JP2008196769A - Heat pump hot-water supply device - Google Patents

Heat pump hot-water supply device Download PDF

Info

Publication number
JP2008196769A
JP2008196769A JP2007031812A JP2007031812A JP2008196769A JP 2008196769 A JP2008196769 A JP 2008196769A JP 2007031812 A JP2007031812 A JP 2007031812A JP 2007031812 A JP2007031812 A JP 2007031812A JP 2008196769 A JP2008196769 A JP 2008196769A
Authority
JP
Japan
Prior art keywords
heat
hot water
valve
water supply
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007031812A
Other languages
Japanese (ja)
Other versions
JP4848971B2 (en
Inventor
Takayuki Takatani
隆幸 高谷
Takashi Sawada
敬 澤田
Masahito Megata
雅人 目片
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007031812A priority Critical patent/JP4848971B2/en
Publication of JP2008196769A publication Critical patent/JP2008196769A/en
Application granted granted Critical
Publication of JP4848971B2 publication Critical patent/JP4848971B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To secure durability of a compressor even when a temperature of the water flowing into a heat exchanger for hot water supply is high. <P>SOLUTION: This heat pump hot-water supply device is constituted by circularly connecting the compressor 21, the heat exchanger 22 for hot water supply, a first expansion valve 23, a heat accumulator 25, a first opening and closing valve 28, a second expansion valve 29 and an evaporator 30 by piping, and comprises a first bypass circuit 32 bypassing the first expansion valve 23, the heat accumulator 25 and the first opening and closing valve 28 and provided with a second opening and closing valve 33, a heat pump cycle 20 connecting the piping between the heat accumulator 25 and the first opening and closing valve 28 and the piping between the compressor 21 and the evaporator 30, and provided with a second bypass circuit 34 provided with a third opening and closing valve 35, and a hot water storage tank 41 for storing the hot water heated by using the heat pump cycle 20, and the heat of a refrigerant coming out from the heat exchanger 22 for hot water supply is accumulated by the heat accumulator 25, when a water supply temperature is high. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ヒートポンプ給湯装置に関するものである。   The present invention relates to a heat pump water heater.

従来から、種々のヒートポンプサイクルを利用した給湯装置が提案されおり、その一例を図3に基づいて説明する。   Conventionally, hot water supply apparatuses using various heat pump cycles have been proposed, and an example thereof will be described with reference to FIG.

図3は従来のヒートポンプ給湯機の構成図である。   FIG. 3 is a configuration diagram of a conventional heat pump water heater.

図3に示すように、従来のヒートポンプ給湯機は圧縮機1、給湯用熱交換器2、絞り装置3、蒸発器4からなる冷媒循環回路と、貯湯槽5、循環ポンプ6、給湯用熱交換器2、補助加熱器7を接続した給湯回路からなる。   As shown in FIG. 3, the conventional heat pump water heater is a refrigerant circulation circuit comprising a compressor 1, a hot water supply heat exchanger 2, a throttling device 3, and an evaporator 4, a hot water tank 5, a circulation pump 6, and a hot water supply heat exchange. It consists of a hot water supply circuit to which a heater 2 and an auxiliary heater 7 are connected.

圧縮機1より吐出された高温高圧の過熱ガスは給湯用熱交換器2に流入し、ここで循環ポンプ6により送られてきた給湯水を加熱する。そして、凝縮液化した冷媒は絞り装置3で減圧され、蒸発器4に流入し、ここで大気熱を吸熱して蒸発ガス化し、圧縮機1に戻り、再び高温高圧の過熱ガスとなる。   The high-temperature and high-pressure superheated gas discharged from the compressor 1 flows into the hot water supply heat exchanger 2, where the hot water supplied by the circulation pump 6 is heated. Then, the condensed and liquefied refrigerant is decompressed by the expansion device 3 and flows into the evaporator 4 where it absorbs atmospheric heat to evaporate and returns to the compressor 1 to become high-temperature and high-pressure superheated gas again.

一方、給湯用熱交換器2で加熱された湯は貯湯槽5の上部に流入し、上から次第に貯湯されていく。そして、給湯用熱交換器2の入口水温が設定値に達すると水温検知器8が検知し、圧縮機1によるヒートポンプ運転を停止して、補助加熱器7の単独運転に切り換える(例えば、特許文献1参照)。
特開昭60−164157号公報
On the other hand, hot water heated by the hot water supply heat exchanger 2 flows into the upper part of the hot water storage tank 5 and is gradually stored from above. Then, when the inlet water temperature of the hot water supply heat exchanger 2 reaches a set value, the water temperature detector 8 detects it, stops the heat pump operation by the compressor 1, and switches to the auxiliary operation of the auxiliary heater 7 (for example, Patent Documents). 1).
JP 60-164157 A

しかしながら、前記従来の構成では、沸き上げ運転時間の経過とともに貯湯槽5内の湯と水の接する部分で湯水混合層が生じ、その層は次第に拡大していく。これは、高温湯と低温水の熱伝導および対流により発生するものであり、高温湯から低温水へ伝熱されその境界部分で高温湯は温度低下し、逆に低温水は温度上昇する。   However, in the conventional configuration, as the boiling operation time elapses, a hot water mixed layer is formed at a portion where the hot water in the hot water tank 5 is in contact with water, and the layer gradually expands. This occurs due to heat conduction and convection in high temperature hot water and low temperature water. Heat is transferred from the high temperature hot water to the low temperature water, and the temperature of the high temperature hot water decreases at the boundary portion, while the temperature of the low temperature water increases.

従って、沸き上げ運転完了近くになると、給湯用熱交換器2に流入する水温は高くなるため、圧縮機1の吐出圧力が上昇して、圧縮機1の耐久性が悪くなるという課題を有していた。   Accordingly, when the boiling operation is nearly completed, the temperature of the water flowing into the hot water supply heat exchanger 2 becomes high, so that the discharge pressure of the compressor 1 increases and the durability of the compressor 1 deteriorates. It was.

本発明は、上記従来の課題を解決するもので、給湯用熱交換器に流入する水温が高い時でも圧縮機の耐久性を確保したヒートポンプ給湯装置を提供することを目的とする。   This invention solves the said conventional subject, and it aims at providing the heat pump hot-water supply apparatus which ensured the durability of the compressor, even when the water temperature which flows in into the heat exchanger for hot water supply is high.

