JPS5838929B2 - It's hard to see how it's going to turn out. - Google Patents

It's hard to see how it's going to turn out.

Info

Publication number
JPS5838929B2
JPS5838929B2 JP13352375A JP13352375A JPS5838929B2 JP S5838929 B2 JPS5838929 B2 JP S5838929B2 JP 13352375 A JP13352375 A JP 13352375A JP 13352375 A JP13352375 A JP 13352375A JP S5838929 B2 JPS5838929 B2 JP S5838929B2
Authority
JP
Japan
Prior art keywords
gas
impurity
valve
impurities
carrier gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13352375A
Other languages
Japanese (ja)
Other versions
JPS5256857A (en
Inventor
久恒 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP13352375A priority Critical patent/JPS5838929B2/en
Publication of JPS5256857A publication Critical patent/JPS5256857A/en
Publication of JPS5838929B2 publication Critical patent/JPS5838929B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time

Description

【発明の詳細な説明】 本発明は、高不純物濃度薄層領域を有する気相成長多層
薄膜の製造方法、特にキャリアガス中に不純物ガスをパ
ルス状に混入することを特徴とした製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a vapor-phase grown multilayer thin film having a thin layer region with high impurity concentration, and particularly to a manufacturing method characterized by mixing an impurity gas into a carrier gas in a pulsed manner. It is.

高不純物濃度薄層領域を有する気相成長多層薄膜を製造
する方法およびそうして得た気相成長多層薄膜は、種々
の電子装置にとって誠に重要である。
BACKGROUND OF THE INVENTION Methods for manufacturing vapor-grown multilayer thin films having thin regions of high impurity concentration and the resulting vapor-grown multilayer thin films are of great importance for a variety of electronic devices.

例えば、不揮発性半導体メモリーを製作する場合には、
半導体表面に形成されたシリコン酸化膜とアルミナ膜と
の界面にタングステンあるいはモリブデン等の不純物を
その量が1ないし2原子層程度の極微量を添加する必要
がある。
For example, when manufacturing non-volatile semiconductor memory,
It is necessary to add an extremely small amount of impurity such as tungsten or molybdenum to the interface between the silicon oxide film and the alumina film formed on the semiconductor surface, the amount of which is about 1 to 2 atomic layers.

また、高性能インバットダイオードは、10ミクロン程
度のエピタキシャル層中に、O0■ないし0.05ミク
ロン程度の幅の狭い高不純物濃度領域を持つ多層構造か
ら或っている。
Also, high performance in-butt diodes are comprised of a multilayer structure having a narrow high impurity concentration region on the order of 00 to 0.05 microns in width in an epitaxial layer on the order of 10 microns.

このような幅の狭い高不純物濃度領域を形成する際、エ
ピタキシャル成長中に不純物をパルス状に添加すること
が工業的生産方法として実現し得れば誠に好都合である
When forming such a narrow high impurity concentration region, it would be very convenient if it could be realized as an industrial production method to add impurities in a pulsed manner during epitaxial growth.

当然ながら、これらの応用の他にも不純物をパルス状は
添加する事が要求される場合は多い。
Naturally, in addition to these applications, there are many cases where pulsed addition of impurities is required.

不純物をパルス状に添加する方法もしくはそれを実現す
るために用いる装置において重要な奉は、添加不純物量
および添加時間を調節できかつ、添加開始あるいは添加
終了における切換えを速やかに行なえる事である。
An important feature of the method of adding impurities in a pulsed manner or the equipment used to realize the same is that the amount of added impurities and the addition time can be adjusted, and the changeover at the start or end of addition can be quickly performed.

不純物を添加する方法は従来周知でありこれは次の様に
して行なわれる。
Methods for adding impurities are well known in the art and are carried out as follows.

不純物を添加せしめる試料を内蔵した反応装置、に連結
するように設けたガスパイプの一部をT字部としてその
枝管にバルブを設け、このバルブの開閉により添加不純
物を含むドーピングガスの導入および停止を行なう方法
である。
A part of the gas pipe connected to the reactor containing the sample to be added with impurities is used as a T-shaped part, and a valve is installed in the branch pipe, and by opening and closing this valve, the doping gas containing the added impurity is introduced and stopped. This is a method of doing this.

