JPS5837967A - Manufacture of mis semiconductor device - Google Patents

Manufacture of mis semiconductor device

Info

Publication number
JPS5837967A
JPS5837967A JP13640681A JP13640681A JPS5837967A JP S5837967 A JPS5837967 A JP S5837967A JP 13640681 A JP13640681 A JP 13640681A JP 13640681 A JP13640681 A JP 13640681A JP S5837967 A JPS5837967 A JP S5837967A
Authority
JP
Japan
Prior art keywords
electrode
film
substrate
oxide film
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13640681A
Other languages
Japanese (ja)
Inventor
Takeshi Tanaka
剛 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP13640681A priority Critical patent/JPS5837967A/en
Publication of JPS5837967A publication Critical patent/JPS5837967A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To prevent short-circuit of channel by forming the source and drain electrodes deeply in the area near to the gate electrode or shallowly in the area far from it. CONSTITUTION:The field oxide film 3, silicon oxide film 4 and gate electrode 5 are formed on the silicon substrate 1. Then, the SiO2 film is deposited. Thereafter, the SiO2 film 6 is left only at the side end part of electrode 5 by the etching. The gate oxide film 7 is formed by etching the film 4. Next, the arsenic ion is implanted to the substrate 1. At this time, since the film 7 controls the depth of implantation, the arsenic ion is implanted shallowly at the area near to the electrode 5 but deeply at the area isolated far from the electrode. Thereafter, the thermal processing for activation is carrier out in order to form the source and drain regions 8, 9.

Description

【発明の詳細な説明】 本発明はMIB型半導体装置へ製造方法の改良に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a manufacturing method for MIB type semiconductor devices.

従来、MOa型半導体装置は以下に述べるような方法に
よって製造されている。まず、第1導電型の半導体基板
を選択的に酸化して素子領域形成予定部を電気的に分離
するためのフィールド酸化膜を形成する。次に、素子領
域形成予定部にシリコン酸化膜を形成した後、このシリ
コン酸化膜上に?−)電極を選択的に形成する。
Conventionally, MOa type semiconductor devices have been manufactured by the method described below. First, a first conductivity type semiconductor substrate is selectively oxidized to form a field oxide film for electrically isolating a portion where an element region is to be formed. Next, after forming a silicon oxide film in the area where the element region is to be formed, a silicon oxide film is formed on the silicon oxide film. -) selectively forming electrodes;

つづいて、該f−)電極をマスクとして前記シリコン酸
化膜をエツチング除去して、r−)酸化膜を形成し念後
、該f−)電極およびフィルド酸化膜をマスクとして第
2導電型の不純物をイオン注入し、活性化熱処理を施し
てソース、ドレイン領域を形成し、MOB型半導体装置
を製造する。
Subsequently, the silicon oxide film is etched away using the f-) electrode as a mask to form an r-) oxide film, and after that, impurities of the second conductivity type are added using the f-) electrode and the filled oxide film as a mask. A MOB type semiconductor device is manufactured by ion-implanting and performing activation heat treatment to form source and drain regions.

上述した製造方法において、高集積化の要請に従いMO
8型半導体装置を微細化するためKは、ソース、ドレイ
ン領域の不純物の拡散深さを浅くしてチャネルのシ1−
ト化を防止することが必要である。なお、チャネルのシ
1−ト化は、閾値電圧の低下およびドレイン耐圧の低下
を招く。しかしながら、不純物の拡散深さを浅くしすぎ
ると、ソース、ドレイン領域の抵抗が大きくなるととも
に、ソース、ドレインの取出し電極との接触抵抗も増大
するため、装置の高速動作化の障害となる。
In the above manufacturing method, MO
In order to miniaturize 8-type semiconductor devices, K reduces the diffusion depth of impurities in the source and drain regions and increases the channel depth.
It is necessary to prevent this. Note that the sheeting of the channel causes a decrease in threshold voltage and a decrease in drain breakdown voltage. However, if the impurity diffusion depth is made too shallow, the resistance of the source and drain regions increases as well as the contact resistance with the source and drain lead electrodes, which impedes high-speed operation of the device.