前記従来の課題を解決するために、本発明のヒートポンプ給湯装置は、圧縮機、給湯用熱交換器、第1の膨張弁、蓄熱器、第1の開閉弁、第2の膨張弁、及び蒸発器を配管で環状に接続し、前記第1の膨張弁、前記蓄熱器、及び前記第1の開閉弁をバイパスするとともに第2の開閉弁を設けた第1のバイパス回路と、前記蓄熱器と前記第1の開閉弁の間の配管と前記圧縮機と前記蒸発器の間の配管を接続するとともに第3の開閉弁を設けた第2のバイパス回路を設けたヒートポンプサイクルと、前記ヒートポンプサイクルを用いて加熱された湯を蓄える貯湯タンクを備えたことを特徴とする。   In order to solve the conventional problems, a heat pump hot water supply apparatus of the present invention includes a compressor, a heat exchanger for hot water supply, a first expansion valve, a heat accumulator, a first on-off valve, a second expansion valve, and evaporation. A first bypass circuit in which a vessel is annularly connected, bypassing the first expansion valve, the heat accumulator, and the first on-off valve and provided with a second on-off valve, and the heat accumulator A heat pump cycle in which a pipe between the first on-off valve and a pipe between the compressor and the evaporator are connected and a second bypass circuit provided with a third on-off valve is provided; and the heat pump cycle is It has a hot water storage tank for storing hot water that has been used and heated.

蓄熱器を有するもので、入水温度が高い場合、通常のヒートポンプサイクルでは、給湯用熱交換器の出口温度も上昇し、給湯用熱交換器および蒸発器の冷媒ホールド量が減少するため高圧が上昇する傾向にあるが、本発明のように蓄熱器で冷媒の熱を蓄熱して、給湯用熱交換器を出た冷媒を冷却することにより、冷媒エンタルピーが減少してその密度が増加し、また、蒸発器入口の乾き度も減少して蒸発器の冷媒ホールド量が増加するため、入水温度が高い場合でも、高圧は上昇することなくヒートポンプサイクルを安全に運転できる。   With a heat storage unit, when the incoming water temperature is high, the outlet temperature of the hot water heat exchanger also rises in the normal heat pump cycle, and the refrigerant hold amount of the hot water heat exchanger and evaporator decreases, increasing the high pressure. However, by storing the heat of the refrigerant in the heat accumulator as in the present invention and cooling the refrigerant that has exited the hot water heat exchanger, the refrigerant enthalpy is reduced and its density is increased. Since the dryness of the evaporator inlet also decreases and the refrigerant hold amount of the evaporator increases, the heat pump cycle can be operated safely without increasing the high pressure even when the incoming water temperature is high.

本発明のヒートポンプ給湯装置は、給湯用熱交換器に流入する水温が高い時でも圧縮機の耐久性を確保できる。   The heat pump water heater of the present invention can ensure the durability of the compressor even when the water temperature flowing into the hot water heat exchanger is high.

第1の発明は、圧縮機、給湯用熱交換器、第1の膨張弁、蓄熱器、第1の開閉弁、第2の膨張弁、及び蒸発器を配管で環状に接続し、前記第1の膨張弁、前記蓄熱器、及び前記第1の開閉弁をバイパスするとともに第2の開閉弁を設けた第1のバイパス回路と、前記蓄熱器と前記第1の開閉弁の間の配管と前記圧縮機と前記蒸発器の間の配管を接続するとともに第3の開閉弁を設けた第2のバイパス回路を設けたヒートポンプサイクルと、前記ヒートポンプサイクルを用いて加熱された湯を蓄える貯湯タンクを備えている。   According to a first aspect of the present invention, a compressor, a hot water supply heat exchanger, a first expansion valve, a heat accumulator, a first on-off valve, a second expansion valve, and an evaporator are connected in a ring shape with a pipe, and the first A first bypass circuit that bypasses the first on-off valve, the second on-off valve, and a pipe between the regenerator and the first on-off valve, A heat pump cycle that connects a pipe between the compressor and the evaporator and includes a second bypass circuit provided with a third on-off valve; and a hot water storage tank that stores hot water heated using the heat pump cycle ing.

この構成により、入水温度が高い場合、通常のヒートポンプサイクルでは、給湯用熱交換器の出口温度も上昇し、給湯用熱交換器および蒸発器の冷媒ホールド量が減少するため高圧が上昇する傾向にあるが、本発明のように蓄熱器で冷媒の熱を蓄熱して、給湯用熱交換器を出た冷媒を冷却することにより、冷媒エンタルピーが減少してその密度が増加し、また、蒸発器入口の乾き度も減少して蒸発器の冷媒ホールド量が増加するため、入水温度が高い場合でも、高圧は上昇することなくヒートポンプサイクルを安全に運転できる。   With this configuration, when the incoming water temperature is high, in the normal heat pump cycle, the outlet temperature of the hot water heat exchanger also rises, and the refrigerant hold amount of the hot water heat exchanger and the evaporator decreases, so the high pressure tends to rise. However, by storing the heat of the refrigerant in the regenerator as in the present invention and cooling the refrigerant that has exited the hot water heat exchanger, the refrigerant enthalpy is reduced and its density is increased. Since the dryness of the inlet also decreases and the refrigerant hold amount of the evaporator increases, the heat pump cycle can be operated safely without increasing the high pressure even when the incoming water temperature is high.

第2の発明は、特に、第1の発明のヒートポンプ給湯装置において、前記給湯用熱交換器の水側入口の温度を検出する入水温度検出手段と、前記蓄熱器の温度を検出する蓄熱器温度検出手段を設け、前記入水温度検出器で検出された前記給湯用熱交換器の水側入口の温度と、前記蓄熱器温度検出手段で検出された前記蓄熱器の温度に応じて、前記第1の開閉弁、前記第2の開閉弁および前記第3の開閉弁の開閉を制御している。   In particular, in the heat pump water heater of the first invention, the second aspect of the invention is a water inlet temperature detection means for detecting the temperature of the water side inlet of the heat exchanger for hot water supply, and a regenerator temperature for detecting the temperature of the regenerator. Detecting means, and depending on the temperature of the water-side inlet of the hot water heat exchanger detected by the incoming water temperature detector and the temperature of the regenerator detected by the regenerator temperature detecting means, The on-off valve 1, the second on-off valve, and the third on-off valve are controlled.

