御する第2二方弁を有し、前記採熱用絞り装置、前記第1二方弁および前記第2二方弁を前記給湯用熱交換器の冷媒流出側に並列に接続するヒートポンプ給湯装置。
A heat storage tank having a heat storage material;
A compressor, a hot water supply heat exchanger, a heat storage heat exchanger arranged in the heat storage tank, a main throttle device and an air heat exchanger are connected by a refrigerant pipe, and the refrigerant flows out of the heat storage heat exchanger. Bypassing the air heat exchanger and allowing the refrigerant flowing out from the suction bypass pipe and the hot water supply heat exchanger to flow to the suction side of the compressor to bypass the heat storage heat exchanger, A refrigerant circuit configured by connecting a heat storage tank bypass pipe flowing to the expansion device;
A controller for performing operation control to heat the water related to hot water supply and to store heat in the heat storage material or to collect heat from the heat storage material by heat exchange with the refrigerant in the heat exchanger for hot water supply. ,
The refrigerant circuit is
A heat collecting throttle device; a first two-way valve that controls passage of the refrigerant in the heat collecting throttle device; and a second two-way valve that controls passage of the refrigerant in the heat storage tank bypass pipe. A heat pump hot water supply apparatus that connects the heat expansion device, the first two-way valve, and the second two-way valve in parallel to the refrigerant outflow side of the hot water supply heat exchanger.
前記吸入バイパス配管と前記圧縮機の吸入側配管との合流部と、前記空気熱交換器の間に設置され、前記圧縮機の吸入側から前記空気熱交換器側に前記冷媒が流れないようにする逆止弁をさらに備える請求項19に記載のヒートポンプ給湯装置。   It is installed between the junction of the suction bypass pipe and the suction side pipe of the compressor and the air heat exchanger so that the refrigerant does not flow from the suction side of the compressor to the air heat exchanger side. The heat pump hot-water supply apparatus of Claim 19 further equipped with the non-return valve which carries out. 前記給湯用熱交換器に流入する前記水の温度を検出する給湯用熱交換器入口水温センサをさらに備え、
前記制御装置は、前記給湯用熱交換器に流入する前記水の温度が、第1設定温度よりも高いと判定すると、前記第1二方弁を開とし、前記第2二方弁を閉とし、前記吸入バイパス配管を前記冷媒が流れないようにして、前記給湯用熱交換器を通過する前記水を加熱するとともに、前記蓄熱材に蓄熱させる給湯蓄熱併用運転を行わせる請求項19または請求項20に記載のヒートポンプ給湯装置。
A hot water supply heat exchanger inlet water temperature sensor for detecting the temperature of the water flowing into the hot water supply heat exchanger;
When the control device determines that the temperature of the water flowing into the hot water supply heat exchanger is higher than the first set temperature, the control device opens the first two-way valve and closes the second two-way valve. The hot water storage and storage combined operation for heating the water passing through the hot water supply heat exchanger and storing heat in the heat storage material is performed so that the refrigerant does not flow through the suction bypass pipe. The heat pump hot water supply apparatus according to 20.
前記給湯用熱交換器から流出する前記冷媒の温度を検出する給湯用熱交換器出口冷媒温度センサをさらに備え、
前記制御装置は、前記給湯用熱交換器から流出する前記冷媒の温度が、第2設定温度よりも高いと判定すると、前記第1二方弁を開とし、前記第2二方弁を閉とし、前記吸入バイパス配管を前記冷媒が流れないようにして、前記給湯用熱交換器を通過する前記水を加熱するとともに、前記蓄熱材に蓄熱させる給湯蓄熱併用運転を行わせる請求項19または請求項20に記載のヒートポンプ給湯装置。