本発明は、前記欠点を解消するためになされたものであ
り、ソース、ドレイン領域において、?−)電極近傍で
は不純物の拡散深さを浅くシ。
The present invention has been made to eliminate the above-mentioned drawbacks, and in the source and drain regions, ? −) Reduce the diffusion depth of impurities near the electrode.

r−ト電極から離れた領域では不純物の拡散深さを深く
することにより、チャネルのシ嘗−ト化を防止するとと
もに、ソース、ドレイン領域の抵抗の低減化を達成した
MIS型半導体装置の製造方法を提供しようとするもの
である。
Manufacture of a MIS type semiconductor device that prevents channel shift by increasing the diffusion depth of impurities in the region away from the r-gate electrode and reduces the resistance of the source and drain regions. It is intended to provide a method.

すなわち、本願第1の発明は、第1導電型の半導体基板
上に絶縁膜を介して?−)電極を形成する工程と、少な
くともf−)電極周囲に該r−)電極に対して選択エツ
チング性を有する被膜を堆積する工程と、この被膜を異
方性エツチングしてr−ト電極の側端部に被膜を残存さ
せる工程と、この残存被膜およびr−)電極をマスクと
して前記絶縁膜をエツチング除去する工程と、前記残存
被膜を除去した後、第2導電型の不純物を前記基板にイ
オン注入する工程とを具備することを特徴とするもので
ある。
That is, in the first invention of the present application, a semiconductor substrate of a first conductivity type is formed on a semiconductor substrate with an insulating film interposed therebetween. -) forming an electrode, at least f-) depositing a film having selective etching properties with respect to the r-) electrode around the electrode, and anisotropically etching this film to form an r-t electrode. a step of leaving a film on the side edges; a step of etching away the insulating film using the remaining film and the r-) electrode as a mask; and after removing the remaining film, impurities of a second conductivity type are added to the substrate. The method is characterized by comprising a step of implanting ions.

また、本願第2の発明は、第1導電型の半導体基板上に
絶縁膜を介してy−ト電極を形成する工程と、少なくと
もr−)電極周囲に該ダート電極に対して選択エツチン
グ性を有する被膜を堆積する工程と、この被膜を異方性
エツチングしてr−)電極の側端部に被膜を残存させ友
後、第2導電型の不純物を前記基板にイオン注入する工
程と、前記残存被膜を除去した後、再度第2導電型の不
純物を前記基板に前記第1回目のイオン注入よシ浅くイ
オン注入する工程とを具備することを特徴とするもので
ある。
Further, the second invention of the present application includes a step of forming a y-t electrode on a semiconductor substrate of a first conductivity type via an insulating film, and a selective etching property for the dirt electrode at least around the r-) electrode. a step of anisotropically etching the film to leave the film on the side edges of the r-) electrode, and then ion-implanting impurities of a second conductivity type into the substrate; The method is characterized by comprising the step of, after removing the remaining film, ion-implanting impurities of a second conductivity type into the substrate again to a shallower depth than the first ion-implantation.

本願発明に使用されるr−)電極の材料としては、例え
ば多結晶シリコン、アルミニウムあるいはモリブデン、
タングステン等の高融点金属またはモリブデンシリサイ
ド、タングステンシリサイド等の金属硅化物等を挙げる
ことができる。
Materials for the r-) electrode used in the present invention include, for example, polycrystalline silicon, aluminum, molybdenum,
Examples include high melting point metals such as tungsten, metal silicides such as molybdenum silicide, and tungsten silicide.

本願発明に使用される被膜としては、たとえばCVD 
−5io2膜、シリコン窒化膜等の絶縁被膜あるいはA
t、kt合金、その他の金属部ゲート電極に対して選択
エツチング性を有するものであればよい。
Examples of the coating used in the present invention include CVD
- Insulating coating such as 5io2 film, silicon nitride film, or A
Any material may be used as long as it has selective etching properties with respect to T, Kt alloys, and other metal gate electrodes.

本願ts1の発明で形成される残存被膜は半導体基板上
の絶縁膜をエツチングする際のマスクとして作用する。
The remaining film formed by the invention of ts1 of the present application acts as a mask when etching the insulating film on the semiconductor substrate.