この構成により、蓄熱器を吸熱器および放熱器として作用でき、蓄熱器を放熱器として作用する場合、吸熱した熱を回収できるので、より効率の高いヒートポンプ給湯機を実現できる。   With this configuration, the heat accumulator can act as a heat absorber and a heat sink, and when the heat accumulator acts as a heat radiator, the heat absorbed can be recovered, so that a more efficient heat pump water heater can be realized.

第3の発明は、特に、第2の発明のヒートポンプ給湯装置において、前記第1の開閉弁が閉、前記第2の開閉弁が開および前記第3の開閉弁が開の状態の場合、前記蒸発器の能力を下げている。   According to a third aspect of the invention, in particular, in the heat pump water heater of the second aspect of the invention, when the first on-off valve is closed, the second on-off valve is open, and the third on-off valve is open, Decreasing the capacity of the evaporator.

この構成により、ファンの入力すなわちヒートポンプサイクルへの入力を低減できるので、より効率の高いヒートポンプ給湯機を実現できる。   With this configuration, the fan input, that is, the input to the heat pump cycle can be reduced, so that a more efficient heat pump water heater can be realized.

第4の発明は、特に、第2または第3の発明のヒートポンプ給湯装置において、前記蓄熱器には、潜熱蓄熱剤が充填している。   In a fourth aspect of the invention, in particular, in the heat pump hot water supply apparatus of the second or third aspect of the invention, the heat accumulator is filled with a latent heat storage agent.

この構成により、沸き終い運転時に潜熱蓄熱剤からなる蓄熱器に放熱するため、蓄熱器の出口温度の上昇も緩やかになり、さらには高圧の上昇も緩やかにできるため、ヒートポンプサイクル運転時に、より効率の高いヒートポンプ給湯機を実現できる。   With this configuration, heat is dissipated to the regenerator made of the latent heat storage agent at the end of boiling operation, so the rise in the outlet temperature of the regenerator can be moderated, and further the increase in high pressure can be moderated. An efficient heat pump water heater can be realized.

さらに、蓄熱器に蓄熱した熱を回収できるため、より効率の高いヒートポンプ給湯機を実現できる。   Furthermore, since the heat stored in the regenerator can be recovered, a more efficient heat pump water heater can be realized.

第5の発明は、特に、第2または第3の発明のヒートポンプ給湯装置において、前記蓄熱器には、融点の異なる複数の潜熱蓄熱剤が充填している。   In a fifth aspect of the invention, in particular, in the heat pump hot water supply apparatus of the second or third aspect of the invention, the regenerator is filled with a plurality of latent heat storage agents having different melting points.

この構成により、蓄熱器に融点の異なる複数の潜熱蓄熱剤を充填して回収できる熱量を増加しているので、より効率の高いヒートポンプ給湯機を実現できる。   With this configuration, since the amount of heat that can be recovered by filling the heat accumulator with a plurality of latent heat storage agents having different melting points is increased, a more efficient heat pump water heater can be realized.

第6の発明は、特に、第5の発明のヒートポンプ給湯装置において、前記蓄熱器は、融点の高い潜熱蓄熱剤から融点の低い潜熱蓄熱剤へ冷媒が流れている。   In a sixth aspect of the invention, in particular, in the heat pump hot water supply apparatus of the fifth aspect of the invention, in the heat accumulator, the refrigerant flows from a latent heat storage agent having a high melting point to a latent heat storage agent having a low melting point.

この構成により、沸き終い運転時に融点の高い潜熱蓄熱剤から融点の低い潜熱蓄熱剤へ冷媒が流れる蓄熱器に放熱するため、蓄熱器の出口温度の上昇も更に緩やかになり、さらには高圧の上昇も更に緩やかにできるため、ヒートポンプサイクル運転時に、より一層効率の高いヒートポンプ給湯機を実現できる。   This configuration dissipates heat to the regenerator where the refrigerant flows from the latent heat storage agent with a high melting point to the latent heat storage agent with a low melting point at the end of boiling operation. Since the rise can be further moderated, a more efficient heat pump water heater can be realized during heat pump cycle operation.

さらに蓄熱器に融点の異なる複数の潜熱蓄熱剤を充填して回収できる熱量を増加しているので、より効率の高いヒートポンプ給湯機を実現できる。   Further, since the amount of heat that can be recovered by filling the heat accumulator with a plurality of latent heat storage agents having different melting points is increased, a more efficient heat pump water heater can be realized.

第7の発明は、特に、第2〜6のいずれか一つの発明において、ヒートポンプサイクルに用いる冷媒を二酸化炭素とし、高圧側では臨界圧を越える状態で運転している。   In the seventh invention, in particular, in any one of the second to sixth inventions, the refrigerant used in the heat pump cycle is carbon dioxide, and the high pressure side is operated in a state exceeding the critical pressure.

この構成により、給湯水の高温化を高効率で実現すると共に、冷媒が外部に漏れた場合にも、地球温暖化への影響は非常に少なくなる。   With this configuration, the hot water supply can be heated at high efficiency, and even when the refrigerant leaks to the outside, the influence on global warming is very small.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。
(実施の形態1)
図1は、本発明の第1の実施の形態におけるヒートポンプ給湯装置の冷凍回路構成図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiment.
(Embodiment 1)
FIG. 1 is a configuration diagram of a refrigeration circuit of a heat pump hot water supply apparatus according to a first embodiment of the present invention.

図に示すように、ヒートポンプサイクル20は、圧縮機21、給湯用熱交換器22、第1の膨張弁23、蓄熱器25、第1の開閉弁28、第2の膨張弁29、及び蒸発器30を順に配管で環状に接続して構成されている。なお、蒸発器30に送風するためのファン31を設けている。   As shown in the figure, the heat pump cycle 20 includes a compressor 21, a hot water heat exchanger 22, a first expansion valve 23, a heat accumulator 25, a first on-off valve 28, a second expansion valve 29, and an evaporator. 30 is connected in an annular shape by piping. Note that a fan 31 for blowing air to the evaporator 30 is provided.

