JPS58219394A - Latent heat accumulating apparatus - Google Patents

Latent heat accumulating apparatus

Info

Publication number
JPS58219394A
JPS58219394A JP57101833A JP10183382A JPS58219394A JP S58219394 A JPS58219394 A JP S58219394A JP 57101833 A JP57101833 A JP 57101833A JP 10183382 A JP10183382 A JP 10183382A JP S58219394 A JPS58219394 A JP S58219394A
Authority
JP
Japan
Prior art keywords
heat
temperature
heat storage
storage material
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57101833A
Other languages
Japanese (ja)
Inventor
Kazuo Yamashita
山下 和夫
Takahito Ishii
隆仁 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57101833A priority Critical patent/JPS58219394A/en
Publication of JPS58219394A publication Critical patent/JPS58219394A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/025Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being in direct contact with a heat-exchange medium or with another heat storage material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Heating Systems (AREA)

Abstract

PURPOSE:To maintain the temperature in the upper part of a filler part constant at the time of heat dissipation, and to keep the temperature in a cold heating medium constant, by providing a heat pipe between the center part and the upper part of a filler part of heat accumulating material, consisting of a latent heat accumulating material and a heat transfer medium. CONSTITUTION:A heat pipe 9 is provided between the center part and the upper part of a filler part of heat accumulating material, consisting of a heat accumulating material 3 and a heat transfer medium 4. In such a structure, when cold heating medium is fed into a heat exchanger 6, the filler part of heat accumulating material is stirred up by the evaporation-condensation cycle of a heat transfer medium 4, and the heat accumulated in the filler part is absorbed by the cold heating medium in the heat exchanger 6. At that time, the temperature in the upper part of a filler part is apt to be lowered, but the heat is replenished from the center part by the intermediary of a heat pipe 9, so that the temperature in the upper part will not be lowered. Accordingly, the temperature in the heating medium in a heat exchanger 6 can be kept constant at a high temperature all the time.

Description

【発明の詳細な説明】 本発明は深夜電力や太陽エネルギー等を貯え給湯・冷暖
房などに用いる潜熱蓄熱装置用いた蓄熱装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat storage device using a latent heat storage device that stores late-night power, solar energy, etc. and is used for hot water supply, air conditioning, and the like.

第1図は従来の蓄熱装置1を示したものである。FIG. 1 shows a conventional heat storage device 1. As shown in FIG.