こうしたエツチング後においては、r−)電極の周辺に
不純物のイオン注入深さを制御する絶縁膜が残存される
After such etching, an insulating film for controlling the depth of impurity ion implantation remains around the r-) electrode.

また、本願第2の発明で形成される残存被膜は第1回目
の不純物のイオン注入に際して、ゲート電極周辺の基板
に不純物がイオン注入されるのを阻止する役目をする。
Further, the residual film formed in the second invention of the present application serves to prevent impurity ions from being implanted into the substrate around the gate electrode during the first impurity ion implantation.

このため、残存被膜の除去後の第2回目の不純物のイオ
ン注入においては、r−)電極周辺の基板への不純物の
イオン注入が可能となるため、第2回目のイオン注入条
件をコントロールすることによって、同電極周辺の基板
に形成される不純物領域の深さを自由に調整できる。
Therefore, in the second impurity ion implantation after removing the remaining film, it is possible to implant impurity ions into the substrate around the r-) electrode, so it is necessary to control the conditions for the second ion implantation. Accordingly, the depth of the impurity region formed in the substrate around the electrode can be freely adjusted.

以下、本発明の実施例を図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.

実施例1 (1)tず、p型シリコン基板1に選択酸化により素子
領域形成予定部2を電気的に分離するためのフィールド
酸化[5を形成した。つづいて、熱酸化処理を施して、
前記露出した素子領域形成予定部2上にシリコン酸化M
4を成長させた後、全面に例えば多結晶シリコンを堆積
し、)9ターニングしてシリコン酸化膜4上にc−ト電
極5を選択的に形成しぇ(第1図(、)図示)。
Example 1 (1) First, field oxidation [5] was formed on a p-type silicon substrate 1 by selective oxidation to electrically isolate a portion 2 where an element region was to be formed. Next, thermal oxidation treatment is applied,
Silicon oxide M is formed on the exposed element region formation portion 2.
After growing the silicon oxide film 4, for example, polycrystalline silicon is deposited on the entire surface and then turned to selectively form a c-to electrode 5 on the silicon oxide film 4 (as shown in FIG. 1(a)).

(11)  次に、C■法にょシ全面Vcsio2.膜
6tlll積した(第1図(b)図示)、つづいて、反
応性イオンエツチングの雰囲気に@し、5to2II 
6の膜厚分もしくはそれより少しオーツぐ−に異方性エ
ツチングすることKよerr−)電極5の側端部に5I
O2e;’を残存させた(第1図(@)図示)、ひきつ
づき、残存SIOg’およびr−)電極5をマスクとし
てシリコン酸化膜イをエツチングして?−ト酸化膜7を
形成した(第1図(d)図示)。。
(11) Next, the entire surface of the C■ method is Vcsio2. After 6tllll of films were deposited (as shown in Fig. 1(b)), they were placed in a reactive ion etching atmosphere and etched with 5to2II.
Anisotropic etching should be carried out to a film thickness of 6 or slightly more.
O2e;' was left (as shown in FIG. 1 (@)), and then the silicon oxide film A was etched using the remaining SIOg' and r-) electrodes 5 as a mask. - A oxide film 7 was formed (as shown in FIG. 1(d)). .

(iii)  次に、残存81026’を除去した後、
シリコン基板1にn型の不純物として砒素をイオン注入
した。この際、r−)電極50幅よりも広くr−)酸化
gvが形成され、この部分がシリコン基板1へのイオン
注入深さを抑制するので、?−)電極5近傍のシリコン
基板1部分でハfiく、r−計電極5から離れたシリコ
ン基板1部分では深く、それぞれ砒素が導入される(第
1図(・)図示)、。
(iii) Next, after removing the remaining 81026',
Arsenic ions were implanted into a silicon substrate 1 as an n-type impurity. At this time, the r-) oxide gv is formed wider than the width of the r-) electrode 50, and this portion suppresses the depth of ion implantation into the silicon substrate 1. -) Arsenic is introduced deeply into a portion of the silicon substrate near the electrode 5 and deeply into a portion of the silicon substrate remote from the r-meter electrode 5 (as shown in FIG. 1).