また、第1の膨張弁23、蓄熱器25、及び第1の開閉弁28をバイパスする第1のバイパス回路32が設けてあり、第1のバイパス回路32には第2の開閉弁33を設けている。   In addition, a first bypass circuit 32 that bypasses the first expansion valve 23, the heat accumulator 25, and the first on-off valve 28 is provided, and the second on-off valve 33 is provided in the first bypass circuit 32. ing.

また、蓄熱器25と第1の開閉弁28の間の配管と、圧縮機21と蒸発器30の間の配管を接続した第2のバイパス回路34が設けてあり、第2のバイパス回路34には第3の開閉弁35を設けている。   In addition, a second bypass circuit 34 is provided in which a pipe between the heat accumulator 25 and the first on-off valve 28 and a pipe between the compressor 21 and the evaporator 30 are connected. Is provided with a third on-off valve 35.

また、第1の膨張弁23と並列に第4の開閉弁24を設けている。   A fourth on-off valve 24 is provided in parallel with the first expansion valve 23.

なお、蓄熱器25は、高融点潜熱蓄熱剤26と低融点潜熱蓄熱剤27から構成されるとともに、蓄熱器温度検出手段25Aを設けている。   The regenerator 25 is composed of a high melting point latent heat storage agent 26 and a low melting point latent heat storage agent 27, and is provided with a regenerator temperature detection means 25A.

コントローラ36には、後述する入水温度検出手段22Bで検出した出湯温度と蓄熱器温度検出手段25Aで検出した蓄熱器温度が入力され、開閉弁設定手段37により出力され、第1の開閉弁28と第2の開閉弁33と第3の開閉弁35と第4の開閉弁24の開閉が設定される。   The controller 36 receives the hot water temperature detected by the incoming water temperature detection means 22B, which will be described later, and the regenerator temperature detected by the regenerator temperature detection means 25A, and is output by the on-off valve setting means 37. The opening / closing of the second on-off valve 33, the third on-off valve 35, and the fourth on-off valve 24 is set.

なお、本実施例によるヒートポンプ給湯装置は、二酸化炭素を冷媒として用い、高圧側では臨界圧を越える状態で運転することが好ましい。   In addition, it is preferable that the heat pump hot-water supply apparatus by a present Example uses a carbon dioxide as a refrigerant | coolant, and it drive | operates in the state exceeding a critical pressure on the high pressure side.

次に、本発明の第1の実施の形態におけるヒートポンプ給湯装置の給湯回路について説明する。   Next, a hot water supply circuit of the heat pump hot water supply apparatus in the first embodiment of the present invention will be described.

貯湯タンク41の第一底部配管42は、減圧弁43を介して水道管等の水供給配管44に接続され、貯湯タンク41へは所定の圧力に減圧された状態で第一底部配管42から水が供給される。   The first bottom pipe 42 of the hot water storage tank 41 is connected to a water supply pipe 44 such as a water pipe via a pressure reducing valve 43, and water is supplied from the first bottom pipe 42 to the hot water storage tank 41 in a state where the pressure is reduced to a predetermined pressure. Is supplied.

また、貯湯タンク41の第二底部配管45は、循環ポンプ46を介して給湯用熱交換器22の水用配管22Aの流入側と接続されている。また、給湯用熱交換器22の水用配管22Aの入口側には入水温度検出手段22Bを設置し、出口側には出湯温度検出手段22Cを設置している。   The second bottom piping 45 of the hot water storage tank 41 is connected to the inflow side of the water piping 22 </ b> A of the hot water supply heat exchanger 22 via the circulation pump 46. Further, an incoming water temperature detecting means 22B is installed on the inlet side of the water pipe 22A of the hot water supply heat exchanger 22, and a hot water temperature detecting means 22C is installed on the outlet side.

また、貯湯タンク41の第一上部配管47は、三方弁48を介して給湯用熱交換器22の水用配管22Aの流出側と接続されている。また、貯湯タンク41の第三底部配管49は、三方弁48に接続されている。   The first upper pipe 47 of the hot water storage tank 41 is connected to the outflow side of the water pipe 22 </ b> A of the hot water supply heat exchanger 22 through a three-way valve 48. The third bottom piping 49 of the hot water storage tank 41 is connected to the three-way valve 48.

また、貯湯タンク41の第二上部配管50は、キッチン、又は洗面所等の蛇口や風呂端末(図示せず)に接続されている。   The second upper pipe 50 of the hot water storage tank 41 is connected to a kitchen or a faucet such as a bathroom or a bath terminal (not shown).

次に、本発明の第1の実施の形態におけるヒートポンプ給湯装置の貯湯運転動作について図2のフローチャートを用いて説明する。   Next, the hot water storage operation of the heat pump hot water supply apparatus in the first embodiment of the present invention will be described with reference to the flowchart of FIG.

まず、使用者が蛇口を開くと第二上部配管50から出湯され、貯湯タンク41の残湯量が少なくなると、圧縮機21が起動し、ヒートポンプサイクル20が運転を開始する(ステップ1)。   First, when the user opens the faucet, the hot water is discharged from the second upper pipe 50, and when the amount of remaining hot water in the hot water storage tank 41 decreases, the compressor 21 is activated and the heat pump cycle 20 starts operation (step 1).

次に、入水温度検出手段22Bで入水温度を検出し、蓄熱器温度検出手段25Aで蓄熱器温度を検出する(ステップ2)。   Next, the incoming water temperature detecting means 22B detects the incoming water temperature, and the regenerator temperature detecting means 25A detects the regenerator temperature (step 2).

次に、入水温度が所定温度以上になっているか、すなわち高入水温領域になっているか判断される(ステップ3)。   Next, it is determined whether the incoming water temperature is equal to or higher than a predetermined temperature, that is, a high incoming water temperature region (step 3).

高入水温領域になっていると判断した場合、蓄熱器25に蓄熱するために、第1の開閉弁28は開、第2の開閉弁33は閉、第3の開閉弁35は閉、第4の開閉弁24は開に設定される(ステップ4)。   If it is determined that the temperature is high, the first on-off valve 28 is opened, the second on-off valve 33 is closed, the third on-off valve 35 is closed, 4 is set to open (step 4).

なお、第1の膨張弁23は全開、第2の膨張弁29は開(予め決定された制御に基づく開度)に設定される。   The first expansion valve 23 is set to fully open, and the second expansion valve 29 is set to open (an opening based on a predetermined control).

