JPS59116191A - Vapor growth method of semiconductor crystal of in base iii-v group compound - Google Patents

Vapor growth method of semiconductor crystal of in base iii-v group compound

Info

Publication number
JPS59116191A
JPS59116191A JP22288282A JP22288282A JPS59116191A JP S59116191 A JPS59116191 A JP S59116191A JP 22288282 A JP22288282 A JP 22288282A JP 22288282 A JP22288282 A JP 22288282A JP S59116191 A JPS59116191 A JP S59116191A
Authority
JP
Japan
Prior art keywords
compound
organic
piping system
group
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22288282A
Other languages
Japanese (ja)
Inventor
Takashi Udagawa
隆 宇田川
Tokuji Tanaka
篤司 田中
Takatoshi Nakanishi
中西 隆敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22288282A priority Critical patent/JPS59116191A/en
Publication of JPS59116191A publication Critical patent/JPS59116191A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain the titled high-quality crystal at atmospheric pressure by connecting a piping system mixing the vapors of org. In compd. and the org. V group compd. and a piping of the V group hydride to a piping system in which a gaseous raw material is sent and controlling the pipe wall temps. of respective piping systems. CONSTITUTION:Hydrogen gas is bubbled in an org. In compd. 401 and an org. Vgroup compd. 402 put in containers 404, 405 and the generated vapors are sent to a mixing vessel 412 together with H2. The mixed gas is sent from the first piping system 414 to the second piping system 413 in which H2 gas for transportation is guided via an entrance 415. Further, the V group hydride 403 is sent from the entrance 420 to the system 413, and the pipe wall temps. of respective systems 414, 413 are controlled independently by heating elements 416, 421 to carry out the vapor growth of a semiconductor crystal of a desired compd. on a substrate crystal 423 in a growth furnace 418. In this manner, the low-temp. decomposition of the org. In compd. and condensation and accumulation of the reaction products in the pipes caused by contact and mixing of gaseous raw materials are prevented, and the titled uniform product of high quality is obtained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、Ink、 InGaAs、 InGaPな
どのIn系化合物半導体薄膜を、有機In化合物を出発
原料として熱分解気相成長法で成長させる際に適する気
相成長方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention is suitable for growing In-based compound semiconductor thin films such as Ink, InGaAs, and InGaP by pyrolysis vapor phase growth using an organic In compound as a starting material. Concerning vapor phase growth methods.

〔発明の技術的背景吉その問題点〕[Technical background of the invention and its problems]

最近高周波帯域で高速動作が可能な素子の開発が進めら
れている。これらの素子に用いられる母、la 体材料には、電子の飽畢速度が大きい、低電界下の電子
移動度が高い等の特性が要求される。
Recently, the development of elements that can operate at high speed in a high frequency band has been progressing. The matrix material used in these devices is required to have characteristics such as a high electron saturation rate and high electron mobility under a low electric field.

I n P、 I n G a A s等のIn系化合
物は、現在マイクロ波デバイス用材料として用いられて
いるGaAsに比較して電子飽和速度、低電界電子移動
度が高く、高速動作デバイス用材料として注目されてい
る。これらのIn系i−v族化合物半導体結晶薄膜の成
長方法の一つに、Inのアルキル化合物と■族元素の水
素化物を夫々厘族及びV族の出発原料として用いる熱分
解気相成長法があるう第1図にこの場合に一般に用いら
れているIn系化合物半導体結晶用の気相成長装置配置
図を示す。同図中(101)はInの出発原料となる有
機In化合物、(102)はV族の出発原料となるV族
の水素化物である。これらの出発原料の蒸気、ガスは、
輸送管(103)内を流れる輸送用ガス(キャリアカス
)古共に成長炉(104)内に導入される。成長炉(1
04)内に導入された出発原料の蒸気、ガスは、例えば
高周波コイル(105)で所望の温度に加熱されている
成長温度領域で熱分解し、然る後成長温度領域内に載置
された基板結晶(106)上に、化合物半導体成長層の
堆積を果す構成になっている。例えばリン化インジウム
(Ink)の熱分解気相成長法では、有機In化合物(
101)としてトリメチルIn((CI4s)sIn 
) 、あるいはトリエチル1口((CtHs)sIn 
)を、また■族の水素化物(to2)としてホスフィン
(FT(3)を良く用いる。
In-based compounds such as InP and InGaAs have higher electron saturation velocity and lower field electron mobility than GaAs, which is currently used as a material for microwave devices, and are suitable as materials for high-speed operation devices. It is attracting attention as One of the methods for growing these In-based group IV compound semiconductor crystal thin films is the pyrolytic vapor phase growth method using an alkyl compound of In and a hydride of a group Ⅰ element as the starting materials for the group V and group V elements, respectively. FIG. 1 shows a layout of a vapor phase growth apparatus for In-based compound semiconductor crystals which is generally used in this case. In the figure, (101) is an organic In compound that is a starting material for In, and (102) is a group V hydride that is a starting material for group V. The steam and gas of these starting materials are
The transport gas (carrier cassette) flowing through the transport pipe (103) is both introduced into the growth reactor (104). Growth furnace (1
The starting material vapor or gas introduced into the 04) is thermally decomposed in the growth temperature range where it is heated to a desired temperature by, for example, a high frequency coil (105), and then placed in the growth temperature range. The structure is such that a compound semiconductor growth layer is deposited on a substrate crystal (106). For example, in the pyrolytic vapor phase growth method of indium phosphide (Ink), organic In compounds (
101) as trimethyl In((CI4s)sIn
), or 1 sip of triethyl ((CtHs)sIn
), and phosphine (FT(3)) is often used as the hydride (to2) of group (2).