このとき不純物の添加量の調節は、ドーピングガス中の
不純物濃度あるいはガス流量を調節して行なわれる。
At this time, the amount of impurities added is adjusted by adjusting the impurity concentration in the doping gas or the gas flow rate.

しかしながらこのような従来の不純物添加装置では、不
純物をパルス状に添加しようとすると以下に述べる欠点
のため添加不純物量の調節が困難であった。
However, in such a conventional impurity addition apparatus, when attempting to add impurities in a pulsed manner, it is difficult to adjust the amount of added impurities due to the following drawbacks.

なぜならば、不純物をパルス状に添加する場合、不純物
ガスの導入開始から導入停止までの時間を充分短かくす
る必要があるが、ドーピングガスを導入するためにバル
ブを開くとそれまで流れていなかったガスが急に流れる
ため所望の流量に調節するために時間がかかり、流量の
設定が完了する前に所定の厚さだけ結晶が成長じてしま
うなどしてしまい、不満足な不純物添加ではあるが致し
方なくガスの供給を停止するためバルブを閉じなければ
ならなくなることが生じ、このため不純物添加量を再現
性良く調節する事が困難であった。
This is because when adding impurities in a pulsed manner, it is necessary to make the time from the start of introduction of the impurity gas to the stop of introduction sufficiently short, but when the valve is opened to introduce the doping gas, there is no flow until then. Since the gas flows suddenly, it takes time to adjust to the desired flow rate, and crystals may grow to a certain thickness before the flow rate setting is completed, which is an unsatisfactory addition of impurities, but there is no way to do it. In some cases, the valve must be closed in order to stop the gas supply, making it difficult to adjust the amount of impurities added with good reproducibility.

本発明は、この点に鑑み、従来の方法が持つかかる欠点
を除去した、不純物をパルス状に添加する方法を提供し
、もって所定の高不純物濃度薄層領域を有する理想的な
気相成長多層薄膜を製造せんとするものである。
In view of this, the present invention provides a method of adding impurities in a pulsed manner, which eliminates the drawbacks of the conventional methods, thereby creating an ideal vapor-grown multilayer with a predetermined high impurity concentration thin layer region. The purpose is to manufacture thin films.

以下図をもって本発明の方法を詳細に説明する。The method of the present invention will be explained in detail below with reference to the drawings.

図は本発明を具現化した一実施例を示すものである。The figure shows an embodiment embodying the present invention.

パイプ1の排出口2は反応装置に連続されており導入口
3から不純物ガスを運ぶキャリアガスが導入される。
An outlet 2 of the pipe 1 is connected to the reactor, and a carrier gas carrying impurity gases is introduced through an inlet 3.

パイプ1の途中に三方バルブ4を設けである。A three-way valve 4 is provided in the middle of the pipe 1.

排出口2と導入口3とは、常時導通状態であり、分枝口
5からのガスの導通および遮断は、バルブ4の開閉によ
り行なわれる。
The exhaust port 2 and the inlet port 3 are always in a conductive state, and the gas from the branch port 5 is opened and closed by opening and closing the valve 4.

不純物ガスはガス収容器6に貯蔵されており、バルブ4
を開く事により反応装置に導ひかれる。
Impurity gas is stored in a gas container 6, and a valve 4
It is guided into the reactor by opening the .

不純物添加量はガス収容器6の容積もしくは収容器内の
圧力あるいは不純物ガスの濃度により決定される。
The amount of impurity added is determined by the volume of the gas container 6, the pressure inside the container, or the concentration of impurity gas.

不純物ガスをパルス状に添加する方法は以下に述べる通
りである。
The method of adding impurity gas in a pulsed manner is as described below.

まず不純物ガスを貯蔵するボンベを導入ロアに接続し、
バルブ8およびバルブ9を貫通するように不純物ガスを
流しておく。
First, connect the cylinder that stores the impurity gas to the introduction lower,
Impurity gas is allowed to flow through valves 8 and 9.

バルブ8は、前記バルブ4と同一構造のバルブであり、
常時7と10の間は導通状態となっており、枝管11と
の導通または遮断のみが可能なバルブである。
The valve 8 is a valve having the same structure as the valve 4,
The valve is always in a conductive state between 7 and 10, and can only be connected to or disconnected from the branch pipe 11.