圧縮機21で圧縮された冷媒は、給湯用熱交換器22で放熱し、第1の膨張弁23、第4の開閉弁24を通り、蓄熱器25で蓄熱され、第1の開閉弁28を通り、第2の膨張弁29で減圧された後、蒸発器30にて吸熱し、ガス状態で圧縮機21に吸入される。なお、ファン31は、圧縮機21の運転状態に応じた回転数に設定される。   The refrigerant compressed by the compressor 21 radiates heat in the hot water supply heat exchanger 22, passes through the first expansion valve 23 and the fourth on-off valve 24, is stored in the heat accumulator 25, and passes through the first on-off valve 28. As described above, after the pressure is reduced by the second expansion valve 29, the heat is absorbed by the evaporator 30 and is sucked into the compressor 21 in a gas state. The fan 31 is set to a rotational speed corresponding to the operating state of the compressor 21.

循環ポンプ46により貯湯タンク41からの水は、貯湯タンク41の第二底部配管45を通り、給湯用熱交換器22の水用配管22Aに導かれ、高温の湯に加熱され、三方弁48を介し、貯湯タンク41に流入する。   Water from the hot water storage tank 41 is passed through the second bottom piping 45 of the hot water storage tank 41 by the circulation pump 46 and led to the water piping 22A of the hot water supply heat exchanger 22 to be heated to hot water, and the three-way valve 48 is turned on. Through the hot water storage tank 41.

三方弁48において、貯湯タンク41の第一上部配管47に接続するか、貯湯タンク41の第三底部配管49に接続するかの判断は、給湯用熱交換器22の水用配管22Aの出口側に設置している出湯温度検出手段22Cの温度によって行う。   In the three-way valve 48, whether to connect to the first upper piping 47 of the hot water storage tank 41 or to the third bottom piping 49 of the hot water storage tank 41 is determined based on the outlet side of the water piping 22 </ b> A of the hot water supply heat exchanger 22. This is performed according to the temperature of the hot water temperature detecting means 22C installed in the hot water.

貯湯タンク41の湯量が一杯になると圧縮機21と循環ポンプ46を停止し、貯湯運転を終了する。したがって、高入水温領域になっている場合でも、蓄熱器25で蓄熱されるため蓄熱器25の出口の冷媒温度はそれ程上昇することなく圧縮機21の運転を継続できる。   When the amount of hot water in the hot water storage tank 41 is full, the compressor 21 and the circulation pump 46 are stopped, and the hot water storage operation is terminated. Therefore, even when the temperature is in the high incoming water temperature region, heat is stored in the heat accumulator 25, so that the refrigerant temperature at the outlet of the heat accumulator 25 does not rise so much and the operation of the compressor 21 can be continued.

蓄熱器25には、高融点潜熱蓄熱剤26と低融点潜熱蓄熱剤27が充填されており、例えば、高融点潜熱蓄熱剤26の融点が50℃、低融点潜熱蓄熱剤27の融点が30℃で、高融点潜熱蓄熱剤26から低融点潜熱蓄熱剤27へ冷媒が流れている場合、入水温度が50℃になっても、蓄熱器25の出口の冷媒温度は、30℃程度を維持できる。   The regenerator 25 is filled with a high melting point latent heat storage agent 26 and a low melting point latent heat storage agent 27. For example, the melting point of the high melting point latent heat storage agent 26 is 50 ° C., and the melting point of the low melting point latent heat storage agent 27 is 30 ° C. Thus, when the refrigerant flows from the high melting point latent heat storage agent 26 to the low melting point latent heat storage agent 27, the refrigerant temperature at the outlet of the heat storage unit 25 can be maintained at about 30 ° C. even if the incoming water temperature becomes 50 ° C.

ステップ3で入水温度が所定温度未満であると判断した場合、すなわち高入水温領域でないと判断した場合、蓄熱器25の温度が所定温度以上になっているか、すなわち蓄熱器25に蓄熱されているか判断される(ステップ5)。   If it is determined in step 3 that the incoming water temperature is lower than the predetermined temperature, that is, if it is determined that it is not in the high incoming water temperature range, is the temperature of the regenerator 25 equal to or higher than the predetermined temperature, that is, whether heat is stored in the regenerator 25 Judgment is made (step 5).

所定温度以上の場合、蓄熱されているか判断され、放熱される。そこで、第1の開閉弁28は閉、第2の開閉弁33は開、第3の開閉弁35は開、第4の開閉弁24は閉に設定される(ステップ6)。なお、第1の膨張弁23は開(予め決定された制御に基づく開度)、第2の膨張弁29は開(予め決定された制御に基づく開度)に設定される。   When the temperature is equal to or higher than the predetermined temperature, it is determined whether the heat is stored and the heat is radiated. Therefore, the first on-off valve 28 is closed, the second on-off valve 33 is opened, the third on-off valve 35 is opened, and the fourth on-off valve 24 is closed (step 6). The first expansion valve 23 is set to open (an opening based on a predetermined control), and the second expansion valve 29 is set to open (an opening based on a predetermined control).

圧縮機21で圧縮された冷媒は、給湯用熱交換器22で放熱し、一方の冷媒は第2の開閉弁33、第1のバイパス回路32を通り、第2の膨張弁29で減圧された後、蒸発器30にて吸熱され、もう一方の冷媒は第1の膨張弁23で減圧された後、蓄熱器25にて吸熱され、第2のバイパス回路34を通り、蒸発器30を流れた冷媒と合流し、ガス状態で圧縮機21に吸入される。   The refrigerant compressed by the compressor 21 dissipates heat in the hot water supply heat exchanger 22, and one refrigerant passes through the second on-off valve 33 and the first bypass circuit 32 and is decompressed by the second expansion valve 29. Thereafter, the heat is absorbed by the evaporator 30, and the other refrigerant is decompressed by the first expansion valve 23, and then absorbed by the heat accumulator 25, passes through the second bypass circuit 34, and flows through the evaporator 30. It merges with the refrigerant and is sucked into the compressor 21 in a gas state.

蓄熱器25も蒸発器として作用しているため、ファン31は、通常の回転数より低い回転数に設定される。   Since the heat accumulator 25 also acts as an evaporator, the fan 31 is set at a lower rotational speed than the normal rotational speed.