しか、シInT’の熱分解気相成長に用いられているこ
れら有機In化合物は、低温で解離、分解し易く、第1
図に示すように有機In化合物(101)の蒸気が成長
温度領域に到達する以前に、成長炉(104)へのガス
導入口(107)付近の低温領域で分解する。
However, these organic In compounds used in the pyrolytic vapor phase growth of InT' are easily dissociated and decomposed at low temperatures, and the first
As shown in the figure, before the vapor of the organic In compound (101) reaches the growth temperature region, it decomposes in the low temperature region near the gas inlet (107) to the growth furnace (104).

この為カス導入口(107)付近の低温領域に有機In
化合物の分解生成物(108)が堆積し、基板結晶(1
06)上の成陵層の組成の安定性を乱す。又基板結晶(
106) J−、への成長層の堆積速度が小さく、再現
性が低い。これ等欠点の個有機In化合物の蒸気とV族
の水素化物の蒸気とが接触することにより低揮発性物質
が生成され、この低揮発性物質が、配管系内、例えば第
1図の輸送管(103)内に堆積するこ吉も、均一で高
品質なInP薄膜の結晶成長を困難にする一因となって
いる。
Therefore, organic In is placed in the low temperature area near the waste inlet (107)
A decomposition product (108) of the compound is deposited and the substrate crystal (1
06) Disturb the compositional stability of the overlying Chenling Formation. Also, the substrate crystal (
106) The deposition rate of the growth layer on J- is low and the reproducibility is low. When the vapor of these organic In compounds and the vapor of Group V hydride come into contact, a low-volatile substance is generated, and this low-volatility substance is absorbed into the piping system, for example, in the transport pipe shown in Figure 1. The particles deposited within (103) also contribute to the difficulty in crystal growth of a uniform, high-quality InP thin film.

この様なIn系化合物の熱分解気相成長法の欠点を除く
ために反応炉内の圧力を低下させ、いわゆる減圧下でI
n系化合物の気相成長を行うことも試みられている。第
2図に減圧下で気相成長を行う際に用いられる代表的な
気相成長装置の構成を示す。同図中(201)は有機I
n化合物を、(202)はV族の水素化物を各々示す。
In order to eliminate such drawbacks of the pyrolysis vapor phase growth method of In-based compounds, the pressure inside the reactor is lowered, and I
Attempts have also been made to perform vapor phase growth of n-based compounds. FIG. 2 shows the configuration of a typical vapor phase growth apparatus used when performing vapor phase growth under reduced pressure. In the same figure (201) is organic I
(202) represents a group V hydride.

成長炉(203)内の排気は、真空ポンプ(204)を
用いて行なわれる。成長炉(203)内の圧力の調整は
ゲートパルプ(205)の開閉度を制御し行なう。真空
ポンプ(204)の後部には、有害物質除去用のフィル
ター(206)が設けられている。
The growth furnace (203) is evacuated using a vacuum pump (204). The pressure inside the growth furnace (203) is adjusted by controlling the degree of opening and closing of the gate pulp (205). A filter (206) for removing harmful substances is provided at the rear of the vacuum pump (204).

上記構成の減圧気相成長装置を用い、例えばInPの気
相成長を行うには、有機In化合物(201)としてト
リエチルI n ((C2H’5)3 In )を、V
族の水素化物(202)としてホスフィンを用いるのが
一般的である。これら出発原料の蒸気、ガスは、真空ポ
ンプ(204)で排気され、ゲートバルブ(205)で
圧力を調節された成長炉(203)内に導入され、高周
波コイル(207)等で加熱された基板結晶(208)
上に成長層が」イロ積する。減圧下でIn系化合物簿膜
の気相成長を行うこの方法の主な利点は、減圧下では一
般に気体分子の平均自由工程が長くなる為、有機In化
合物等の気体分子が成長炉(203)内の基板結晶(2
08)付近に短時間で搬送され葛タメ、前述の様な低温
領域での有機In化合物の不必要な分解を低減出来るこ
とにある。
In order to perform vapor phase growth of InP, for example, using the reduced pressure vapor phase growth apparatus having the above configuration, triethyl I n ((C2H'5)3 In ) is used as the organic In compound (201), and V
It is common to use phosphine as the group hydride (202). The steam and gas of these starting materials are evacuated by a vacuum pump (204) and introduced into a growth furnace (203) whose pressure is regulated by a gate valve (205), where the substrate is heated by a high frequency coil (207) etc. Crystal (208)
The growth layer accumulates on top. The main advantage of this method of vapor phase growth of In-based compound films under reduced pressure is that the mean free path of gas molecules is generally longer under reduced pressure. The substrate crystal inside (2
08) It is possible to reduce the unnecessary decomposition of the organic In compound in the low temperature region as described above by transporting it to the vicinity in a short time.

しかし上記の様な構成の減圧気相成長装置で、In系化
合物、例えばInP結晶を再現性良く成長させるには、
成長炉(203)内の圧力(減圧の程度)の成長回毎の
安定性、成長中の成長炉(203)内の圧力の変動を抑
制することなどが要求される。ところが排気用真空ポン
プ(204)内に封入されている真空オイルと、例えば
ホスフィンガス(102)等の有害ガスとの反応による
劣化、有害物質(粒子)除去用フィルタ(206)の目
詰りなどに伴う排気量の変動などを考えると、上記の要
求を充分溝たすには、非常に繁雑な気相成長装置の操作
、保守を要する。
However, in order to grow In-based compounds, such as InP crystals, with good reproducibility using the reduced pressure vapor phase growth apparatus configured as described above, it is necessary to
It is required that the pressure (degree of pressure reduction) in the growth reactor (203) be stable for each growth cycle, and that fluctuations in the pressure in the growth reactor (203) during growth be suppressed. However, the vacuum oil sealed in the exhaust vacuum pump (204) deteriorates due to a reaction with harmful gases such as phosphine gas (102), and the filter for removing harmful substances (particles) (206) becomes clogged. Considering the accompanying fluctuations in displacement, etc., extremely complicated operation and maintenance of the vapor phase growth apparatus is required to fully meet the above requirements.

