JPS60211072A - Gasification apparatus of volatile substance - Google Patents

Gasification apparatus of volatile substance

Info

Publication number
JPS60211072A
JPS60211072A JP6930384A JP6930384A JPS60211072A JP S60211072 A JPS60211072 A JP S60211072A JP 6930384 A JP6930384 A JP 6930384A JP 6930384 A JP6930384 A JP 6930384A JP S60211072 A JPS60211072 A JP S60211072A
Authority
JP
Japan
Prior art keywords
carrier gas
pressure
gas
volatile substance
volatile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6930384A
Other languages
Japanese (ja)
Inventor
Yuzaburo Ban
雄三郎 伴
Motoji Morizaki
森崎 元司
Mototsugu Ogura
基次 小倉
Nobuyasu Hase
長谷 亘康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6930384A priority Critical patent/JPS60211072A/en
Publication of JPS60211072A publication Critical patent/JPS60211072A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • C23C16/4482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material by bubbling of carrier gas through liquid source material

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To perform stably the supply of volatile matter and a carrier gas to a CVD reaction chamber by providing pressure gauges, pressure control valves and check valves respectively to an inlet of the carrier gas and an outlet of the carrier gas and the volatile matter in a gasification vessel of a volatile substance used in the CVD apparatus or the like. CONSTITUTION:A carrier gas is supplied to a gasification vessel incorporated with volatile substance 3 from an inflow port 1 and supplied to a CVD reaction chamber from an outflow port 5 together with the vapor of the volatile substance gasified in the gasification vessel. Pressure gauges 6, 7, pressure control valves 8, 9 and check valves 10, 11 are respectively fitted to a gas inflow port 1 and an outflow port 5. Since the pressure of gas in the gasification vessel can be suitably controlled with both the valves 8, 9, it can be maintained at constant without being affected by the outer pressure. As a result, the amount of the volatile matter to be gasified is decided with only the temp. and the amount of vapor of the volatile matter to be supplied and the carrier gas can be precisely controlled by maintaining the temp. at constant and also the vapor of volatile matter is prevented with the check valves 10, 11 from being flowed out to the outer part from the gas inflow port 1.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、気相エピタキシャル成長および化学輸送成長
法(OV D HGhemlaal Vapor扼po
sition )等に原料ガスとして用いられる揮発性
物質の気化装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to vapor phase epitaxial growth and chemical transport growth (OVD HGhemlaal vapor deposition).
The present invention relates to a device for vaporizing volatile substances used as a raw material gas in such applications as

従来例の構成とその問題点 近年、化合物半導体デバイスやシリコン半導体装置ノ製
作プロセスにおいて揮発性物質が多く用いられている。
2. Description of the Related Art Structures of Conventional Examples and Their Problems In recent years, volatile substances have been increasingly used in manufacturing processes for compound semiconductor devices and silicon semiconductor devices.

すなわち、化合物半導体の気相エピタキシャル成長、例
えばノルライド気相エピタキシャル成長法や有機金属熱
分解法(MO(CVD法)、またCVD法による電極形
成、例えばモリブデン電極の形成の場合に、揮発性物質
を気化させたものを原料ガスとして用いられている。
That is, in the case of vapor phase epitaxial growth of compound semiconductors, such as norlide vapor phase epitaxial growth method, metal organic pyrolysis method (MO (CVD method)), and electrode formation by CVD method, for example, formation of molybdenum electrodes, volatile substances are vaporized. The raw material gas is used as raw material gas.

以下に従来の揮発性物質の気化容器について説明する。A conventional volatile substance vaporization container will be explained below.

第1図は従来の揮発性物質の気化容器である。FIG. 1 shows a conventional volatile substance vaporization container.

1はキャリアガス流入口、2はキャリアガス入口弁、3
は揮発性物質、4はキャリアガスおよび気化された揮発
性物質の流出口弁、6はキャリアガスおよび気化された
揮発性物質の流出口である。
1 is a carrier gas inlet, 2 is a carrier gas inlet valve, 3
is a volatile substance, 4 is an outlet valve for carrier gas and vaporized volatile substance, and 6 is an outlet for carrier gas and vaporized volatile substance.