循環ポンプ46により貯湯タンク41からの水は、貯湯タンク41の第二底部配管45を通り、給湯用熱交換器22の水用配管22Aに導かれ、高温の湯に加熱され、三方弁48を介し、貯湯タンク41に流入する。   Water from the hot water storage tank 41 is passed through the second bottom piping 45 of the hot water storage tank 41 by the circulation pump 46 and led to the water piping 22A of the hot water supply heat exchanger 22 to be heated to hot water, and the three-way valve 48 is turned on. Through the hot water storage tank 41.

三方弁48において、貯湯タンク41の第一上部配管47に接続するか、貯湯タンク41の第三底部配管49に接続するかの判断は、給湯用熱交換器22の水用配管22Aの出口側に設置している出湯温度検出手段22Cの温度によって行う。   In the three-way valve 48, whether to connect to the first upper piping 47 of the hot water storage tank 41 or to the third bottom piping 49 of the hot water storage tank 41 is determined based on the outlet side of the water piping 22 </ b> A of the hot water supply heat exchanger 22. This is performed according to the temperature of the hot water temperature detecting means 22C installed in the hot water.

貯湯タンク41の湯量が一杯になると圧縮機21と循環ポンプ46を停止し、貯湯運転を終了する。   When the amount of hot water in the hot water storage tank 41 is full, the compressor 21 and the circulation pump 46 are stopped, and the hot water storage operation is terminated.

ステップ5で蓄熱器25の温度が所定温度未満と判断した場合、蓄熱器25に熱量が残っていない場合、第1の開閉弁28は閉、第2の開閉弁33は開、第3の開閉弁35は閉、第4の開閉弁24は閉に設定される(ステップ7)。   When it is determined in step 5 that the temperature of the heat accumulator 25 is lower than the predetermined temperature, if there is no heat remaining in the heat accumulator 25, the first on-off valve 28 is closed, the second on-off valve 33 is opened, and the third on-off The valve 35 is closed and the fourth on-off valve 24 is closed (step 7).

なお、第1の膨張弁23は全閉、第2の膨張弁29は開(予め決定された制御に基づく開度)に設定される。   The first expansion valve 23 is set to be fully closed, and the second expansion valve 29 is set to be open (an opening based on a predetermined control).

圧縮機21で圧縮された冷媒は、給湯用熱交換器22で放熱し、第2の開閉弁33、第1のバイパス回路32を通り、第2の膨張弁29で減圧された後、蒸発器30にて吸熱し、ガス状態で圧縮機21に吸入される。なお、ファン31は、圧縮機21の運転状態に応じた回転数に設定される。   The refrigerant compressed by the compressor 21 dissipates heat in the hot water supply heat exchanger 22, passes through the second on-off valve 33 and the first bypass circuit 32, and is decompressed by the second expansion valve 29. Heat is absorbed at 30 and is sucked into the compressor 21 in a gas state. The fan 31 is set to a rotational speed corresponding to the operating state of the compressor 21.

循環ポンプ46により貯湯タンク41からの水は、貯湯タンク41の第二底部配管45を通り、給湯用熱交換器22の水用配管22Aに導かれ、高温の湯に加熱され、三方弁48を介し、貯湯タンク41に流入する。   Water from the hot water storage tank 41 is passed through the second bottom piping 45 of the hot water storage tank 41 by the circulation pump 46 and led to the water piping 22A of the hot water supply heat exchanger 22 to be heated to hot water, and the three-way valve 48 is turned on. Through the hot water storage tank 41.

三方弁48において、貯湯タンク41の第一上部配管47に接続するか、貯湯タンク41の第三底部配管49に接続するかの判断は、給湯用熱交換器22の水用配管22Aの出口側に設置している出湯温度検出手段22Cの温度によって行う。   In the three-way valve 48, whether to connect to the first upper piping 47 of the hot water storage tank 41 or to the third bottom piping 49 of the hot water storage tank 41 is determined based on the outlet side of the water piping 22 </ b> A of the hot water supply heat exchanger 22. This is performed according to the temperature of the hot water temperature detecting means 22C installed in the hot water.

貯湯タンク41の湯量が一杯になると圧縮機21と循環ポンプ46を停止し、貯湯運転を終了する。   When the amount of hot water in the hot water storage tank 41 is full, the compressor 21 and the circulation pump 46 are stopped, and the hot water storage operation is terminated.

沸き上げ運転時間の経過とともに貯湯タンク41内の湯と水の接する部分で湯水混合層が生じ、その層は貯湯タンク41の下部に拡大し、沸き上げ運転完了近くになると、貯湯タンク41下部より循環ポンプ46を経て、給湯用熱交換器22に流入する水温は高くなってくる。   As the boiling operation time elapses, a hot water mixed layer is formed at the portion where the hot water in the hot water storage tank 41 comes into contact with water, and that layer expands to the lower part of the hot water storage tank 41. The temperature of the water flowing into the hot water supply heat exchanger 22 through the circulation pump 46 increases.

この場合、給湯用熱交換器22の出口の冷媒温度も上昇するが、蓄熱器25で蓄熱されるため蓄熱器25の出口の冷媒温度はそれ程上昇することなく圧縮機21の運転を継続できる。   In this case, the refrigerant temperature at the outlet of the hot water supply heat exchanger 22 also rises, but since the heat is accumulated in the heat accumulator 25, the refrigerant 21 at the outlet of the heat accumulator 25 can continue to operate without increasing so much.

蓄熱器25には、高融点潜熱蓄熱剤26と低融点潜熱蓄熱剤27が充填されており、例えば、高融点潜熱蓄熱剤26の融点が50℃、低融点潜熱蓄熱剤27の融点が30℃で、高融点潜熱蓄熱剤26から低融点潜熱蓄熱剤27へ冷媒が流れている場合、入水温度が50℃になっても、蓄熱器25の出口の冷媒温度は、30℃程度を維持できる。   The regenerator 25 is filled with a high melting point latent heat storage agent 26 and a low melting point latent heat storage agent 27. For example, the melting point of the high melting point latent heat storage agent 26 is 50 ° C., and the melting point of the low melting point latent heat storage agent 27 is 30 ° C. Thus, when the refrigerant flows from the high melting point latent heat storage agent 26 to the low melting point latent heat storage agent 27, the refrigerant temperature at the outlet of the heat storage unit 25 can be maintained at about 30 ° C. even if the incoming water temperature becomes 50 ° C.