減圧下で気相成長させる際の操作方法及び気相成長装置
に具備された真空系装置の保守、維持面の繁雑さは、大
気圧下の気相成長方式では、回避出来る期待がある。し
かしごの場合In系化合物結晶の成長については、前述
のように有機In化合物の分解を、充分に防止出来ない
ことが高品質結晶を得させることを妨げている。常圧下
で有機In化合物の低温分解を抑制したIn系化合物結
晶の熱分解気相成長方法は望まれるものである。現在有
機In化合物の低温分解を防止するためにIn 系化合
物半導体結晶成長用の出発原料ガス系にV族元素の有機
化合物を少量添加することが試みられている。第3図に
この様な試みに用いられている代表的な装置例を示す。
It is expected that the complicated operation methods and the maintenance and upkeep of the vacuum system included in the vapor-phase growth apparatus during vapor-phase growth under reduced pressure can be avoided by using the vapor-phase growth method under atmospheric pressure. However, regarding the growth of In-based compound crystals, as mentioned above, the inability to sufficiently prevent the decomposition of organic In compounds hinders the production of high-quality crystals. A method for pyrolytic vapor phase growth of In-based compound crystals in which low-temperature decomposition of organic In compounds is suppressed under normal pressure is desired. Currently, in order to prevent low-temperature decomposition of organic In compounds, attempts are being made to add small amounts of organic compounds of group V elements to the starting material gas system for growing In-based compound semiconductor crystals. FIG. 3 shows a typical example of equipment used in such an attempt.

図中(301)は有機In化合物、(302)は■族元
素の水素化物、または(303)は有機■族化合物であ
る。これらの出発原料の蒸気、ガスは各々独立に輸送用
ガス(キャリアガス)の流れるガス輸送管(304)内
に導入され、然る後成長炉(305)内に搬送される。
In the figure, (301) is an organic In compound, (302) is a hydride of a group II element, or (303) is an organic group compound. The steam and gas of these starting materials are each independently introduced into a gas transport pipe (304) through which a transport gas (carrier gas) flows, and then transported into a growth furnace (305).

輸送用ガスと共に成長炉(305)内に搬送された出発
原料の蒸気は、例えば高周波コイル(306)で所望の
成長温度に加熱保持されている基板結晶(307)付近
で熱分解し、基板結晶(307)上に半導体結晶を気相
成長させる。
The vapor of the starting material transported into the growth furnace (305) together with the transport gas is thermally decomposed near the substrate crystal (307), which is heated and maintained at a desired growth temperature by, for example, a high frequency coil (306), and the substrate crystal is (307) Semiconductor crystal is grown in vapor phase on top.

この方法でTnP結晶の気相成長を行うには、例えば有
機Xn化合物(301)としてトリメチルIn((C)
Is)sin )を、■族の水素化物(302)として
ホスフィン(PITR)を、また■族元素の有機化合物
(303) Jしてトリメチルアルシン((CH3)3
As )を用いる。この有機V族化合物を反応ガス系に
添加することにより、前述の有機V族化合物を用いない
常圧気相成長法の場合に比較し、成長炉(305)内の
低温領域での有機In化合物の分解生成物堆積を低減出
来る。ところが反応系ガス系に添加した上記有機■族化
合物と、有機In化合物以外の出発原料、特にV族の水
素化物との輸送管(304)内での接触により、低揮発
性物質(308)が生成されこれらが輸送管(304)
に堆積するなどの問題が残っている。この低揮発性生成
物の輸送管内での堆積は、高品質InP結晶の気相成長
を阻害する大きな要因である。従って■族の有機化合物
を用いる常圧熱分解気相成長法に於いても反応ガス系へ
の有機V族化合物の混合、上記反応管内への低揮発性物
質の堆積防止などに解決すべき問題が多い。
To perform vapor phase growth of TnP crystal using this method, for example, trimethyl In ((C)
Is)sin), phosphine (PITR) as a group hydride (302), and trimethylarsine ((CH3)3) as an organic compound (303) of a group
As ) is used. By adding this organic group V compound to the reaction gas system, the organic In compound can be grown in the low temperature region in the growth reactor (305), compared to the above-mentioned normal pressure vapor phase growth method that does not use the organic group V compound. Decomposition product accumulation can be reduced. However, due to the contact in the transport pipe (304) between the organic group I compound added to the reaction gas system and the starting material other than the organic In compound, especially the group V hydride, the low-volatile substance (308) is These are the transport pipes (304)
There are still problems such as the accumulation of water on the surface. The accumulation of this low volatility product in the transport pipe is a major factor that inhibits the vapor phase growth of high quality InP crystals. Therefore, even in the atmospheric pressure pyrolysis vapor phase growth method using organic compounds of group Ⅰ, there are problems that need to be solved, such as mixing organic group V compounds into the reaction gas system and preventing the accumulation of low-volatile substances in the reaction tube. There are many.

〔発明の目的〕[Purpose of the invention]

この発明は上記の欠点を除去するもので、常圧下で有機
In化合物の低温分解を抑制してIn系化合物半導体結
晶の気相成長を可能にする気相成長方法を提供するにあ
る。
The present invention aims to eliminate the above-mentioned drawbacks and provides a vapor phase growth method that suppresses low-temperature decomposition of organic In compounds under normal pressure and enables vapor phase growth of In-based compound semiconductor crystals.

〔発明の概要〕[Summary of the invention]

即ちこの発明はインジウム原料である有機インジウム化
合物の蒸気を、予め有機■族化合物の蒸気と接触、混合
させて第一の配管系を通し、然る後混合された蒸気を、
輸送用ガスを案内する第二の配管系に混入させ、第二の
配管系は更に■族主要供給源水素化合物蒸気を混入させ
ると共に、第一の配管系と第二の配管系の管壁温度は各
々独立に制御される配管系統を経て各原料ガスが成長炉
内に到り気相成長するIn系1−V族化合物半導体結晶
の気相成長方法にある。
That is, in this invention, the vapor of an organic indium compound, which is an indium raw material, is brought into contact with and mixed with the vapor of an organic group II compound in advance, and passed through a first piping system, and then the mixed vapor is
The transport gas is mixed into a second piping system that guides the transport gas, and the second piping system further mixes Group III main source hydrogen compound vapor, and the pipe wall temperature of the first piping system and the second piping system increases. This method is for vapor phase growth of an In-based 1-V group compound semiconductor crystal in which each raw material gas reaches a growth furnace through independently controlled piping systems and is grown in a vapor phase.