ここでバルブ4を閉じ、バルブ8を開き不純物ガスをガ
ス収容器6の中に導入する。
Here, the valve 4 is closed and the valve 8 is opened to introduce the impurity gas into the gas container 6.

この時、圧力計12を見ながら圧力が反応装置内の圧力
より高い所定の値になる様に圧力調節バルブ9を操作す
る。
At this time, while watching the pressure gauge 12, the pressure regulating valve 9 is operated so that the pressure reaches a predetermined value higher than the pressure inside the reactor.

この後バルブ8を閉じる。不純物を添加する時は、バル
ブ4を開きガス収容器6内の圧力がキャリアガスの圧力
と同じになる曾て不純物ガスを放出させる。
After this, valve 8 is closed. When adding impurities, the valve 4 is opened and the pressure inside the gas container 6 becomes equal to the pressure of the carrier gas, and the impurity gas is released.

ガスを放出した後、バルブ4を閉じさらにバルブ8を開
き再びガス収容器6内の圧力を設定値に戻せば、次回の
添加が可能となるように準備される。
After releasing the gas, the valve 4 is closed and the valve 8 is opened again to return the pressure inside the gas container 6 to the set value, thereby preparing for the next addition.

添加量の調節は、ガス収容器6の容積もしくはガス収容
器6内のガス放出前の圧力あるいは導入不純物ガスの濃
度を変える事により任意に調節する事ができる。
The amount added can be arbitrarily adjusted by changing the volume of the gas container 6, the pressure in the gas container 6 before releasing the gas, or the concentration of the introduced impurity gas.

添加時間はガス収容器から放出する時間を変化する事に
より行なわれ、ガス放出速度調節用ノズルを内部に含む
調節器13を適当なものに選ぶ事により、任意に設定す
る事ができる。
The addition time is carried out by changing the time for discharging from the gas container, and can be arbitrarily set by selecting an appropriate regulator 13 that includes a nozzle for regulating the gas discharging rate.

充分幅の狭いパルス状に添加する必要がある時には、ノ
ズルの内径の太いものを用いればよい。
When it is necessary to add in a sufficiently narrow pulse, a nozzle with a large inner diameter may be used.

以下、本発明の方法を半導体不揮発メモリを製作する場
合およびインバットダイオードを製作する場合に応用し
た実施例を述べる。
Examples in which the method of the present invention is applied to the manufacture of semiconductor nonvolatile memories and the manufacture of imbat diodes will be described below.

実施例1;半導体不揮発メモリーの製作に応用した場合
Example 1: When applied to the production of semiconductor nonvolatile memory.

図に示した装置をアルミナ膜を堆積するためのCVD装
置に接続し、不純物ガスとして弗化タングステン(WF
6)ガスを、キャリアガスとして水素ガスを用いた。
The apparatus shown in the figure is connected to a CVD apparatus for depositing an alumina film, and tungsten fluoride (WF) is used as an impurity gas.
6) Hydrogen gas was used as a carrier gas.

バルブ4とバルブ8の間の容積が10−となる様なガス
収容器6を取り付は内部の圧力を1.10気圧に設定す
る。
The gas container 6 is installed so that the volume between the valve 4 and the valve 8 is 10 -, and the internal pressure is set to 1.10 atmospheres.

ノズル13はこの条件で0.1秒で放出が完了するもの
を選んだ。
The nozzle 13 was selected to be able to complete discharge in 0.1 seconds under these conditions.

CVD装置内にあらかじめ酸化膜が形成されているシリ
コンウェーハを置き800℃に加熱した後、バルブ4を
開きキャリアガス(水素)によりCVD装置内にWF6
ガスを導ひき、バルブ4を開いたときから1秒後に再び
閉じた。
After placing a silicon wafer on which an oxide film has been formed in advance in the CVD equipment and heating it to 800°C, valve 4 is opened and WF6 is introduced into the CVD equipment using carrier gas (hydrogen).
Gas was introduced, and valve 4 was closed again one second after opening.

この後直ちにアルミナ膜をCVD法により形成した。Immediately thereafter, an alumina film was formed by CVD.