蓄熱装置1は蓄熱槽2に蓄熱材3と熱吸収時に液体から
気体に、熱放出時に気体から液体に変化しかつ、その凝
縮液の密度が少なくとも前記蓄熱材の相転位点近傍にお
ける密度よりも大きい伝熱媒2・・−′ 体4とを」三方に空間部を残し、て封入するとともに蓄
熱するための熱交換器6と熱を取り出すための熱交換器
6とより構成されている。蓄熱状態において、蓄熱材充
填部は蓄熱材の融点以上の温度の蓄熱材溶液から成り、
空間部はその温度における伝熱媒体の飽和蒸気圧より成
っている○熱交換器6に低温熱媒体が導入されると、空
間部の伝熱媒体は熱交換器6で熱交換し凝縮液化するの
で空間部の蒸気圧は低下する。これを補なうために蓄熱
材充填部より伝熱媒体が蒸発し気泡7となって上昇し空
間部に達する。一方凝縮液8は滴下l−蓄熱材充填部に
環流する。蓄熱材充填部に滴下した凝縮液8は蓄熱材3
より密度が大きいため、蓄熱材溶液中を降下する。降下
しながら大部分は蓄熱材3より熱を奪い蒸発し気泡とな
って上昇する。他の一部は蓄熱槽2底部に沈降しそこで
熱を得て再び蒸発する。しかしながら、凝縮液の蒸発は
前記説明でわかるように蓄熱材充填部上部が主になるた
め、上部ははげしく攪拌されるが、下部にいくにしたが
い、攪拌はおだやかになる。捷た、凝縮3べ−5 液8に熱を奪われた蓄熱材は、その溶液が気泡により攪
拌されているため、微結晶となって浮遊攪拌しているが
液体状態より密度が大きいため徐々に沈降していく。こ
のように伝熱媒体4の蒸発−凝縮サイクルにより蓄熱材
充填部を攪拌し効率よく熱交換器6で熱交換を行なう方
法である。然るにこの方法においては、蓄熱材充填部上
部の温度が低下する。これは、上部が滴下する比較的低
温の凝縮液と凝縮液にその潜熱を奪われ微結晶となった
比較的低温の蓄熱材および蓄熱材溶液とより構成さJI
、ているので、相対的に温度が低くなるためである。上
部温度が低下すると空間部の蒸気の乎f(1+i温度が
低下する。したがって熱交換器6での熱交換温度が低下
するため低温熱媒体の温度上昇値が低くなる。上記説明
でわかるように、従来の熱交換においては時間の経過と
ともに空間部の温度が低下1〜熱交換効率が低下するた
め導入した低温熱媒体を一定η1.1度の高温熱媒体と
して取り出すことができなかった。
A heat storage device 1 has a heat storage material 3 in a heat storage tank 2 that changes from liquid to gas when absorbing heat and from gas to liquid when releasing heat, and the density of the condensed liquid is at least higher than the density near the phase transition point of the heat storage material. It is comprised of a heat exchanger 6 for enclosing large heat transfer mediums 2, . In the heat storage state, the heat storage material filling part is made of a heat storage material solution having a temperature equal to or higher than the melting point of the heat storage material,
The space is made up of the saturated vapor pressure of the heat transfer medium at that temperature. ○ When the low temperature heat medium is introduced into the heat exchanger 6, the heat transfer medium in the space exchanges heat in the heat exchanger 6 and is condensed and liquefied. Therefore, the vapor pressure in the space decreases. In order to compensate for this, the heat transfer medium evaporates from the heat storage material filled portion, becomes bubbles 7, rises, and reaches the space. On the other hand, the condensed liquid 8 flows back into the dripping l-heat storage material filling section. The condensed liquid 8 dripped into the heat storage material filling part is the heat storage material 3
Since it has a higher density, it descends into the heat storage material solution. While descending, most of the heat absorbs heat from the heat storage material 3, evaporates, and rises in the form of bubbles. The other part settles to the bottom of the heat storage tank 2, where it gains heat and evaporates again. However, as can be seen from the above explanation, the condensed liquid evaporates mainly in the upper part of the heat storage material filling part, and therefore, although the upper part is vigorously stirred, the stirring becomes gentler as it goes to the lower part. The heat storage material that has lost heat to the shattered and condensed liquid 8 becomes microcrystals, which are suspended and agitated because the solution is stirred by air bubbles. It continues to settle. In this way, the heat storage material filled portion is stirred by the evaporation-condensation cycle of the heat transfer medium 4, and heat exchange is efficiently carried out in the heat exchanger 6. However, in this method, the temperature of the upper part of the heat storage material filling part decreases. This consists of a relatively low-temperature condensate dripping from the top, a relatively low-temperature heat storage material that has lost its latent heat to the condensate, and has become microcrystals, and a heat storage material solution.
, so the temperature is relatively low. When the upper temperature decreases, the temperature of the steam in the space decreases. Therefore, the heat exchange temperature in the heat exchanger 6 decreases, and the temperature increase value of the low-temperature heat medium decreases.As can be seen from the above explanation, In conventional heat exchange, the temperature of the space decreases with the passage of time and the heat exchange efficiency decreases, so the introduced low-temperature heat medium could not be extracted as a high-temperature heat medium with a constant η of 1.1 degrees.

本発明は−1−τ1]2問題点をなくし、一定温度の熱
媒体を得ることを目的としている。
The present invention aims to eliminate the -1-τ1]2 problem and obtain a heat medium of constant temperature.

本発明は、潜熱形番熱材と熱吸収時に液体から気体に、
熱放出時に気体から液体に変化しかつ、その凝縮液の密
度が少なくとも前記蓄熱材の相転移点近傍における密度
より大きい密度を有する伝熱媒体とを上方に空間部を残
して密封するとともに前記蓄熱材充填部の中央部と上部
との間にヒートバイブを設けた構成よりなっている。
The present invention utilizes a latent heat type heat material that changes from liquid to gas when absorbing heat.
A heat transfer medium that changes from a gas to a liquid when heat is released and whose condensed liquid has a density at least higher than the density near the phase transition point of the heat storage material is sealed with a space above the heat storage material. It has a structure in which a heat vibrator is provided between the center part and the upper part of the material filling part.