A hot water supply heat exchanger outlet refrigerant temperature sensor for detecting the temperature of the refrigerant flowing out of the hot water supply heat exchanger;
When the control device determines that the temperature of the refrigerant flowing out of the hot water heat exchanger is higher than a second set temperature, the control device opens the first two-way valve and closes the second two-way valve. The hot water storage and storage combined operation for heating the water passing through the hot water supply heat exchanger and storing heat in the heat storage material is performed so that the refrigerant does not flow through the suction bypass pipe. The heat pump hot water supply apparatus according to 20.
前記蓄熱槽内の前記蓄熱材の温度を検出する蓄熱材温度センサをさらに備え、
前記制御装置は、前記蓄熱槽内の前記蓄熱材の温度が第3設定値よりも高いと判定すると、前記第1二方弁および前記第2二方弁を閉とし、前記吸入バイパス配管を前記冷媒が流れるようにして、前記主絞り装置を前記冷媒が通過しないようにし、前記採熱用絞り装置の開度を制御して、前記蓄熱材から採熱させる蓄熱利用運転を行わせる請求項19または請求項20に記載のヒートポンプ給湯装置。
A heat storage material temperature sensor for detecting the temperature of the heat storage material in the heat storage tank;
If the control device determines that the temperature of the heat storage material in the heat storage tank is higher than a third set value, the control device closes the first two-way valve and the second two-way valve, and 20. A heat storage use operation for collecting heat from the heat storage material is performed by allowing a refrigerant to flow, preventing the refrigerant from passing through the main throttle device, and controlling an opening degree of the heat collecting throttle device. Or the heat pump hot-water supply apparatus of Claim 20.
前記蓄熱用熱交換器は、前記蓄熱槽内において、一定間隔に配置された配管で構成される請求項19〜請求項23のいずれか一項に記載のヒートポンプ給湯装置。   The heat pump hot water supply apparatus according to any one of claims 19 to 23, wherein the heat storage heat exchanger is configured by pipes arranged at regular intervals in the heat storage tank. 前記給湯用熱交換器、前記水をためる給湯タンクおよび前記給湯用熱交換器と前記給湯タンクとの間で前記水を循環させる給湯ポンプを有する給湯側二次回路をさらに備える請求項1〜請求項24のいずれか一項に記載のヒートポンプ給湯装置。   The hot water supply side secondary circuit further comprising the hot water supply heat exchanger, the hot water supply tank for accumulating the water, and a hot water supply pump for circulating the water between the hot water supply heat exchanger and the hot water supply tank. Item 25. The heat pump water heater according to any one of Items 24. 前記蓄熱材は、水または相変化を伴う芯物質が封入された微小なカプセルと液体とで構成されたスラリーである請求項1〜請求項25のいずれか一項に記載のヒートポンプ給湯装置。   26. The heat pump hot water supply apparatus according to any one of claims 1 to 25, wherein the heat storage material is a slurry composed of a microcapsule in which water or a core substance accompanying a phase change is enclosed and a liquid. 前記冷媒は二酸化炭素である請求項1〜請求項26のいずれか一項に記載のヒートポンプ給湯装置。   The heat pump hot water supply apparatus according to any one of claims 1 to 26, wherein the refrigerant is carbon dioxide.
JP2017551443A 2015-11-18 2015-11-18 Heat pump water heater Active JP6509368B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/082409 WO2017085812A1 (en) 2015-11-18 2015-11-18 Heat pump hot-water supply device