第1図に示すように従来の揮発性物質の気化容器では、
キャリアガスの流入口側にはキャリアガス供給源の圧力
が、またキャリアガスおよび気化された揮発性物質の流
出口側には結晶成長室やCVD室等の反応室内の圧力が
直接的に加わる構造となっていた。
As shown in Figure 1, in the conventional vaporization container for volatile substances,
A structure in which the pressure of the carrier gas supply source is directly applied to the inlet side of the carrier gas, and the pressure in a reaction chamber such as a crystal growth chamber or CVD chamber is directly applied to the outlet side of the carrier gas and vaporized volatile substances. It became.

しかしながら上記のような構造では、気化容器内の圧力
が、反応室内の圧力と同一となシ、従って揮発性物質の
気化量が 応室内の圧力にも大きく影響を受けることに
なる。その結果、揮発性物質の反応炉への供給量はキャ
リアガスの流量のみで決定できず、精密で安定な供給量
制御が不可能であった。また気化容器の気体流出口に加
わる圧力の方が、気体の流入口に加わる圧力よりも大き
くなった場合、気化容器内の揮発性物質が気体の流入口
より外へ出てしまうという欠点がおった。
However, in the above structure, the pressure inside the vaporization vessel is not the same as the pressure inside the reaction chamber, and therefore the amount of volatile substances vaporized is greatly influenced by the pressure inside the reaction chamber. As a result, the amount of volatile substances supplied to the reactor cannot be determined solely by the flow rate of the carrier gas, making it impossible to precisely and stably control the supply amount. Additionally, if the pressure applied to the gas outlet of the vaporization container becomes greater than the pressure applied to the gas inflow port, volatile substances in the vaporization container may escape from the gas inflow port. Ta.

特に化合物半導体の減圧気相エピタキシャル成長の場合
については、成長室内の圧力が気化容器内に加わらない
ようにするため、成長室の原料ガス流入口に圧力調節弁
を設けてはいるが、この場合気化された揮発性物質の導
入管内圧は通常1気圧程度であシ、気化された揮発性物
質のその導入管内通過速度は遅く揮発性物質がその導入
管内壁に付着し、この結果、混晶成長の場合の組成制御
、不純物ドーピングの場合の不純物濃度制御、多層薄膜
構造作成の場合の界面急峻性制御等を非常に困難なもの
にしていた。
Particularly in the case of low-pressure vapor phase epitaxial growth of compound semiconductors, a pressure control valve is installed at the source gas inlet of the growth chamber to prevent the pressure inside the growth chamber from being applied to the vaporization vessel. The pressure inside the introduction tube for vaporized volatile substances is usually about 1 atm, and the passage speed of the vaporized volatile substances through the introduction tube is slow, and the volatile substances adhere to the inner wall of the introduction tube, resulting in the growth of mixed crystals. This makes it very difficult to control the composition in the case of impurity doping, control the impurity concentration in the case of impurity doping, and control the steepness of the interface in the case of creating a multilayer thin film structure.

発明の目的 本発明は、上記従来の問題点を解消するもので揮発性物
質の気化量が、キャリアガスの供給源の圧力や、反応炉
内の圧力に影響されないようにその気化容器内の圧力を
一定に保つことができ、また、それの反応炉内への供給
量がキャリアガスの流量のみで精密に制御可能であシ、
さらに、気化容器内の揮発性物質がキャリアガス流入口
から外部へ流出しない、揮発性物質の気化容器を提供す
ることを目的とする。
Purpose of the Invention The present invention solves the above-mentioned conventional problems.The present invention is aimed at solving the above-mentioned conventional problems. can be kept constant, and the amount of gas supplied into the reactor can be precisely controlled only by the flow rate of the carrier gas.
Another object of the present invention is to provide a volatile substance vaporization container in which the volatile substance in the vaporization container does not flow out from a carrier gas inlet.