この構成により、熱取り出し時に生ずる蓄熱材充填部」
二部の温度低下をヒートパイプにより中央部の熱搬送に
より防ぎ、温度を一定にする。これにより空間部の温度
も一定となり、したがって常に一定温度の熱媒体を得る
ことができる0以下本発明の一実施例を第2図の図面を
用いて説明する。なお、第2図中、第1図と同一部品に
ついては同一番号を付している0 第2図において、蓄熱装置1は蓄熱槽2と熱交換器5,
6およびヒートパイプ9とそれの支持具1oとより構成
され、さらに蓄熱槽2内には酢酸す) IJウム3水塩
(融点68℃、融点近傍での溶5ベーミ7 融液の密度1.28 q/mA )  のごとき蓄熱材
3とフロン113(58℃での密度1.48g10りA
)のごとき蓄熱材と非相溶性で密度の大きい伝熱媒体4
とが封入さ扛ている。また、熱交換効率をよくするため
蓄熱槽内の非凝縮性ガスは排除されている。
With this configuration, the heat storage material filling section that occurs when heat is taken out
A heat pipe prevents the temperature from decreasing in the second part by transporting heat to the central part, keeping the temperature constant. As a result, the temperature of the space becomes constant, so that a heating medium of constant temperature can always be obtained. An embodiment of the present invention will be described with reference to FIG. 2. In Fig. 2, the same parts as in Fig. 1 are given the same numbers. In Fig. 2, the heat storage device 1 has a heat storage tank 2, a heat exchanger 5,
6, a heat pipe 9, and its support 1o; 28 q/mA) and Freon 113 (density 1.48 g/mA at 58°C)
) is incompatible with the heat storage material and has a high density heat transfer medium 4
It is enclosed. Additionally, non-condensable gas in the heat storage tank is excluded to improve heat exchange efficiency.

いま、蓄熱装置1が蓄熱状態にある時熱交換器6に低温
の熱媒体を流入すると、第1図で説明したように伝熱媒
体4の蒸発−凝縮サイクルによシ蓄熱材充填部が攪拌さ
れるとともに熱交換器6にて伝熱媒体は熱交換を行ない
放熱する。この時、前記説明のごとく蓄熱材充填部の上
部の温度低下をきたす。本発明においては蓄熱材充填部
上部と上部とにわたリヒートバイブ(ヒートナイフオン
も含む)を配し温度低下を防いでいる。すなわち前記説
明でわかるように蓄熱材充填部上部は比較的温度が高い
。」二部の温度が低下すると前記ヒートパイプにより中
央部の熱が」二部に伝搬され上部の温度低下を防ぐこと
ができる。このために空間部の温度低下もなく熱交換器
6により一定の熱交換を行なうことができ、低温熱媒体
は常にほぼ6 ・、 、 一定温度の高温の熱媒体として熱を取り出すことができ
る。ヒートパイプの形状は第2図に示すような形状に限
定されるものでなくフィン付き等伝熱特性の優れたもの
ならどのような構造でもよい。
Now, when the heat storage device 1 is in a heat storage state, when a low-temperature heat medium flows into the heat exchanger 6, the heat storage material filling part is agitated by the evaporation-condensation cycle of the heat transfer medium 4, as explained in FIG. At the same time, the heat transfer medium exchanges heat in the heat exchanger 6 and radiates heat. At this time, as explained above, the temperature of the upper part of the heat storage material filling section is lowered. In the present invention, a reheat vibrator (including a heat knife on) is disposed between the upper and upper parts of the heat storage material filled part to prevent the temperature from decreasing. That is, as can be seen from the above description, the temperature of the upper part of the heat storage material filling part is relatively high. When the temperature of the second part decreases, the heat in the central part is transmitted to the second part by the heat pipe, thereby preventing the temperature of the upper part from decreasing. For this reason, constant heat exchange can be performed by the heat exchanger 6 without a drop in the temperature of the space, and the low-temperature heat medium can always extract heat as a high-temperature heat medium of approximately constant temperature. The shape of the heat pipe is not limited to the shape shown in FIG. 2, but may have any structure as long as it has excellent heat transfer characteristics, such as a structure with fins.

また、本発明において、ヒートパイプは蓄熱材充填部の
中央部より上部に挿入したが、蓄熱槽下部は放熱した蓄
熱材固形物が蓄熱材融液より比重が大きいため、沈降し
堆積してくるため一定の高温が得られないようになるた
めである。第2図において、ヒートパイプは液面下にあ
るが前記説明でもわかるように、液面上に突出していて
もさしつかえない。
In addition, in the present invention, the heat pipe is inserted above the central part of the heat storage material filling part, but in the lower part of the heat storage tank, the solid heat storage material that has radiated heat has a higher specific gravity than the melted heat storage material, so it settles and accumulates. This is because a constant high temperature cannot be obtained. In FIG. 2, the heat pipe is below the liquid surface, but as can be seen from the above description, it may also protrude above the liquid surface.