Ov)  次に、活性化熱処理を行い、r−)電極5近
傍では浅く、r−)電極5から離れた部分では深いr型
のソース、ドレイン領域8.9を形成した(第1図(f
)図示)。つづいて、常法に従い、全面K CVD −
8102膜を堆積した後、ホトエツチングによりコンタ
クトホールを形成した。
Ov) Next, activation heat treatment was performed to form r-type source and drain regions 8.9 that were shallow in the vicinity of the r-) electrode 5 and deep in the portions away from the r-) electrode 5 (see Fig. 1 (f).
). Next, according to the usual method, the entire surface is K CVD −
After depositing the 8102 film, contact holes were formed by photoetching.

ひきつづき、At電極形成を行い、nチャネルMO8型
半導体装置を製造した。
Subsequently, an At electrode was formed, and an n-channel MO8 type semiconductor device was manufactured.

しかして本発明によれば、?−)電極5の側端部に残存
81026’を形成し、この残存81026’およびダ
ート電極5をマスクとしてシリコン酸化膜イをエツチン
グすることによってr−計電極5の幅よシも広い?−)
酸化膜7を形成できる。
However, according to the present invention? -) By forming a remaining portion 81026' at the side end of the electrode 5 and etching the silicon oxide film 1 using this remaining portion 81026' and the dirt electrode 5 as a mask, the width of the r-meter electrode 5 can be increased. −)
An oxide film 7 can be formed.

この結果、残存8102#’を除去した後、1回の砒素
のイオン注入を施すことKよって、?−)電極5近傍で
は浅く、r−計電極5から離れた部分では探いソース、
ドレイン領域8,9を形成できる。この之め、チャネル
のシ謬−ト化を防止できるとともに、ソース、ドレイン
領域8゜9の低抵抗化を達成できる。したがって、チャ
ネルのシ1−ト化にともなう閾値電圧の低下およびドレ
イン耐圧の低下が防止され、かつ高速動作が可能なnチ
ャネルMO8型半導体装置を得ることができる。
As a result, after removing the remaining 8102#', a single arsenic ion implantation is performed. -) It is shallow near the electrode 5, and the search source is shallow in the part far from the r-meter electrode 5.
Drain regions 8 and 9 can be formed. Therefore, it is possible to prevent the channel from becoming distorted and to reduce the resistance of the source and drain regions. Therefore, it is possible to obtain an n-channel MO8 type semiconductor device which can prevent a decrease in threshold voltage and drain breakdown voltage due to channel sheeting and can operate at high speed.

実施例2 (1)  実施例1と同様の方法によって、r−計電極
5の側端部K 191026’を残存させた後、!1型
の不純物として砒素をシリコン基板IK高出力、高ドー
ズ量でイオン注入し九(第2図(、)図示)。
Example 2 (1) After leaving the side end K 191026' of the r-meter electrode 5 in the same manner as in Example 1,! Arsenic was ion-implanted as a type 1 impurity into the silicon substrate at high power and dose (as shown in FIG. 2(a)).

(11)  次に、残存5IO26’を除去した後、再
度゛砒素をシリコン基板llC前記第1回目のイオン注
入よシ低出力、低ドーズ量でイオン注入した(第2図(
b)図示)。
(11) Next, after removing the remaining 5IO26', arsenic was ion-implanted again into the silicon substrate at a low power and low dose similar to the first ion implantation (see Figure 2).
b) As shown).

(++i)  次に、活性化熱処理を行い、ダート電極
5近傍では浅く、ダート電極5から離れた部分では深い
n1型のソース、ドレイン領域8.9を形成した(第2
図(、)図示)。さらに、r−)電極5をマスクとして
シリコン酸化膜4をエツチングしてr−)酸化膜を形成
した。つづいて、常法に従い、全面にCVD −5jO
2旋をj#積した俵、ホトエツチングによ勺コンタクト
ホールを形成した。ひきつづき、At電極形成を行い、
nチャネルMO8型半導体装置を製造した。
(++i) Next, an activation heat treatment was performed to form n1 type source and drain regions 8.9 which were shallow near the dirt electrode 5 and deep in a portion away from the dirt electrode 5 (second
Figure(,)Illustrated). Furthermore, the silicon oxide film 4 was etched using the r-) electrode 5 as a mask to form an r-) oxide film. Next, apply CVD -5jO to the entire surface according to the usual method.
A contact hole was formed by photo-etching a bale stacked with j # of two turns. Continuing to form At electrodes,
An n-channel MO8 type semiconductor device was manufactured.