〔発明の実施例〕[Embodiments of the invention]

以下にこの発明の実施例について図面を用いて説明する
Embodiments of the present invention will be described below with reference to the drawings.

第4図にこの例で使用したIn系1−V族気相成長装置
例を示す。同図中(401)はInの出発原料として用
いる有機In化合物を、(402)はトリメチルアルシ
ン((CH,)、As )などの有機V族化合物を示す
。(403)は■族元素の主要供給源となるV族元素の
水素化合物である。有機In化合物(401)及び有機
V族化合物(402)は、ステンレス製バブラー容器(
404)、(405)に各々収納されている。有機In
化合物(,101)及び有機■族化合物(402)の蒸
気圧の制御は、ステンレス製バブラー容器(404)、
(405)の温度を恒温槽(406)、(407)で調
整すれば良い。この気相成長装置では、流量計(410
)、(411)で精密に流量を制御された水素(H7)
ガスでバブルすることにより有機In化合物(401)
及び有機■族化合物(402)の蒸気を発生させ、発生
した蒸気は各々配管(408)、(409)内を水素ガ
ス等と共に搬送され、ガス混合器(412)内で互いに
充分混合される。混合されたガスは、ガス混合器(41
2)から第一の配管系(414)内を搬送され、導入口
(415)を介して輸送用ガスが流れている第二の配管
系(413)内に導入され、この配管系(413)と成
長炉(418)との連結継手(419)を介して成長炉
(418)内に流入する。第一の配管系(414)の外
側管壁の温度は、管体の周囲に巻かれた抵抗加熱体(4
16)へ印加する電圧を変圧器(417)で調整出来る
ようになっている。V族の水素化合物(403)は上記
有機In化合物(401)と有機■族化合物(402)
との混合蒸気を第二の配管系(413)に導入する為に
設けた導入口(415)から更に成長炉(418)の連
結継手(419)に近い位置に設けた導入口(420)
を介して、この配管系(413)内に導入される。導入
口(415)から連結継手(419)に至る間の第二の
配管系(413)の外側管壁の温度は、管体の周囲に設
けられた抵抗加熱体(421)へ印加する電圧を変圧器
(422)で調節することにより第一の配管系(414
)の外側管肇の温度とは、独立に制御可能である。
FIG. 4 shows an example of an In-based 1-V group vapor phase growth apparatus used in this example. In the figure, (401) represents an organic In compound used as a starting material for In, and (402) represents an organic group V compound such as trimethylarsine ((CH,), As). (403) is a hydrogen compound of group V element, which is the main source of group Ⅰ element. The organic In compound (401) and the organic group V compound (402) were stored in a stainless steel bubbler container (
404) and (405), respectively. Organic In
The vapor pressure of the compound (,101) and the organic compound (402) is controlled using a stainless steel bubbler container (404),
The temperature of (405) may be adjusted using constant temperature baths (406) and (407). In this vapor phase growth apparatus, a flowmeter (410
), (411) to precisely control the flow rate of hydrogen (H7)
Organic In compound (401) by bubbling with gas
and the organic compound (402), and the generated vapors are conveyed together with hydrogen gas etc. through the pipes (408) and (409), respectively, and are thoroughly mixed with each other in the gas mixer (412). The mixed gas is transferred to a gas mixer (41
2) through the first piping system (414) and introduced into the second piping system (413) through which the transport gas is flowing through the inlet (415), and this piping system (413) and flows into the growth furnace (418) through a connecting joint (419) between the growth furnace (418) and the growth furnace (418). The temperature of the outer tube wall of the first piping system (414) is determined by the resistance heating element (4
16) can be adjusted with a transformer (417). The group V hydrogen compound (403) is the above organic In compound (401) and the organic group II compound (402)
An inlet (420) provided at a position further closer to the connecting joint (419) of the growth furnace (418) than the inlet (415) provided to introduce the mixed steam with the second piping system (413).
is introduced into this piping system (413) via. The temperature of the outer pipe wall of the second piping system (413) between the inlet (415) and the connection joint (419) is determined by the voltage applied to the resistance heating element (421) provided around the pipe body. The first piping system (414) is adjusted by a transformer (422).
) can be controlled independently from the temperature of the outer tube.

成長炉(4N()内に載置された基板結晶(423)は
、高周波コイル(424)により加熱される。
A substrate crystal (423) placed in a growth furnace (4N()) is heated by a high frequency coil (424).

この気相成長装置を用い、InP結晶の気相成長を行う
。まず有機In化合物(401)としてトリメチルJn
((CIls)sln)を、有機■族化合物(402)
として、トリメチルホスフィン((CHs)sP )を
、またV族元素の水素化物(403)としてホスフィン
(PH3)ガスを用いる。トリメチルI n (401
)、  及びトリメチルホスフィン(402)を収納す
るステンレス製バブラー((404)及び(405) 
)の温度は、恒温槽((,406)及び(407) )
で夫々30℃及び20℃に保持する。
This vapor phase growth apparatus is used to perform vapor phase growth of InP crystal. First, as an organic In compound (401), trimethyl Jn
((CIls)sln) as an organic compound (402)
Trimethylphosphine ((CHs)sP ) is used as the hydride (403) of a group V element, and phosphine (PH3) gas is used as the group V element hydride (403). Trimethyl I n (401
), and stainless steel bubblers ((404) and (405) containing trimethylphosphine (402)
) is the temperature of the constant temperature bath ((,406) and (407))
and maintained at 30°C and 20°C, respectively.