Publications (2)

Publication Number Publication Date
JPWO2017085812A1 true JPWO2017085812A1 (en) 2018-07-12
JP6509368B2 JP6509368B2 (en) 2019-05-08

Family

ID=58718531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017551443A Active JP6509368B2 (en) 2015-11-18 2015-11-18 Heat pump water heater

Country Status (3)

Country Link
JP (1) JP6509368B2 (en)
GB (1) GB2559496B (en)
WO (1) WO2017085812A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209857384U (en) * 2019-05-22 2019-12-27 合肥美的暖通设备有限公司 Water heater
CN110375565A (en) * 2019-07-01 2019-10-25 北京建筑大学 Phase-change heat-exchanger and purposes based on compound organic phase change material
JP7435011B2 (en) * 2020-02-21 2024-02-21 三浦工業株式会社 Hot water production equipment and hot water production system
WO2021245795A1 (en) * 2020-06-02 2021-12-09 三菱電機株式会社 Refrigeration cycle device
CN111811142A (en) * 2020-07-28 2020-10-23 上海海关机电产品检测技术中心 Air source heat pump heating system
JPWO2022230034A1 (en) * 2021-04-27 2022-11-03

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1019482A (en) * 1996-06-28 1998-01-23 Toshiba Eng Co Ltd Plate type heat exchanger
JPH11118246A (en) * 1997-10-21 1999-04-30 Matsushita Electric Ind Co Ltd Heat pump type hot water supply system for bath
JP2001207163A (en) * 1999-11-15 2001-07-31 Mitsubishi Chemicals Corp Heat storage tank and heat storage apparatus using the same
JP2005241148A (en) * 2004-02-26 2005-09-08 Matsushita Electric Ind Co Ltd Heat pump system utilizing solar light and its operation controlling method
JP2006090697A (en) * 2004-08-26 2006-04-06 Mitsubishi Electric Corp Twisted tube type heat exchanger
JP2007178091A (en) * 2005-12-28 2007-07-12 Sharp Corp Heat pump water heater
JP2008196769A (en) * 2007-02-13 2008-08-28 Matsushita Electric Ind Co Ltd Heat pump hot-water supply device
JP2008196791A (en) * 2007-02-14 2008-08-28 Matsushita Electric Ind Co Ltd Heat pump heating system
JP2008261559A (en) * 2007-04-12 2008-10-30 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2009243866A (en) * 2008-04-01 2009-10-22 Mitsubishi Electric Corp Heat pump hot-water supply device
WO2013046720A1 (en) * 2011-09-30 2013-04-04 ダイキン工業株式会社 Hot-water-supplying, air-conditioning system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1019482A (en) * 1996-06-28 1998-01-23 Toshiba Eng Co Ltd Plate type heat exchanger
JPH11118246A (en) * 1997-10-21 1999-04-30 Matsushita Electric Ind Co Ltd Heat pump type hot water supply system for bath
JP2001207163A (en) * 1999-11-15 2001-07-31 Mitsubishi Chemicals Corp Heat storage tank and heat storage apparatus using the same
JP2005241148A (en) * 2004-02-26 2005-09-08 Matsushita Electric Ind Co Ltd Heat pump system utilizing solar light and its operation controlling method
JP2006090697A (en) * 2004-08-26 2006-04-06 Mitsubishi Electric Corp Twisted tube type heat exchanger
JP2007178091A (en) * 2005-12-28 2007-07-12 Sharp Corp Heat pump water heater
JP2008196769A (en) * 2007-02-13 2008-08-28 Matsushita Electric Ind Co Ltd Heat pump hot-water supply device
JP2008196791A (en) * 2007-02-14 2008-08-28 Matsushita Electric Ind Co Ltd Heat pump heating system
JP2008261559A (en) * 2007-04-12 2008-10-30 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2009243866A (en) * 2008-04-01 2009-10-22 Mitsubishi Electric Corp Heat pump hot-water supply device
WO2013046720A1 (en) * 2011-09-30 2013-04-04 ダイキン工業株式会社 Hot-water-supplying, air-conditioning system

Also Published As

Publication number Publication date
GB2559496B (en) 2020-04-29
WO2017085812A1 (en) 2017-05-26
JP6509368B2 (en) 2019-05-08
GB2559496A (en) 2018-08-08
GB201804721D0 (en) 2018-05-09

Similar Documents

Publication Publication Date Title
WO2017085812A1 (en) Heat pump hot-water supply device
JP6161005B2 (en) Refrigeration cycle apparatus and hot water generating apparatus having the same
JP5094942B2 (en) Heat pump equipment
GB2503781A (en) Hybrid heat pump boiler system
JP2014105890A (en) Refrigeration cycle device and hot-water generating device including the same
JP2005249319A (en) Heat pump hot water supply air-conditioner
JP2009276029A (en) Heat pump cycle device
JP2017155944A (en) Refrigeration cycle device and hot water heating device including the same
JP4595546B2 (en) Heat pump equipment
CN103868276A (en) Superconductive composite source heat pump system
JP5563521B2 (en) Geothermal heat pump device
JP2020063890A (en) Solar power generation and hot water supply system
KR101658021B1 (en) A Heatpump System Using Duality Cold Cycle
JP2015224845A (en) Refrigeration cycle device
KR102042218B1 (en) Heat Pump
JP2012013346A (en) Hot-water heating water heater
JP6143682B2 (en) Combined heat source heat pump device
JP2005300057A (en) Heat pump hot water supply system
JP6695034B2 (en) Heat pump device
JP6695033B2 (en) Heat pump device
CN103615764A (en) Energy-saving air conditioner
CN111380208A (en) Defrosting method of heat pump water heater
KR102213179B1 (en) Multi-cycle heating and cooling system using multiple heating source
KR20140133375A (en) Two stage heat pump cooling and heating apparatus using air heat source
CN218583316U (en) Air conditioning system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190402

R150 Certificate of patent or registration of utility model

Ref document number: 6509368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250