しかして、本発明によれば、デート電極5の側端部に残
存引026′を形成した後、砒素をシリコン基板1に高
出力、高ドーズ量でイオン注入し、さらに残存8102
6’を除去した後、再度砒素をシリコン基板lに前記第
1回目のイオン注入より低出力、低ドーズ量でイオン注
入することによって、?−)電極5近傍では浅く、y−
計電極5から離れた部分では深いソース、ドレイン領域
8,9を形成できる。このため、チャネルのシッート化
を防止できるとともに、ソースドレイン領域8,9の低
抵抗化を達成できる。したがって、チャネルのシ胃−ト
化にともなう閾値電圧の低下およびドレイン耐圧の低下
が防止され、かつ高速動作が可能なnチャネルMOa型
半導体装置を得ることができる。
According to the present invention, after the residual 8102' is formed at the side end of the date electrode 5, arsenic is ion-implanted into the silicon substrate 1 at high power and dose.
After removing 6', arsenic is ion-implanted into the silicon substrate l again at a lower power and a lower dose than the first ion implantation. -) Shallow near electrode 5, y-
Deep source and drain regions 8 and 9 can be formed in portions away from the meter electrode 5. Therefore, the channel can be prevented from becoming a sheet, and the resistance of the source and drain regions 8 and 9 can be reduced. Therefore, it is possible to obtain an n-channel MOa type semiconductor device which can prevent a decrease in threshold voltage and a decrease in drain withstand voltage due to the formation of a channel and which can operate at high speed.

また1本実施例2の方法によれば、実施例1のようKl
’−)電極5の周辺に残存したシリコン酸化膜4をイオ
ン注入のコントロール膜として利用せずに、残存810
.6’の除去後の第2回目のイオン注入によって、r−
)電極5周辺のシリコン基板1におけるソース、ドレイ
ン領域8゜9の深さのコントロールを行う、このため、
シリコン酸化膜4の膜厚によってr−計電極5周辺のソ
ース、ドレイン領域8,9の深さが規制されることなく
、浅いソース、ドレイン部分を形成できるため、素子の
設計の自由度が大きくなる。
Furthermore, according to the method of Example 2, Kl
'-) Without using the silicon oxide film 4 remaining around the electrode 5 as a control film for ion implantation, the remaining 810
.. The second ion implantation after removal of 6' results in r-
) To control the depth of the source and drain regions 8°9 in the silicon substrate 1 around the electrodes 5,
The depth of the source and drain regions 8 and 9 around the r-meter electrode 5 is not restricted by the thickness of the silicon oxide film 4, and shallow source and drain regions can be formed, allowing a greater degree of freedom in device design. Become.

なお、本発明方法は上記実施例の如くnチャネルMOa
型半導体装置の製造のみに限らず、pチャネルMO8型
半導体装置、0MO8、MNOS、 MAO8等の他の
MIS型半導体装置の製造にも同様に適用しうる。
Note that the method of the present invention is applicable to n-channel MOa as in the above embodiment.
The present invention can be applied not only to manufacturing of type semiconductor devices, but also to manufacturing of other MIS type semiconductor devices such as p-channel MO8 type semiconductor devices, 0MO8, MNOS, MAO8, etc.