トリメチルIn、トリメチルホスフィンは、精製水素(
H2)ガスでバブルし、トリメチルInをバブルするH
2流景は30 cc/分に、トリメチルホスフィンをバ
ブルするT(、流量は、25cc/分に各々設定する。
Trimethyl In, trimethylphosphine is purified hydrogen (
H2) Bubble gas and bubble trimethyl In H
The second flow rate was 30 cc/min, and the flow rate was set to 25 cc/min, respectively.

ホスフィン(PH,)ガスは濃度10%のH2希釈のも
のを用い、pHsガスの流量は650 ec/分に設定
する。輸送用ガスとしてH2ガスを用い、その流量は、
6.71/分にする。基板結晶(423) Lして41
0>方向に2°傾斜させて切り出した鉄(Fe)添加(
100) InP結晶を用い、この基板の温度は650
℃に設定保持する。またガス混合?5(412)からガ
ス導入口(415)に至る第二の配管系(413)の外
壁温度を55℃に、導入口(415)より連結継手(4
19)に至る第一の配管系(414)の外壁温度を60
℃に夫々加熱保持する。
Phosphine (PH,) gas diluted with H2 with a concentration of 10% is used, and the flow rate of pHs gas is set at 650 ec/min. H2 gas is used as the transportation gas, and its flow rate is:
6. Set it to 71/min. Substrate crystal (423) L and 41
Iron (Fe) added (
100) Using InP crystal, the temperature of this substrate is 650
Keep set at ℃. Gas mixture again? The outer wall temperature of the second piping system (413) from the gas inlet (412) to the gas inlet (415) is set to 55°C, and the connecting joint (4
The outer wall temperature of the first piping system (414) leading to 19) was set to 60
Heat and maintain at ℃.

これらの成長条件下で、In’P結晶の気相成長を連続
して行い、成長回数に伴うInP結晶の成長速度の変化
を調べた結果を第5図に示す。同図中に○印で示す数値
は本実施例に基づく装置構成、及び方法で得られた結果
である。一方図中の・印で示された数値は、有機In化
合物の蒸気と有機V族化合物の蒸気とを予め相互に混合
させずに成長をする上述の従来の常圧気相成長法で得ら
れた結果である。従来の常圧気相成長法ではInP結晶
の成長速度が成長回毎に安定せず、しかも成長速度は、
成長回数が増えるに伴い低下する傾向があり、不安定で
ある。一方、この発明に基づく装置構成による気相成長
装置では、上記従来法に比べ約2倍の0.11μm/分
の成長速度が得られ、成長回数が多くなっても酸量速度
に殆んど変化は見られず一定に保たれる。
Under these growth conditions, In'P crystal was continuously grown in a vapor phase, and the change in the growth rate of the InP crystal with the number of times of growth was investigated. The results are shown in FIG. The numerical values indicated by circles in the figure are the results obtained with the apparatus configuration and method based on this example. On the other hand, the numerical values indicated by marks in the figure were obtained by the above-mentioned conventional normal pressure vapor phase growth method in which organic In compound vapor and organic Group V compound vapor are grown without being mixed with each other in advance. This is the result. In the conventional normal pressure vapor phase growth method, the growth rate of InP crystals is not stable from growth to growth, and the growth rate is
It tends to decrease as the number of growth increases and is unstable. On the other hand, in the vapor phase growth apparatus with the apparatus configuration based on the present invention, a growth rate of 0.11 μm/min, which is approximately twice that of the conventional method described above, can be obtained, and even if the number of growths is increased, the acid amount rate remains almost the same. No change is observed and it remains constant.

またInP結晶基板上に20分間InP気相成長層の堆
積を行った場合に得られたInPウェハについて、堆積
層膜厚のウェハ面内の分布を調べた結果。
Also, the results of investigating the distribution of the thickness of the deposited layer within the wafer surface for an InP wafer obtained when an InP vapor phase growth layer was deposited on an InP crystal substrate for 20 minutes.

膜厚の平均値22μmに対し、膜厚の変動幅は、標準偏
差にして0.18μmと、均一な膜厚を有する成長層が
堆積された。この様にこの実施例によればInP気相成
長層の成長速度を安定に再現性良く維持でき、且つ均一
な膜厚を有するInP結晶を気相成長させることが可能
である。
While the average film thickness was 22 μm, the standard deviation of the film thickness variation was 0.18 μm, and a grown layer having a uniform thickness was deposited. As described above, according to this embodiment, it is possible to maintain the growth rate of the InP vapor phase growth layer stably and with good reproducibility, and it is possible to vapor phase grow an InP crystal having a uniform film thickness.

次に配管外壁を加熱することが、 InP気相成長層の
面質に及ぼす効果について述べる。配管外壁を加熱しな
い場合には、輸送管(413)内に有機In化合物の蒸
気内v族水素化物との接触により生成したき思われる固
形状の物質の堆積が認められる。
Next, we will discuss the effect of heating the outer wall of the pipe on the surface quality of the InP vapor growth layer. When the outer wall of the pipe is not heated, a solid substance that is likely to be produced by contact with the group V hydride in the vapor of the organic In compound is observed inside the transport pipe (413).

これら堆積した微小な固形状物質の一部は、第二の配管
系(413)内を流れる多量の輸送用ガスによって成長
炉(418)内に載置された基板結晶(423)付近に
搬送され、これらの微粒子が原料ガス中に取り込まれ、
得られる気相成長膜内に核とするピラミッド状の突起物
の形成など異常成長を誘発する等、成長膜の面質に悪影
響を及ぼす。これに対し実施例に示したように配管外壁
を加熱することにより、前述の様な固形状物質の配管内
への凝縮。
A portion of these deposited minute solid substances are transported to the vicinity of the substrate crystal (423) placed in the growth furnace (418) by a large amount of transport gas flowing within the second piping system (413). , these fine particles are taken into the raw material gas,
This adversely affects the surface quality of the grown film, such as inducing abnormal growth such as the formation of pyramid-shaped protrusions in the resulting vapor-phase grown film. On the other hand, by heating the outer wall of the piping as shown in the example, the solid substance as described above condenses inside the piping.