なお、上記説明では熱交換器6は気相に設けられた場合
につき説明したが、これに限定されるものでなく、気液
両相に熱交換器を配しても同様の効果を得ることができ
る。
In addition, although the above description has been made for the case where the heat exchanger 6 is provided in the gas phase, the present invention is not limited to this, and the same effect can be obtained even if the heat exchanger is provided in both the gas and liquid phases. I can do it.

以上本発明の手段によれば、蓄熱材充填部上部の温度が
放熱時はぼ一定となり、低温熱媒体をほぼ一定温度の高
温熱媒体にすることができる0
As described above, according to the means of the present invention, the temperature of the upper part of the heat storage material filled part becomes almost constant during heat radiation, and the low temperature heat medium can be turned into a high temperature heat medium with a substantially constant temperature.

【図面の簡単な説明】[Brief explanation of drawings]

711−) 第1図は従来の蓄熱装置の断面図、第2図は本発明によ
る潜熱蓄熱装置の一実施例の断面図である。 1・・・・・蓄熱装置、2・・・・・・蓄熱槽、3・・
・・・・蓄熱材、4・・・・・・伝熱媒体、9・・・・
・・ヒートパイプ。 代理人の氏名 弁理士 中 尾 敏 男 はが1名第1
711-) FIG. 1 is a sectional view of a conventional heat storage device, and FIG. 2 is a sectional view of an embodiment of a latent heat storage device according to the present invention. 1... Heat storage device, 2... Heat storage tank, 3...
...Heat storage material, 4...Heat transfer medium, 9...
··heat pipe. Name of agent: Patent attorney Toshio Nakao (1st person)
figure

Claims (1)

【特許請求の範囲】[Claims] 潜熱蓄熱材と熱吸収時に液体から気体に、熱放出時に気
体から液体に変化し、かつ、その凝縮液の密度が少なく
とも前記蓄熱材の相転位点近傍における密度よりも大き
い伝熱媒体とを上方に空間部を残して蓄熱槽に封入する
とともに、前記蓄熱材充填部の中央部と上部との間にヒ
ートパイプを設けた潜熱蓄熱装置。
A latent heat storage material and a heat transfer medium that changes from liquid to gas when absorbing heat and from gas to liquid when releasing heat, and whose condensed liquid has a density at least higher than the density near the phase transition point of the heat storage material. A latent heat storage device, the latent heat storage device being enclosed in a heat storage tank with a space left in the space, and a heat pipe provided between a center and an upper portion of the heat storage material filling portion.
JP57101833A 1982-06-14 1982-06-14 Latent heat accumulating apparatus Pending JPS58219394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57101833A JPS58219394A (en) 1982-06-14 1982-06-14 Latent heat accumulating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57101833A JPS58219394A (en) 1982-06-14 1982-06-14 Latent heat accumulating apparatus

Publications (1)

Publication Number Publication Date
JPS58219394A true JPS58219394A (en) 1983-12-20

Family

ID=14311086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57101833A Pending JPS58219394A (en) 1982-06-14 1982-06-14 Latent heat accumulating apparatus

Country Status (1)

Country Link
JP (1) JPS58219394A (en)

Similar Documents

Publication Publication Date Title
JPS58219394A (en) Latent heat accumulating apparatus
JPS5929989A (en) Latent heat accumulating device
JP3013481B2 (en) Cooling and heating equipment
JPS60257A (en) Latent heat type heat accumulating device
JPS58178149A (en) Latent heat type heat storage-cold heat storage system
JPS59200192A (en) Latent heat type heat accumulating device
JPS5847640B2 (en) Regenerative heat exchange device
JPS58102097A (en) Heat accumulator
JPS6020091A (en) Latent heat storaging device
JPS5864486A (en) Heat exchanger
JPS6150212B2 (en)
JPS60253791A (en) Recovery of thermal energy
JPH0343563Y2 (en)
JPS59180287A (en) Latent heat accumulator
JPS59137789A (en) Latent-heat type heat accumulator
JPH0238116B2 (en)
JPS58142193A (en) Heat accumulating device
JPS6152397B2 (en)
JPS6346392A (en) Method and device for performing natural circulation type rapid storing heat and coolness
JPS58221388A (en) Latent heat type heat accumulating device
JPS58142195A (en) Heat accumulating device
JPS605325Y2 (en) solar heat collector
JPS58106391A (en) Heat accumulator
JPS5971985A (en) Heat transporting apparatus
JPS6039853A (en) Cooler