発明の構成 本発明にかかる揮発性物質の気化容器は、そのキャリア
ガスの流入口、およびキャリアガスと気化された揮発性
物質の流出口にそれぞれ圧力計、圧力調節弁、逆止弁を
備えたものである。
Composition of the Invention The volatile substance vaporization container according to the present invention is equipped with a pressure gauge, a pressure control valve, and a check valve at the inlet of the carrier gas and the outlet of the carrier gas and the vaporized volatile substance, respectively. It is something.

従って気化容器内の圧力は、流入口と流出口に備えられ
た圧力調節弁を適当に調節することにより外部の圧力の
影響を一切受けず一定に保つことができ、その結果、揮
発性物質の気化量はその温度のみによって決められ、温
度を一定に保っておけば、それの反応炉への供給量はキ
ャリアガスの流量で精密に制御が可能となる。また流入
口と流出口に逆止弁を備えているため、気化容器内の揮
発性物質がキャリアガス流入口から外部へ流出すること
はない。
Therefore, by appropriately adjusting the pressure control valves provided at the inlet and outlet, the pressure inside the vaporization container can be kept constant without being affected by external pressure. The amount of vaporized gas is determined only by its temperature, and if the temperature is kept constant, the amount of vaporized gas supplied to the reactor can be precisely controlled by the flow rate of the carrier gas. Furthermore, since check valves are provided at the inlet and outlet, volatile substances in the vaporization container will not flow out from the carrier gas inlet.

実施例の説明 本発明による揮発性物質の気化容器の具体的な構造を第
2図に示す。第2図において、第1図と同一部分には同
一番号を付す。図に示すように、この場合は、キャリア
ガスの流入口と、気化された揮発性物質およびキャリア
ガスの流出口にそれぞれ、圧力計6,7、圧力調節弁8
,9、逆止弁10.11を備えた。また他の部分は従来
の揮発性物質の気化容器と同じ構造である。
DESCRIPTION OF EMBODIMENTS FIG. 2 shows a specific structure of a volatile substance vaporization container according to the present invention. In FIG. 2, the same parts as in FIG. 1 are given the same numbers. As shown in the figure, in this case, pressure gauges 6 and 7 and pressure regulating valves 8 are installed at the inlet of the carrier gas and the outlet of the vaporized volatile substance and carrier gas, respectively.
,9, equipped with a check valve 10.11. The other parts have the same structure as conventional volatile substance vaporization containers.

この本発明による揮発性物質の気化容器を用いて、有機
金属熱分解法(MOOVD法)により;InP基板上に
バンドギ+yプ0.95 eV (1,3μm)のIn
GaAs+P四元混晶を成長する場合について以下に述
べる。この場合における気化容器の結晶成長装置への接
続方法を第3図に示す。第3図に丸いて第2図と同一部
分には同一番号を付す。なお12はマスフローコントロ
ーラー、131d[磁弁14は結晶成長室、15はカー
ボン製サセプター、16はInP基板、17は熱電対、
18は高周波加熱コイル、19は結晶成長室のガス供給
口、20は結晶成長室のガス排出口、21はロータリー
ポンプである。第3図に示すように、気化容器のキャリ
アガスおよび気化された揮発性物質の流出口4は結晶成
長室のガス供給口19と、また気化容器のキャリアガス
流人口1にはマス70−コントローラー12を接続する
。このように接続することにより、精密に流量制御され
たキャリアガスを気化容器に供給することができ、その
結果、結晶成長室への揮発性物質の供給量が精密に制御
可能となる。本実施例においては2種類の揮発性物質の
気化容器を用いているが、その接続方法については共に
同じである。
Using the volatile substance vaporization container according to the present invention, a band gap of 0.95 eV (1.3 μm) was deposited on an InP substrate by a metal organic pyrolysis method (MOOVD method).
The case of growing a GaAs+P quaternary mixed crystal will be described below. FIG. 3 shows a method of connecting the vaporization vessel to the crystal growth apparatus in this case. Round parts in Figure 3 that are the same as those in Figure 2 are given the same numbers. Note that 12 is a mass flow controller, 131d is a magnetic valve 14 is a crystal growth chamber, 15 is a carbon susceptor, 16 is an InP substrate, 17 is a thermocouple,
18 is a high frequency heating coil, 19 is a gas supply port of the crystal growth chamber, 20 is a gas discharge port of the crystal growth chamber, and 21 is a rotary pump. As shown in FIG. 3, the carrier gas and vaporized volatile substance outlet 4 of the vaporization vessel is connected to the gas supply port 19 of the crystal growth chamber, and the carrier gas flow port 1 of the vaporization vessel is connected to a mass 70-controller. Connect 12. By connecting in this manner, carrier gas whose flow rate is precisely controlled can be supplied to the vaporization vessel, and as a result, the amount of volatile substance supplied to the crystal growth chamber can be precisely controlled. In this embodiment, two types of vaporizing containers for volatile substances are used, but the connection methods are the same for both.