シリコンウェーハーを取りだしメモリー作用の有無を調
べた所、充分良好なメモリー特性を得る事ができ、酸化
膜とアルミナ膜の界面に必要・充分なる量のタングステ
ンが存在する事が確かめられた。
When the silicon wafer was taken out and examined to see if it had a memory effect, it was found that sufficiently good memory properties were obtained, and it was confirmed that a necessary and sufficient amount of tungsten was present at the interface between the oxide film and the alumina film.

実施例2;砒化ガリウムインパットダイオードの製作に
応用した場合 図に示した装置を砒化ガリウムのエピタキシャル気相成
長装置に接続し、不純物ガスとして濃度1%の硫化水素
を含む水素ガスを用いた。
Example 2: Application to production of gallium arsenide impact diode The apparatus shown in the figure was connected to an epitaxial vapor phase growth apparatus for gallium arsenide, and hydrogen gas containing hydrogen sulfide at a concentration of 1% was used as the impurity gas.

バブル4と・くルブ8の間の容積が100澹となる様な
ガス収容器を取りつけ中の圧力を1.10気圧に保った
A gas container was installed so that the volume between bubble 4 and bubble 8 was 100 liters, and the pressure inside was maintained at 1.10 atm.

ノズル13はこの条件で不純物ガスが8秒で放出し終る
様なものをつけた。
The nozzle 13 was equipped so that the impurity gas could be completely discharged in 8 seconds under these conditions.

砒化ガリウムのエピタキシャル成長を行っている途中で
、バルブ4を開き3.5秒後に再び閉じた。
During the epitaxial growth of gallium arsenide, the valve 4 was opened and closed again after 3.5 seconds.

エピタキシャル成長した砒化ガリウムウェーハーを取り
出し、C−V法により不純物濃度分布を示した所、幅0
.1ミクロン、ピーク濃度2 X 1017cfrL′
の高濃度領域が形成されており、インバットダイオード
として充分良好な特性を持つ多層エピタキシャル構造が
形成されている事が確認された。
When the epitaxially grown gallium arsenide wafer was taken out and the impurity concentration distribution was shown by the C-V method, the width was 0.
.. 1 micron, peak concentration 2 x 1017cfrL'
It was confirmed that a multilayer epitaxial structure with sufficiently good characteristics as an in-butt diode was formed.

以上、CVD法に本発明を適用しシリコン結晶表面上に
設けたシリコン酸化膜とアルミナ膜との間にタングステ
ンを高濃度に含む薄層をはさむように形成する実施例、
および砒化ガリウムの気相エピタキシャル成長法に本発
明を適用しイオウを高濃度に含む薄層を有する砒化ガリ
ウム多層結晶を製造する実施ψ1]を詳述した。
As described above, the present invention is applied to the CVD method to form a thin layer containing a high concentration of tungsten between a silicon oxide film and an alumina film provided on a silicon crystal surface.
The present invention was applied to the vapor phase epitaxial growth method of gallium arsenide to produce a gallium arsenide multilayer crystal having a thin layer containing a high concentration of sulfur.

しかし本発明の方法は、これらの材料に限定されるもの
でないことは当然であり、一般に気相反応を利用して薄
膜や結晶を製造する方法に適用し得るものであて。
However, it goes without saying that the method of the present invention is not limited to these materials, and can be applied to methods for producing thin films and crystals using gas phase reactions in general.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の詳細な説明するための図で、本発明の方法
を具現化するに使用する装置の一実施例を示したもので
ある。 1はキャリアガスの流れるパイプ、2はその排出口、3
は導入口を示し、4はその途中に設けられたバルブであ
る。 5はバルブ4から分枝する枝管、6は不純物ガス収容器
、7は不純物ガス導入口、8はバルブ、9は圧力調整器
、10は排出口、11はバルブ8の枝管、12はガス収
容器6の中の圧力を知るための圧力計、13は不純物ガ
ス放出速度を決定するノズルを含む放出速度調節器をそ
れぞれ示す。
The figure is a diagram for explaining the present invention in detail, and shows one embodiment of an apparatus used to embody the method of the present invention. 1 is the pipe through which the carrier gas flows, 2 is its outlet, 3
indicates an inlet, and 4 is a valve provided in the middle. 5 is a branch pipe branching from valve 4, 6 is an impurity gas container, 7 is an impurity gas inlet, 8 is a valve, 9 is a pressure regulator, 10 is an outlet, 11 is a branch pipe of valve 8, 12 is a A pressure gauge is used to determine the pressure in the gas container 6, and 13 is a discharge rate regulator including a nozzle that determines the impurity gas discharge rate.