以上詳述した如く、本発明によれば、半導体基板の表面
において、r−)電極近傍では浅く、f−)電極から離
れた部分では深いソース、ドレイン領域を形成できるの
で、素子を微細化した場合でもチャネルのシ1−ト化を
防止しうるとともに、ソース、ドレイン領域の低抵抗化
を達成でき、ひいては高信頼性で高速動作が可能なMI
S型半導体装置を提供できるものである。
As described in detail above, according to the present invention, on the surface of a semiconductor substrate, source and drain regions can be formed that are shallow near the r-) electrode and deep in a portion away from the f-) electrode, so that the device can be miniaturized. It is possible to prevent the channel from becoming sheet-like even in the case of high-speed operation, and to achieve low resistance in the source and drain regions, resulting in high reliability and high speed operation.
This makes it possible to provide an S-type semiconductor device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(、)〜(f)は本発明の実施例1におけるMO
8型半導体装置の製造方法を示す工程断面図、第2図(
、)〜(c)は本発明の実施例2におけるMOI9型半
導体装置の製造方法を示す工程断面図である。 1・・・シリコン基板、3・・・フィールド酸化膜、4
・・・シリコン酸化膜、5・・・?−)電極、6・・・
5io2膜、el、、・残存8102.7−r −)酸
化膜、8.9・・・n1型ソース、ドレイン領域。 出麿人代理人  弁理士 鈴 江 武 彦牙1図 第1図 Aば
FIG. 1(,) to (f) are MO in Example 1 of the present invention.
FIG. 2 is a process cross-sectional view showing a method for manufacturing an 8-type semiconductor device
, ) to (c) are process cross-sectional views showing a method of manufacturing a MOI9 type semiconductor device in Example 2 of the present invention. 1... Silicon substrate, 3... Field oxide film, 4
...Silicon oxide film, 5...? -) electrode, 6...
5io2 film, el, .Remaining 8102.7-r-) oxide film, 8.9...n1 type source and drain region. Idemaro's agent Patent attorney Takeshi Suzue Hikoga 1 Figure 1 A

Claims (1)

【特許請求の範囲】 1 第1導電型の半導体基板上に絶縁膜を介してf−)
電極を形成する工程と、少なくともr−)電極周囲Kt
l”−上電極に対して選択エツチング性を有する被膜を
堆積する工程と、この被膜を異方性エツチングしてr−
)電極の側端部に被膜を残存させる工程と、仁の残存被
膜および?−)電極をマスクとして前記絶縁膜をエツチ
ング除去する工程と、前記残存被膜を除去した後、第2
導電型の不純物を前記基板にイオン注入する工程とを具
備することを特徴とするMIS型半導体装置の製造方法
。 2 第1導電型の半導体基板上に絶縁膜を介してゲート
電極を形成する工程と、少なくとも?−)電極周囲に該
y−ト電極に対して選択エツチング性を有する被膜を堆
積す名工程と、この被膜を異方性エツチングしてr−上
電極の側端部に被膜を残存させた後、第2導電型の不純
物を前記基板にイオン注入する工程と、前記残存被膜を
除去した後、再度第2導電型の不純物を前記基板に前記
第1回目のイオン注入より浅くイオン注入する工程とを
具備することを特徴とするMIS型半導体装置の製造方
法・
[Claims] 1 f-) on a first conductivity type semiconductor substrate via an insulating film.
A step of forming an electrode, and at least r-) electrode surrounding Kt.
a step of depositing a film having selective etching properties on the l''-upper electrode, and anisotropically etching this film to form an r-
) The process of leaving a coating on the side edges of the electrode, and the remaining coating on the edges and the -) a step of etching away the insulating film using the electrode as a mask, and a second step after removing the remaining film;
A method for manufacturing an MIS type semiconductor device, comprising the step of ion-implanting a conductive type impurity into the substrate. 2. A step of forming a gate electrode on a semiconductor substrate of a first conductivity type via an insulating film, and at least? -) A famous process of depositing a film having selective etching properties with respect to the y-top electrode around the electrode, and anisotropic etching of this film to leave the film on the side edges of the r-top electrode. , a step of ion-implanting a second conductivity type impurity into the substrate, and a step of ion-implanting the second conductivity type impurity into the substrate again at a shallower depth than the first ion implantation after removing the residual film. A method for manufacturing an MIS type semiconductor device, characterized by comprising:
JP13640681A 1981-08-31 1981-08-31 Manufacture of mis semiconductor device Pending JPS5837967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13640681A JPS5837967A (en) 1981-08-31 1981-08-31 Manufacture of mis semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13640681A JPS5837967A (en) 1981-08-31 1981-08-31 Manufacture of mis semiconductor device

Publications (1)

Publication Number Publication Date
JPS5837967A true JPS5837967A (en) 1983-03-05

Family

ID=15174413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13640681A Pending JPS5837967A (en) 1981-08-31 1981-08-31 Manufacture of mis semiconductor device

Country Status (1)