この場合、原料ガスとなる揮発性物質には、Inのツー
ス材料としてZn (C2H5)3. Gaのソース材
料としてGa (02H5)sを用い、またPのソース
材料としてPH,、ムBのソース材料として五SH3を
、上記した各ソース材料を結晶成長室まで運ぶキャリア
ガスとしてH2を用いた。最初、結晶成長室14内のカ
ーボン製サセプター16上に設置されたInP基板16
の温度を高周波加熱により成長温度650′Cまで上昇
させる。なおこの際InP基板16表面のサーマルダメ
ージを防ぐためにPH3を4 ac/min供給した。
In this case, the volatile substances serving as the raw material gas include Zn (C2H5)3. Ga (02H5)s was used as a source material for Ga, PH was used as a source material for P, 5SH was used as a source material for B, and H2 was used as a carrier gas to carry the above-mentioned source materials to the crystal growth chamber. . Initially, the InP substrate 16 was placed on the carbon susceptor 16 in the crystal growth chamber 14.
The temperature is increased to a growth temperature of 650'C by high frequency heating. At this time, PH3 was supplied at 4 ac/min to prevent thermal damage to the surface of the InP substrate 16.

そしてその後、In(02H5)3 : 95 cc/
min 、 Ga(C2H5)3:1o o cc/m
in 、 PH5: 1o、es cc/min 。
And after that, In(02H5)3: 95 cc/
min, Ga(C2H5)3:1o cc/m
in, PH5: 1o, es cc/min.

ムsH5: 1.5 cc/min 、それぞれ供給し
て成長を行ナツタ。ナオ、In(02Hs )3y G
a(C2Hs )s の供給量については、それぞれ4
5℃に保温した。
Musume sH5: 1.5 cc/min, respectively, was supplied for growth. Nao, In (02Hs) 3y G
Regarding the supply amount of a(C2Hs)s, each
The temperature was kept at 5°C.

In(C2Hs )sの気化容器に供給するH2の流量
、−16℃に保温したG”(02H5)sの気化容器に
供給するH2の流量である。また全流量としては10 
ff/minで、成長時の結晶成長室内圧としては15
0 Totr である。そしてIn(02H5)3の気
化容器およびGa (C2Hs )sの気化容器のガス
流入口1とガス流出口5に備えられた圧力調節弁7,1
゜を調節することによシ、気化容器内の圧力を760 
Torrに保った〇 以上のように本実施例によれば、結晶成長中はIn(C
2H5)sとGa(02H5)、の気化容器内の圧力が
一定に保たれているため、In(02H5)5とGa(
C2H5)5の供給量比を精密に制御することが可能と
なり、それぞれの供給量比に比例した組成のInGaA
sP 四元混晶が再現性よく得られた。
The flow rate of H2 supplied to the vaporization container of In(C2Hs)s is the flow rate of H2 supplied to the vaporization container of G''(02H5)s kept at -16℃.The total flow rate is 10
ff/min, the pressure inside the crystal growth chamber during growth is 15
0 Totr. Pressure regulating valves 7, 1 provided at the gas inlet 1 and gas outlet 5 of the In(02H5)3 vaporization container and the Ga(C2Hs)s vaporization container
By adjusting the pressure in the vaporization container,
According to this example, In(C) was maintained at Torr during crystal growth.
Since the pressure in the vaporization vessel of 2H5)s and Ga(02H5) is kept constant, In(02H5)5 and Ga(02H5)
It becomes possible to precisely control the supply ratio of C2H5)5, and InGaA with a composition proportional to each supply ratio.
An sP quaternary mixed crystal was obtained with good reproducibility.