Claims (1)

【特許請求の範囲】[Claims] 1 キャリアガスを流すべきパイプと不純物ガス収容器
とを不純物ガスがキャリアガスに混入し得るように、バ
ルブを介して接続し、このバルブを閉めた状態で不純物
ガスをキャリアガスの圧力よりも高い圧力になるまで不
純物収容器内に充填し、しかるのち、前記バルブを開閉
することにより不純物ガスをパルス状にキャリアガス中
に混入することを特徴とする、高不純物濃度薄層領域を
有する気相成長多層薄膜の製造方法。
1 Connect the pipe through which the carrier gas is to flow and the impurity gas container through a valve so that the impurity gas can be mixed into the carrier gas, and with this valve closed, the impurity gas is allowed to flow at a pressure higher than that of the carrier gas. A gas phase having a thin layer region with high impurity concentration, characterized in that the impurity gas is mixed into the carrier gas in a pulsed manner by filling an impurity container until the pressure is reached and then opening and closing the valve. Method for producing grown multilayer thin films.
JP13352375A 1975-11-05 1975-11-05 It's hard to see how it's going to turn out. Expired JPS5838929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13352375A JPS5838929B2 (en) 1975-11-05 1975-11-05 It's hard to see how it's going to turn out.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13352375A JPS5838929B2 (en) 1975-11-05 1975-11-05 It's hard to see how it's going to turn out.

Publications (2)

Publication Number Publication Date
JPS5256857A JPS5256857A (en) 1977-05-10
JPS5838929B2 true JPS5838929B2 (en) 1983-08-26

Family

ID=15106769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13352375A Expired JPS5838929B2 (en) 1975-11-05 1975-11-05 It's hard to see how it's going to turn out.

Country Status (1)

Country Link
JP (1) JPS5838929B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4590744B2 (en) * 2001-01-25 2010-12-01 ソニー株式会社 Nonvolatile semiconductor memory device and manufacturing method thereof

Also Published As

Publication number Publication date
JPS5256857A (en) 1977-05-10

Similar Documents

Publication Publication Date Title
US4404265A (en) Epitaxial composite and method of making
JPS5838929B2 (en) It's hard to see how it's going to turn out.
WO2008035632A1 (en) PROCESS FOR PRODUCING GaN SINGLE-CRYSTAL, GaN THIN-FILM TEMPLATE SUBSTRATE AND GaN SINGLE-CRYSTAL GROWING APPARATUS
JPS61264722A (en) Manufacture of semiconductor device
JP3052269B2 (en) Vapor phase growth apparatus and growth method thereof
JPH02230720A (en) Vapor growth method and apparatus for compound semiconductor
JP3006776B2 (en) Vapor growth method
JPS60131968A (en) Vapor growth deposition device
JPH02167895A (en) Method for growing compound semiconductor
JPH02203518A (en) Method and apparatus for vapor growth of compound semiconductor
JPS5826657B2 (en) 3-5 Epitaxy and hand-wringing method
JP4368443B2 (en) Vapor growth method
JPH04240198A (en) Vapor phase growth method for thin film
Irisawa et al. Gas-Source Chemical Vapor Deposition of Atomically Thin WS 2 for LSI Device Applications
JPS5826656B2 (en) 3-5 Epitaxy method
JPS62274712A (en) Molecular beam crystal growth
JPS60211072A (en) Gasification apparatus of volatile substance
JPS63174314A (en) Method for doping iii-v compound semiconductor crystal
JPH0471993B2 (en)
JPS59170000A (en) Device for crystal growth
JPS58219731A (en) Vapor growth method for compound semiconductor
JPS61136993A (en) Method for growing semiconductor crystal
JPS63159296A (en) Vapor phase epitaxy
JPH0194614A (en) Epitaxial growth method
JPH0594949A (en) Semiconductor vapor growth device