Country Link
JP (1) JPS5837967A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07153971A (en) * 1993-10-01 1995-06-16 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacture
JPH07169974A (en) * 1993-09-20 1995-07-04 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacture
JPH07169975A (en) * 1993-09-20 1995-07-04 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacture
US6049092A (en) * 1993-09-20 2000-04-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US6335555B1 (en) 1993-10-01 2002-01-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and a manufacturing method for the same
JP2010098321A (en) * 1993-09-20 2010-04-30 Semiconductor Energy Lab Co Ltd Semiconductor device
US8835271B2 (en) 2002-04-09 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
US9105727B2 (en) 2002-04-09 2015-08-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US10133139B2 (en) 2002-05-17 2018-11-20 Semiconductor Energy Laboratory Co., Ltd. Display device

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6867431B2 (en) * 1993-09-20 2005-03-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JPH07169974A (en) * 1993-09-20 1995-07-04 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacture
JPH07169975A (en) * 1993-09-20 1995-07-04 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacture
US6049092A (en) * 1993-09-20 2000-04-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP4657361B2 (en) * 1993-09-20 2011-03-23 株式会社半導体エネルギー研究所 Semiconductor device
JP2010098321A (en) * 1993-09-20 2010-04-30 Semiconductor Energy Lab Co Ltd Semiconductor device
US6835607B2 (en) 1993-10-01 2004-12-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and a method for manufacturing the same
US7170138B2 (en) 1993-10-01 2007-01-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US7301209B2 (en) 1993-10-01 2007-11-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JPH07153971A (en) * 1993-10-01 1995-06-16 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacture
US6335555B1 (en) 1993-10-01 2002-01-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and a manufacturing method for the same
US10050065B2 (en) 2002-04-09 2018-08-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US9105727B2 (en) 2002-04-09 2015-08-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US9406806B2 (en) 2002-04-09 2016-08-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US9666614B2 (en) 2002-04-09 2017-05-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
US8835271B2 (en) 2002-04-09 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
US10083995B2 (en) 2002-04-09 2018-09-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
US10700106B2 (en) 2002-04-09 2020-06-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US10854642B2 (en) 2002-04-09 2020-12-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US11101299B2 (en) 2002-04-09 2021-08-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
US10133139B2 (en) 2002-05-17 2018-11-20 Semiconductor Energy Laboratory Co., Ltd. Display device
US10527903B2 (en) 2002-05-17 2020-01-07 Semiconductor Energy Laboratory Co., Ltd. Display device
US11422423B2 (en) 2002-05-17 2022-08-23 Semiconductor Energy Laboratory Co., Ltd. Display device

Similar Documents

Publication Publication Date Title
US8629009B2 (en) Programmable high-k/metal gate memory device
TW497252B (en) Process of manufacturing semiconductor device
JP2577342B2 (en) Semiconductor device and manufacturing method thereof
JPH0212835A (en) Semiconductor device and manufacture thereof
JP2849359B2 (en) Method for manufacturing gate-drain superposed element
JPS5837967A (en) Manufacture of mis semiconductor device
JPS61224459A (en) Semiconductor device and manufacture thereof
JP3129867B2 (en) Method for manufacturing semiconductor device
JPH0519979B2 (en)
JPH07263682A (en) Manufacture of mosfet having salicide structure
JP2004111549A (en) Manufacturing method of semiconductor device
JP2001036071A (en) Manufacture for semiconductor device
JP3260200B2 (en) Method for manufacturing semiconductor device
JPH07249761A (en) Semiconductor device and its fabrication
JP3052348B2 (en) Method for manufacturing semiconductor device
KR100334866B1 (en) Transistor Formation Method of Semiconductor Device
CA1168765A (en) Method for making short channel transistor devices
JP2658163B2 (en) Method of manufacturing MIS type semiconductor device
JPS62154755A (en) Electrode of semiconductor device
JPS61278166A (en) Manufacture of semiconductor device
JPS63266865A (en) Manufacture of semiconductor device
JP2006086464A (en) Field-effect transistor
JPH0195558A (en) Manufacture of mis transistor of ldd structure
JPH09326369A (en) Fabrication of semiconductor device
JPH03284852A (en) Manufacture of semiconductor device