以上述べた実施例では、有機金属熱分解法(MOOVD
法)による化合物半導体の気相エピタキシャル成長の際
に原料ガスとして用いる有機金属の場合について説明し
たが、本発明による揮発性物質の気化容器は他の有機金
属に用いることができるばかシでなく、化合物半導体の
ハライド気相エピタキシャル成長に原料ガスとして用い
るV族ハCffゲン化物、例えばム5cjl、 、 P
Cl3 、 AsBr3等やCVD法による電極形成の
際に用いるMo C15等にも用いることが可能である
In the embodiments described above, metal organic pyrolysis (MOOVD)
Although the case of an organic metal used as a raw material gas in the vapor phase epitaxial growth of a compound semiconductor by the method (method) has been described, the volatile substance vaporization container according to the present invention can be used not only for other organic metals but also for compound semiconductors. Group V halide compounds used as raw material gas in halide vapor phase epitaxial growth of semiconductors, such as Mu5cjl, , P
It is also possible to use Cl3, AsBr3, etc., and Mo C15, etc. used when forming electrodes by the CVD method.

発明の効果 本発明にかかる揮発性物質の気化容器は、気化容器の気
体流入口と流出口に、それぞれ圧力計、圧力調節弁、逆
止弁を備えることにより、気化容器内の圧力を常に一定
に保つことができて、揮発性物質の反応炉への供給量が
精密に制御可能となる。そのためそれを化合物半導体の
気相エピタキシャル成長に用いる際には、混晶成長の場
合の組成制御、不純物ドーピングの場合の不純物濃度制
御、エピタキシャル成長層厚の制御等が、またCVD法
による電極形成に用いる際には、電極の厚み制御等が精
密に再現性よく行なうことが可能となる。特に反応炉が
大気圧以下の場合は、揮発性物質の導入管内も大気圧以
下にすることができ、その結果、気化された揮発性物質
の導入管内通過速度が速くなり、管内壁への付着が軽減
され、上記した効果はより一層大きく、その実用的効果
は非常に大なるものである。
Effects of the Invention The volatile substance vaporization container according to the present invention is equipped with a pressure gauge, a pressure control valve, and a check valve at the gas inlet and outlet of the vaporization container, so that the pressure inside the vaporization container can be kept constant at all times. The amount of volatile substances supplied to the reactor can be precisely controlled. Therefore, when using it for vapor phase epitaxial growth of compound semiconductors, it is necessary to control the composition for mixed crystal growth, the impurity concentration for impurity doping, the epitaxial growth layer thickness, etc., and when using it for electrode formation by CVD method. In this way, it becomes possible to control the thickness of the electrode precisely and with good reproducibility. In particular, if the reactor is at atmospheric pressure or lower, the pressure inside the volatile substance introduction pipe can also be lowered to below atmospheric pressure.As a result, the vaporized volatile substance passes through the introduction pipe at a faster rate, causing it to stick to the inner wall of the pipe. is reduced, the above-mentioned effects are even greater, and the practical effects are very great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の揮発性物質の気化容器の模式図、第2図
は本発明の実施例における揮発性物質の気化容器の模式
図、第3図は本発明の実施例における揮発性物質の気化
容器の結晶成長系への接続図である。 1・・・・・・キャリアガスの流入口、2・・・・・・
キャリアガスおよび気化された揮発性物質の流出口、3
・・・・・・揮発性物質、6,7・・・・・圧力計、8
,9・・・・・・圧力調節弁、10.11 ・・・・・
逆止弁、12・・・・・・マスフローコントローラー、
14・・・・・・結晶成長室、15・・・・・・カーボ
ン製サセプター、16・・・・・・InP基板、19・
・・・・・結晶成長室のガス供給口。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第281
FIG. 1 is a schematic diagram of a conventional volatile substance vaporization container, FIG. 2 is a schematic diagram of a volatile substance vaporization container in an embodiment of the present invention, and FIG. 3 is a schematic diagram of a volatile substance vaporization container in an embodiment of the present invention. It is a connection diagram of a vaporization container to a crystal growth system. 1... Carrier gas inlet, 2...
Outlet for carrier gas and vaporized volatile substances, 3
...Volatile substance, 6,7...Pressure gauge, 8
, 9...Pressure control valve, 10.11...
Check valve, 12...Mass flow controller,
14...Crystal growth chamber, 15...Carbon susceptor, 16...InP substrate, 19.
...Gas supply port for the crystal growth chamber. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 281

Claims (1)

【特許請求の範囲】[Claims] 気体流入口および気体流出口に、それぞれ圧力計、圧力
調節弁、逆止弁を備えたことを特徴とする揮発性物質の
気化装置。
A device for vaporizing volatile substances, characterized in that a gas inlet and a gas outlet are each equipped with a pressure gauge, a pressure control valve, and a check valve.
JP6930384A 1984-04-06 1984-04-06 Gasification apparatus of volatile substance Pending JPS60211072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6930384A JPS60211072A (en) 1984-04-06 1984-04-06 Gasification apparatus of volatile substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6930384A JPS60211072A (en) 1984-04-06 1984-04-06 Gasification apparatus of volatile substance

Publications (1)

Publication Number Publication Date
JPS60211072A true JPS60211072A (en) 1985-10-23

Family

ID=13398654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6930384A Pending JPS60211072A (en) 1984-04-06 1984-04-06 Gasification apparatus of volatile substance

Country Status (1)

Country Link
JP (1) JPS60211072A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294868A (en) * 1988-01-30 1989-11-28 Nec Corp Vapor growth apparatus
WO2008142043A1 (en) * 2007-05-23 2008-11-27 Centrotherm Thermal Solutions Gmbh + Co. Kg Method for controlling process gas concentration
JP2017505383A (en) * 2014-01-23 2017-02-16 ウルトラテック インク Steam supply system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294868A (en) * 1988-01-30 1989-11-28 Nec Corp Vapor growth apparatus
WO2008142043A1 (en) * 2007-05-23 2008-11-27 Centrotherm Thermal Solutions Gmbh + Co. Kg Method for controlling process gas concentration
JP2017505383A (en) * 2014-01-23 2017-02-16 ウルトラテック インク Steam supply system

Similar Documents

Publication Publication Date Title
US6432205B1 (en) Gas feeding system for chemical vapor deposition reactor and method of controlling the same
JPH02255595A (en) Method and device for vaporizing and supplying organometallic compound
GB997997A (en) Epitaxial growth and doping from a gaseous source
JP2668687B2 (en) CVD device
US3484311A (en) Silicon deposition process
JPS60211072A (en) Gasification apparatus of volatile substance
JP3219184B2 (en) Organometallic supply and organometallic vapor phase epitaxy
JPS61264722A (en) Manufacture of semiconductor device
KR20220069094A (en) Low Volatility Precursor Supply System
JP2701339B2 (en) Vapor phase growth equipment
JPH0194613A (en) Vapor growth method
KR940012531A (en) Method for manufacturing dielectric thin film having high dielectric constant and apparatus therefor
JP3251990B2 (en) Al or Al alloy film forming method
JP3250271B2 (en) Method of diffusing impurities into group 3-5 compound semiconductor
JPH06140337A (en) Semiconductor manufacture device and manufacture thereof
JPS59116191A (en) Vapor growth method of semiconductor crystal of in base iii-v group compound
JPS6273619A (en) Vaporization device for volatile matter
JPS61229321A (en) Vapor growth method
JPH0758023A (en) Method for filling vessel with organic metal compound
JPS6365076A (en) Vapor growth method
JPH0399423A (en) Conductance regulator of vapor phase epitaxial growth system
JPS6272117A (en) Evaporating device for volatile substance
JPH0368131A (en) Organic metal vapor growth method
JPS60245214A (en) Vapor growth of compound semiconductor crystal
JPS6163599A (en) System for vapor growth