堆積が防止され、良好な面質を有する気相成長膜を得さ
せる。また第二の配管系(413)には第一の配管系(
414)に比べ、熱伝導度の良いH2ガスが多量に流れ
ている。この為有機■族化合物と有機■族化合物との混
合蒸気を夛第二の配管系(413)に導入するのに設け
た第一の配管系(414)の外壁温度より、第二の配管
系(413)の外壁温度を多少高くおくと、固形状物質
の配管内への凝縮、堆積を防止するのにより効果がある
To prevent deposition and to obtain a vapor-phase grown film having good surface quality. Further, the second piping system (413) includes the first piping system (
414), a large amount of H2 gas with good thermal conductivity flows. Therefore, from the outer wall temperature of the first piping system (414) provided to introduce the mixed vapor of the organic group II compound and the organic group II compound into the second piping system (413), the second piping system Setting the outer wall temperature of (413) a little higher is more effective in preventing solid substances from condensing and depositing inside the pipe.

従って配管系を上述のように加熱し、且つ温度を配管系
毎に独立に制御することは、有機In化合物の蒸気と有
Sv族化合物の蒸気とを予め混合させ、有機In化合物
の低温分解を防止すること吉相まって、出発原料ガスの
接触、混合に伴う反応生成物の配管内への凝縮、堆積が
防止され、均一で高品質のInT’結晶の気相成長を果
す。
Therefore, by heating the piping system as described above and controlling the temperature independently for each piping system, the vapor of the organic In compound and the vapor of the Sv-containing compound are mixed in advance, and the low-temperature decomposition of the organic In compound is prevented. This prevention also prevents condensation and deposition of reaction products in the piping due to contact and mixing of starting material gases, resulting in uniform and high-quality vapor phase growth of InT' crystals.

前記例に使用の気相成長装置は、 Inを含む三元。The vapor phase growth apparatus used in the above example is a ternary one containing In.

或いは四元半導体混晶薄膜の気相成長にも適用出来る。Alternatively, it can also be applied to vapor phase growth of quaternary semiconductor mixed crystal thin films.

例えばTnGaAs三元混晶薄膜を気相成長させるには
、有IJJ I n化合物としてトリメチルInを、有
機■族化合物みしてトリメチルアルシン((CHs)s
As)を、V族元素の水素化合物としてアルシン(A 
s H3)を用いれば良い。またGa源として有機Ga
化合物であるトリメチルGa((CHs)sGa)を用
いることができる。トリメチルGaを反応ガス系に導入
するには、第6図のように配管系を構成すれば良い。同
図中の(601)は有機In化合物((CHs)sIn
 ) 、  (602)は有機■族化合物((cr(3
)sAS)、(603)は有1!la化合物((CHs
)30a )、(604)は■族元素の水素化合物(A
sHs)である。出発原料として有機In化合物の他に
有機Ga化合物を用いる場合に於いても有機In化合物
((CL)sin )(601)と有機V族化合物((
CH3)3AS ) (!:を予めガス混合器(605
)内で互いに混合させ、然る後この混合ガスを輸送用ガ
ス反応管(606)内に導入口(607)を介して導入
する。(CH3)30a (603)の蒸気は導入口(
607)の位置より更に成長炉(608)側に位置する
導入口(609)を介して、輸送用ガス反応管(606
)内を流れる輸送用ガスに混合させる。
For example, in order to grow a TnGaAs ternary mixed crystal thin film in the vapor phase, trimethyl In is used as an organic compound, and trimethylarsine ((CHs)s
As) is converted into arsine (A) as a hydrogen compound of group V element.
s H3) may be used. In addition, organic Ga is used as a Ga source.
The compound trimethyl Ga ((CHs)sGa) can be used. In order to introduce trimethyl Ga into the reaction gas system, a piping system may be configured as shown in FIG. (601) in the figure is an organic In compound ((CHs)sIn
), (602) is an organic group compound ((cr(3
)sAS), (603) is 1! la compound ((CHs
)30a), (604) are hydrogen compounds of group ■ elements (A
sHs). Even when using an organic Ga compound in addition to the organic In compound as a starting material, the organic In compound ((CL)sin) (601) and the organic group V compound ((
CH3)3AS) (!: Preliminary gas mixer (605)
) and then this mixed gas is introduced into the transport gas reaction tube (606) through the inlet (607). (CH3) 30a (603) steam is introduced into the inlet (
The transport gas reaction tube (606)
) is mixed with the transport gas flowing through it.

AsH3ガスは導入口(609)より更に成長炉(60
8)側に位置する導入口(610)を介して輸送用ガス
に混合される。
AsH3 gas is further supplied to the growth furnace (60) from the inlet (609).
8) is mixed with the transport gas through the inlet (610) located on the side.

上記の様な場合に於いても有機In化合物と有機V族化
合物とを、予め接触、混合させ、この混合ガスを他の有
機金属化合物、若しくはV族元素の水素化合物の蒸気、
ガスと接触させずに第6図に示すように配置された導入
口を介して輸送用ガス中に導入すれば、有機In化合物
の分解を抑制できる。また、前述のようにガス混合器(
605)から導入口(607)に至る第一の配管系(6
11)、及び導入口(607)から成長炉(608)に
至る第二の配管系(612)の外壁の温度を抵抗加熱体
(613)、 (614)で夫々35℃及び40℃に加
熱保持することにより配管系(6]1)、(612)内
の気相反応により生成すると予想される不必要な凝縮物
の配管系(611)、(612)内への堆積も防止でき
、有機In化合物の分解が抑制され良質のI n G 
a A s三元混晶薄膜の気相成長を再現性良く達成さ
せる。
Even in the above case, the organic In compound and the organic Group V compound are brought into contact and mixed in advance, and this mixed gas is mixed with other organic metal compounds or the vapor of the hydrogen compound of the Group V element,
If the organic In compound is introduced into the transportation gas through an inlet arranged as shown in FIG. 6 without contacting the gas, decomposition of the organic In compound can be suppressed. Also, as mentioned above, a gas mixer (
The first piping system (605) to the inlet (607)
11), and the temperature of the outer wall of the second piping system (612) from the inlet (607) to the growth furnace (608) is heated and maintained at 35°C and 40°C by resistance heating elements (613) and (614), respectively. By doing so, it is possible to prevent unnecessary condensate that is expected to be generated by the gas phase reaction in the piping systems (6] 1) and (612) from accumulating in the piping systems (611) and (612), and to prevent organic In High-quality I n G with suppressed decomposition of compounds
To achieve vapor phase growth of an A s ternary mixed crystal thin film with good reproducibility.