以上のように本実施の形態のヒートポンプ給湯装置は、入水温度が高い場合、通常のヒートポンプサイクルでは、給湯用熱交換器の22出口温度も上昇し、給湯用熱交換器22および蒸発器30の冷媒ホールド量が減少するため高圧が上昇する傾向にある。   As described above, in the heat pump hot water supply apparatus of the present embodiment, when the incoming water temperature is high, in the normal heat pump cycle, the 22 outlet temperature of the hot water supply heat exchanger also rises, and the hot water supply heat exchanger 22 and the evaporator 30 Since the refrigerant hold amount decreases, the high pressure tends to increase.

しかし、本発明のように蓄熱器25で冷媒の熱を蓄熱して、給湯用熱交換器22を出た冷媒を冷却することにより、冷媒エンタルピーが減少してそのその密度が増加し、また、蒸発器30入口の乾き度も減少して蒸発器の冷媒ホールド量が増加するため、入水温度が高い場合でも、高圧は上昇することなくヒートポンプサイクルを安全に運転できる。   However, by storing the heat of the refrigerant in the heat accumulator 25 and cooling the refrigerant that has exited the hot water supply heat exchanger 22 as in the present invention, the refrigerant enthalpy is reduced and its density is increased. Since the degree of dryness at the inlet of the evaporator 30 also decreases and the refrigerant hold amount of the evaporator increases, even if the incoming water temperature is high, the heat pump cycle can be operated safely without increasing the high pressure.

従って、入水温度が高くなっても高圧が上昇することなく圧縮機21の連続運転ができるので、貯湯タンク41の下部まで高温湯を貯湯でき、貯湯タンク41の容量を有効に利用できる効果がある。   Accordingly, since the compressor 21 can be continuously operated without increasing the high pressure even when the incoming water temperature rises, the hot water can be stored up to the lower part of the hot water storage tank 41, and the capacity of the hot water storage tank 41 can be effectively used. .

また、蓄熱器25に蓄熱した熱量を回収する場合、蓄熱器25を蒸発器30と並列に動作させ、もうひとつの蒸発器として回収するので、蒸発能力が大きくなり、より効率の高い運転ができる効果がある。   Further, when recovering the amount of heat stored in the heat accumulator 25, the heat accumulator 25 is operated in parallel with the evaporator 30 and is collected as another evaporator, so that the evaporation capacity is increased and a more efficient operation can be performed. effective.

また、本実施の形態では、冷媒として二酸化炭素を用いた場合で説明したが、冷媒としてR410A冷媒やHC冷媒などのその他の冷媒を用いてもよい。   In this embodiment, the case where carbon dioxide is used as the refrigerant has been described. However, other refrigerants such as R410A refrigerant and HC refrigerant may be used as the refrigerant.

また、本実施の形態では、蓄熱器に、融点の異なる2種類の潜熱蓄熱剤を充填した場合で説明したが、融点の異なる3種類以上の潜熱蓄熱剤を充填してもよい。   Further, in the present embodiment, the case where the heat accumulator is filled with two types of latent heat storage agents having different melting points is described, but three or more types of latent heat storage agents having different melting points may be filled.

さらに、本実施の形態では、ヒートポンプサイクル20を備えたヒートポンプ給湯装置を用いて説明したが、2つ以上のヒートポンプサイクルを用いてもよい。   Furthermore, although this Embodiment demonstrated using the heat pump hot-water supply apparatus provided with the heat pump cycle 20, you may use two or more heat pump cycles.

以上のように、本発明にかかるヒートポンプ給湯装置は、冷媒回路の圧縮機の吐出圧力を低減しながら、給湯水を容易に高温に加熱することが可能となるので、温水を貯湯し、その温水を利用した暖房等の用途にも適用できる。   As described above, the heat pump hot water supply apparatus according to the present invention can easily heat hot water to a high temperature while reducing the discharge pressure of the compressor of the refrigerant circuit. It can also be applied to uses such as heating that uses heat.

本発明の第1の実施の形態におけるヒートポンプ給湯装置の回路構成図The circuit block diagram of the heat pump hot-water supply apparatus in the 1st Embodiment of this invention 同ヒートポンプ給湯装置の開閉弁制御のフローチャートFlow chart of on / off valve control of the heat pump water heater 従来のヒートポンプ給湯機の構成図Configuration diagram of conventional heat pump water heater

符号の説明Explanation of symbols

20 ヒートポンプサイクル
21 圧縮機
22 給湯用熱交換器
23 第1の膨張弁
25 蓄熱器
28 第1の開閉弁
29 第2の膨張弁
30 蒸発器
32 第1のバイパス回路
33 第2の開閉弁
34 第2のバイパス回路
35 第3の開閉弁
41 貯湯タンク
DESCRIPTION OF SYMBOLS 20 Heat pump cycle 21 Compressor 22 Heat exchanger for hot water supply 23 1st expansion valve 25 Heat accumulator 28 1st on-off valve 29 2nd expansion valve 30 Evaporator 32 1st bypass circuit 33 2nd on-off valve 34 2nd 2 bypass circuit 35 third on-off valve 41 hot water storage tank

Claims (7)