尚この実施例では、  InP、TnGaAs の気相
成長をトリメデルT n ((CI(s)sIn )を
原料として用いる場合について述べたが、Inの原料は
(CHs)s I nに限定されず、他の有機In化合
物例えばトリエチルI n ((C2Hs)+ T n
 )でも良い。また有機In化合物の分解を抑制する目
的で用いる有機V族化合物は、トリメチルホスフィンc
 (CH3)P) 、  トリメチルアルシン(((J
ls )sA−8)に限るものではなく、他の有機V族
化合物を用いてもよい。また実施例では、fn(]aA
sを成長させるのに有機Ga化合物としてトリメチルO
aを用いているが、他の有機Ga化合物を用いても差し
支えない。更に配管の外壁の温度調節の為に実施例では
抵抗加熱体を利用したが、配管系の加熱方法は、この方
法に限定されない。
In this example, a case has been described in which InP and TnGaAs are vapor-phase grown using trimedel T n ((CI(s)sIn) as a raw material, but the raw material for In is not limited to (CHs)sIn). Other organic In compounds such as triethyl I n ((C2Hs) + T n
) but that's fine. In addition, the organic group V compound used for the purpose of suppressing the decomposition of organic In compounds is trimethylphosphine c
(CH3)P), trimethylarsine (((J
ls)sA-8), and other organic Group V compounds may be used. In addition, in the embodiment, fn(]aA
Trimethyl O is used as an organic Ga compound to grow s.
Although a is used, other organic Ga compounds may also be used. Furthermore, although a resistance heating element was used in the embodiment to adjust the temperature of the outer wall of the piping, the method of heating the piping system is not limited to this method.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、第一の配管系及び第
二の配管系の各配管外壁の温度を、各々独立に制御でき
るようにして気相成長させることにより、有機In化合
物の不必要な分解を抑制できる他、配管内への有機In
化合物の分解1反応に基づく低揮発性物質の堆積も防止
され、高品質のIn系化合物の半導体結晶を再現性良く
成長させる。
As described above, according to the present invention, the temperature of the outer wall of each pipe of the first piping system and the second piping system can be independently controlled and vapor phase growth is performed, thereby forming an organic In compound. In addition to suppressing the necessary decomposition, it also prevents organic In from entering the pipes.
The deposition of low-volatile substances based on the decomposition reaction of the compound is also prevented, and high-quality semiconductor crystals of In-based compounds can be grown with good reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、常圧下でTn系化合物結晶の気相成長を実施
するのに従来から用いられている気相成長装置例、第2
図は、減圧下でIn系化合物結晶の気相成長を実施する
のに用いられている気相成長装置例、第3図は、有機■
族化合物を出発原料の一つとして用いる場合の常王気相
成長装置例、第4図は、この発明で使用するIn系化合
物半導体結晶の気相成長装置例、第5図は、従来法及び
本発明に基づく方法により気相成長さぜたInP結晶の
成長速度の成長回数毎の比較%第6図は、この発明で使
用するIn系化合物半導体結晶の他の気相成長装置例を
示す図である。 第1図で (101)・・・有機In化合物 (102)・・■族
元素の水素化物(103)・・ガス輸送管  (104
)・・成長炉(105)−・加熱用高周波コイル (106)・・・基板結晶    (107)・・ガス
導入口第2図で (201)・・有機In化合物 (202)・・・V族
元素の水素化物(203)・・・成長炉     (2
04)・・・排気用真空ポンプ(205)・・ゲートバ
ルブ (206)・・有害物質除去用フィルクー(207)・
・・加熱用普周波コイル (208)・・基板結晶 第3図で (301)・・・有機In化合物 (302)・・■族
元素の水素化物(303)・・・有機■族化合物 (3
04)・・・ガス輸送管(305)・・・成長炉   
   (306)・・・加熱用高周波コイル(307)
・・・基板結晶 (308)・・・低部発性物質 第4図で (401)・・有機In化合物 (402)・・有機V
族化合物(403)・・・■族の水素化物 (404)・・・ステンレス製バフラ−容器(405)
・・・ (406)・・恒温槽    (407)・・・恒温槽
(408)・・・配管     (409)・・・配管
(410)・・流量計     (411)・・流量計
(412)・・・ガス混合器  (413)・・第二の
配管系(414)・・・第一の配管系 (415)・・
・ガス導入口(416)・・・抵抗加熱体  (417
)・・変圧器(418)・・・成長炉    (419
)・・・連結継手(420)・・・導入口     (
421)・・抵抗加熱体(4,22)・・・変圧器  
  (423)・・・基板結晶(424)・・・加熱用
高周波コイル 第6図で (601)・・・有機In化合物 (602)・・・有
機■族化合物(603)・・・有機Ga化合物  (6
04)・・・■族元素の水素化物(605)・・・ガス
混合器   (606)・・輸送用ガス反応管(607
)・・・導入口(有機In化合物用)(608’)・・
・成長炉
Figure 1 shows an example of a vapor phase growth apparatus conventionally used for vapor phase growth of Tn-based compound crystals under normal pressure.
The figure shows an example of a vapor phase growth apparatus used for vapor phase growth of In-based compound crystals under reduced pressure.
FIG. 4 is an example of a vapor phase growth apparatus for In-based compound semiconductor crystals used in the present invention, and FIG. 5 is an example of a vapor phase growth apparatus for using a group compound as one of the starting materials. Comparison of the growth rate of InP crystal grown in vapor phase by the method based on the method based on the growth number (%) Figure 6 is a diagram showing another example of a vapor phase growth apparatus for In-based compound semiconductor crystal used in the present invention. . In Figure 1, (101)...organic In compound (102)...hydride of group ■ element (103)...gas transport pipe (104)
)...Growth furnace (105)--Heating high-frequency coil (106)...Substrate crystal (107)...Gas inlet (201)...Organic In compound (202)...V group Elemental hydride (203)...Growth reactor (2
04)... Vacuum pump for exhaust (205)... Gate valve (206)... Filter for removing harmful substances (207)...
... Heating high-frequency coil (208) ... In the substrate crystal diagram 3 (301) ... Organic In compound (302) ... Hydride of group ■ element (303) ... Organic group compound (3
04)...Gas transport pipe (305)...Growth furnace
(306)...Heating high frequency coil (307)
...Substrate crystal (308)...Low emissive substance In Figure 4 (401)...Organic In compound (402)...Organic V
Group compound (403)...Group hydride (404)...Stainless steel baffler container (405)
... (406) ... Constant temperature chamber (407) ... Constant temperature chamber (408) ... Piping (409) ... Piping (410) ... Flowmeter (411) ... Flowmeter (412) ...Gas mixer (413)...Second piping system (414)...First piping system (415)...
・Gas inlet (416)...Resistance heating element (417
)...Transformer (418)...Growth furnace (419
)...Connection joint (420)...Inlet (
421)...Resistance heating element (4, 22)...Transformer
(423)...Substrate crystal (424)...High frequency coil for heating In Fig. 6 (601)...Organic In compound (602)...Organic Group II compound (603)...Organic Ga compound (6
04)...Hydride of group ■ element (605)...Gas mixer (606)...Gas reaction tube for transportation (607)
)...Inlet (for organic In compound) (608')...
・Growth furnace

Claims (1)

【特許請求の範囲】[Claims] インジウム原料である有機インジウム化合物の蒸気を、
予め有機V族化合物の蒸気と接触、混合させて第一の配
管系を通し、然る後混合された蒸気を、輸送用ガス(キ
ャリアガス)を案内する第二の配管系に混入させ、第二
の配管系は更に■族主要供給ぶ水素化合物蒸気を混入さ
せると共に、第一の配管系表第二の配管系の管壁温度は
各々独立に制御される配管系を経て各原料ガスが成長炉
内に到り気相成長することを特徴とするIn系1−V族
化合物半導体結晶の気相成長方法
The vapor of an organic indium compound, which is an indium raw material, is
The vapor of the organic Group V compound is brought into contact and mixed with the vapor of the organic group V compound and passed through the first piping system, and then the mixed vapor is mixed into the second piping system that guides the transport gas (carrier gas). The second piping system further mixes hydrogen compound vapor, which is the main supply of the group ■, and the temperature of the tube wall of the first piping system and the second piping system is controlled independently.Each raw material gas grows through the piping system. A method for vapor phase growth of In-based 1-V group compound semiconductor crystal, characterized by vapor phase growth in a furnace.
JP22288282A 1982-12-21 1982-12-21 Vapor growth method of semiconductor crystal of in base iii-v group compound Pending JPS59116191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22288282A JPS59116191A (en) 1982-12-21 1982-12-21 Vapor growth method of semiconductor crystal of in base iii-v group compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22288282A JPS59116191A (en) 1982-12-21 1982-12-21 Vapor growth method of semiconductor crystal of in base iii-v group compound

Publications (1)

Publication Number Publication Date
JPS59116191A true JPS59116191A (en) 1984-07-04

Family

ID=16789359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22288282A Pending JPS59116191A (en) 1982-12-21 1982-12-21 Vapor growth method of semiconductor crystal of in base iii-v group compound

Country Status (1)

Country Link
JP (1) JPS59116191A (en)

Similar Documents

Publication Publication Date Title
US4533410A (en) Process of vapor phase epitaxy of compound semiconductors
EP0200766B1 (en) Method of growing crystalline layers by vapour phase epitaxy
US6271104B1 (en) Fabrication of defect free III-nitride materials
JPS59116191A (en) Vapor growth method of semiconductor crystal of in base iii-v group compound
JPS60112694A (en) Gas-phase growth method of compound semiconductor
JPH0654764B2 (en) Method for forming semi-insulating gallium arsenide
US5252512A (en) TEOV doping of gallium arsenide
JPH0194613A (en) Vapor growth method
JP3221318B2 (en) Vapor phase growth method of III-V compound semiconductor
JPS6129915B2 (en)
JPS63500757A (en) Method and apparatus for chemical vapor deposition of 3-5 type semiconductor using organometallic source and elemental pnictide source
CA1250511A (en) Technique for the growth of epitaxial compound semiconductor films
JPH0573322B2 (en)
JPH02126632A (en) Vapor phase epitaxy for compound semiconductor crystal layer and reaction tube therefor
JPH0536397B2 (en)
JP2743970B2 (en) Molecular beam epitaxial growth of compound semiconductors.
JPS63202909A (en) Vapor growth method
JPS647487B2 (en)
JPH0228314A (en) Method of vapor growth of highly resistant algaas mixed crystal
JPH11214316A (en) Manufacture of semiconductor
JPS6131393A (en) Vapor phase growth device
JPS61151093A (en) Vapor-phase epitaxial growth of semiconductor of group iii-v compound
JPH03236220A (en) Vapor growth method for semiconductor
JPS6328030A (en) Method for crystal growth of compound semiconductor
JPH06140337A (en) Semiconductor manufacture device and manufacture thereof