圧縮機、給湯用熱交換器、第1の膨張弁、蓄熱器、第1の開閉弁、第2の膨張弁、及び蒸発器を配管で環状に接続し、前記第1の膨張弁、前記蓄熱器、及び前記第1の開閉弁をバイパスするとともに第2の開閉弁を設けた第1のバイパス回路と、前記蓄熱器と前記第1の開閉弁の間の配管と前記圧縮機と前記蒸発器の間の配管を接続するとともに第3の開閉弁を設けた第2のバイパス回路を設けたヒートポンプサイクルと、前記ヒートポンプサイクルを用いて加熱された湯を蓄える貯湯タンク備えたことを特徴とするヒートポンプ給湯装置。 A compressor, a hot water supply heat exchanger, a first expansion valve, a heat accumulator, a first on-off valve, a second expansion valve, and an evaporator are connected in an annular shape by piping, and the first expansion valve and the heat storage And a first bypass circuit that bypasses the first on-off valve and is provided with a second on-off valve, a pipe between the heat accumulator and the first on-off valve, the compressor, and the evaporator A heat pump comprising a heat pump cycle having a second bypass circuit provided with a third on-off valve and a hot water storage tank for storing hot water heated by using the heat pump cycle. Hot water supply device. 前記給湯用熱交換器の水側入口の温度を検出する入水温度検出手段と、前記蓄熱器の温度を検出する蓄熱器温度検出手段を設け、前記入水温度検出器で検出された前記給湯用熱交換器の水側入口の温度と、前記蓄熱器温度検出手段で検出された前記蓄熱器の温度応じて、前記第1の開閉弁、前記第2の開閉弁および前記第3の開閉弁の開閉を制御することを特徴とする請求項1に記載のヒートポンプ給湯装置。 The hot water supply temperature detection means for detecting the temperature of the water side inlet of the hot water supply heat exchanger and the heat storage temperature detection means for detecting the temperature of the heat storage device are provided, and the water supply temperature detected by the water supply temperature detector is provided. Depending on the temperature of the water-side inlet of the heat exchanger and the temperature of the heat accumulator detected by the heat accumulator temperature detecting means, the first on-off valve, the second on-off valve, and the third on-off valve The heat pump hot-water supply apparatus according to claim 1, wherein opening and closing is controlled. 前記第1の開閉弁が閉、前記第2の開閉弁が開および前記第3の開閉弁が開の状態の場合、前記蒸発器の能力を下げることを特徴とする請求項2に記載のヒートポンプ給湯装置。 The heat pump according to claim 2, wherein when the first on-off valve is closed, the second on-off valve is open, and the third on-off valve is in an open state, the capacity of the evaporator is reduced. Hot water supply device. 前記蓄熱器には、潜熱蓄熱剤が充填されていることを特徴とする請求項2または3に記載のヒートポンプ給湯装置。 The heat pump hot-water supply device according to claim 2 or 3, wherein the heat storage device is filled with a latent heat storage agent. 前記蓄熱器には、融点の異なる複数の潜熱蓄熱剤が充填されていることを特徴とする請求項2または3に記載のヒートポンプ給湯装置。 The heat pump hot-water supply apparatus according to claim 2 or 3, wherein the heat accumulator is filled with a plurality of latent heat storage agents having different melting points. 前記蓄熱器は、融点の高い潜熱蓄熱剤から融点の低い潜熱蓄熱剤へ冷媒が流れることを特徴とする請求項5に記載のヒートポンプ給湯装置。 6. The heat pump hot water supply apparatus according to claim 5, wherein the refrigerant flows from the latent heat storage agent having a high melting point to the latent heat storage agent having a low melting point. 前記ヒートポンプサイクルに用いる冷媒を二酸化炭素とし、高圧側では臨界圧を越える状態で運転する請求項2〜6のいずれか1項に記載のヒートポンプ給湯装置。 The heat pump hot water supply apparatus according to any one of claims 2 to 6, wherein the refrigerant used in the heat pump cycle is carbon dioxide, and the high pressure side is operated in a state exceeding a critical pressure.
JP2007031812A 2007-02-13 2007-02-13 Heat pump water heater Expired - Fee Related JP4848971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007031812A JP4848971B2 (en) 2007-02-13 2007-02-13 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007031812A JP4848971B2 (en) 2007-02-13 2007-02-13 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2008196769A true JP2008196769A (en) 2008-08-28
JP4848971B2 JP4848971B2 (en) 2011-12-28

Family

ID=39755877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007031812A Expired - Fee Related JP4848971B2 (en) 2007-02-13 2007-02-13 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP4848971B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013047600A (en) * 2011-08-05 2013-03-07 Visteon Global Technologies Inc Refrigerant circuit
WO2017085812A1 (en) * 2015-11-18 2017-05-26 三菱電機株式会社 Heat pump hot-water supply device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005315558A (en) * 2004-03-29 2005-11-10 Mitsubishi Electric Corp Heat pump water heater
JP2005351589A (en) * 2004-06-14 2005-12-22 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2006046737A (en) * 2004-08-03 2006-02-16 Matsushita Electric Ind Co Ltd Heat pump water heater

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005315558A (en) * 2004-03-29 2005-11-10 Mitsubishi Electric Corp Heat pump water heater
JP2005351589A (en) * 2004-06-14 2005-12-22 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2006046737A (en) * 2004-08-03 2006-02-16 Matsushita Electric Ind Co Ltd Heat pump water heater

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013047600A (en) * 2011-08-05 2013-03-07 Visteon Global Technologies Inc Refrigerant circuit
WO2017085812A1 (en) * 2015-11-18 2017-05-26 三菱電機株式会社 Heat pump hot-water supply device
JPWO2017085812A1 (en) * 2015-11-18 2018-07-12 三菱電機株式会社 Heat pump water heater
GB2559496A (en) * 2015-11-18 2018-08-08 Mitsubishi Electric Corp Heat pump hot-water supply device
GB2559496B (en) * 2015-11-18 2020-04-29 Mitsubishi Electric Corp Heat pump hot water supply apparatus

Also Published As

Publication number Publication date
JP4848971B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
JP5187184B2 (en) Hot water storage water heater
WO2014155993A1 (en) Hot-water supply device
JP4920622B2 (en) Heat pump water heater
JP5176474B2 (en) Heat pump water heater
JP2008082601A (en) Heat pump hot water supply device
JP4848971B2 (en) Heat pump water heater
JP2008241176A (en) Refrigerating cycle device
JP4595546B2 (en) Heat pump equipment
JP4075844B2 (en) Heat pump water heater
JP5151528B2 (en) Heat pump water heater
JP4935402B2 (en) Heat pump water heater
JP2008261559A (en) Heat pump water heater
JP2012013346A (en) Hot-water heating water heater
JP2009281629A (en) Heat pump water heater
JP2009085476A (en) Heat pump water heater
JP5187155B2 (en) Heat pump water heater
JP5092692B2 (en) Heat pump water heater
JP2006308268A (en) Waterline pressure-direct using type hot water supply system by indirect heating by heat pump heat source device, electric heater or solar energy
JP2006010232A (en) Heat pump device
JP2002340401A (en) Heat pump type hot water supplier
JP2007017013A (en) Heat pump water heater
JP6391414B2 (en) Heating and hot water supply equipment
JP2006002960A (en) Heat pump device
JP2009103429A (en) Heat pump water heater
JP2010216715A (en) Heat pump device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090617

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111003

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees