JPS5835251B2 - Permanent magnetic alloy containing rare earth metals - Google Patents

Permanent magnetic alloy containing rare earth metals

Info

Publication number
JPS5835251B2
JPS5835251B2 JP53081200A JP8120078A JPS5835251B2 JP S5835251 B2 JPS5835251 B2 JP S5835251B2 JP 53081200 A JP53081200 A JP 53081200A JP 8120078 A JP8120078 A JP 8120078A JP S5835251 B2 JPS5835251 B2 JP S5835251B2
Authority
JP
Japan
Prior art keywords
rare earth
magnetic alloy
alloy containing
earth metals
permanent magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53081200A
Other languages
Japanese (ja)
Other versions
JPS558468A (en
Inventor
哲一 茅野
好夫 俵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP53081200A priority Critical patent/JPS5835251B2/en
Publication of JPS558468A publication Critical patent/JPS558468A/en
Publication of JPS5835251B2 publication Critical patent/JPS5835251B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 叛発明は希土類金属としてサマリウム (Sm)を含有して成る永久磁石合金の改良に関する。[Detailed description of the invention] The treasonous invention is samarium as a rare earth metal. The present invention relates to an improvement in a permanent magnet alloy containing (Sm).

従来、式RM2(RはSm、Ce、Yなどの希土類元素
、MはCoおよびCoと共にCuその他の金属元素を含
む場合を示す、4.0≦2≦8.5)で示される希土類
金属含有永久磁石合金としてはすでに各種組成のものが
提案されており、たとえば特開昭50−30734号公
報にはセリウムとサマリウムとの希土類金属系が12〜
13原子パーセント、残量がコバルトとマンガンと銅か
らなる鉄族金属系であり、上記希土類金属系はセリウム
1.2〜11.05原子パーセント、サマリウム1.8
〜11.7原子パーセント、上記鉄族金属系はコバルト
60.9〜77.44原子パーセント、マンガン2.1
75〜10.56原子パーセント、銅7.83〜15.
64原子パーセントであることを特徴とする希土類金属
間化合物磁石材料が開示されている。
Conventionally, rare earth metal content represented by the formula RM2 (4.0≦2≦8.5, where R is a rare earth element such as Sm, Ce, and Y, and M indicates a case where Co and Co together with Cu and other metal elements are included) Permanent magnet alloys with various compositions have already been proposed; for example, in JP-A-50-30734, a rare earth metal system of cerium and samarium has been proposed.
It is an iron group metal system consisting of 13 atomic percent, the balance being cobalt, manganese, and copper, and the rare earth metal system is cerium 1.2 to 11.05 atomic percent, and samarium 1.8 atomic percent.
~11.7 atomic percent, the above iron group metal systems include 60.9 to 77.44 atomic percent cobalt, and 2.1 atomic percent manganese.
75-10.56 atomic percent, copper 7.83-15.
A rare earth intermetallic magnet material is disclosed that is characterized by 64 atomic percent.

さらに、特開昭50−115117号公報には、には、
主成分として重量比でSmを23〜30%、Tiを0.
2〜1.5%、Cuを9〜13%、Feを3〜12%お
よび残部Coを含有してなる永久磁石が開示されている
Furthermore, in Japanese Patent Application Laid-open No. 50-115117,
The main components are 23-30% Sm and 0.0% Ti by weight.
A permanent magnet containing 2 to 1.5% of Cu, 9 to 13% of Cu, 3 to 12% of Fe, and the balance Co is disclosed.

このようなSm−Co−Fe−Cu系の磁石合金は、希
土類元素含有磁石合金のうちでも特にすぐれた磁石特性
を示すものとして知られており、たとえば最大エネルギ
ー積が最高25MGOeのものが開発されている。
Such Sm-Co-Fe-Cu-based magnet alloys are known to exhibit particularly excellent magnetic properties among rare earth element-containing magnet alloys, and for example, one with a maximum energy product of 25 MGOe has been developed. ing.

しかしながら、上記したすぐれた磁石特性が理論的に限
界であるということではもちろんなく、さらに改良の余
地があることは当然で、本発明者らはこうした観点から
鋭意研究し、従来公知のSm−Co−Fe−Cu系磁石
合金について、これにMnおよびTiの添加効果を詳細
に検討したところ、この種磁石合金についてはz =
7.0の近傍において最高の特性(最大エネルギー積等
)が得られるとされていた従来の一般的知見に反し、z
=6.8の近傍に29MGOeというきわめて高い最大
エネルギー積を与える組成が存在することを確認し、本
発明を完成した。
However, this does not mean that the above-mentioned excellent magnetic properties are the theoretical limit, and there is naturally room for further improvement.The present inventors have conducted extensive research from this perspective, and have A detailed study of the effects of adding Mn and Ti to -Fe-Cu based magnet alloys revealed that for this type of magnet alloy, z =
Contrary to the conventional wisdom that the best characteristics (maximum energy product, etc.) are obtained near 7.0,
The present invention was completed by confirming that there is a composition that gives an extremely high maximum energy product of 29MGOe in the vicinity of =6.8.

0.012.6.6≦2≦7,0、Rは実質的にSmよ
りなる希土類金属)で示される組成を有することを特徴
とする希土類金属含有永久磁石合金に関するものである
The present invention relates to a rare earth metal-containing permanent magnet alloy having a composition represented by 0.012.6.6≦2≦7,0, R being a rare earth metal consisting essentially of Sm.

本発明は上記したv 、 w 、 x 、 yおよび2
の各値から判るとおり、従来にはない全く新して組成か
らなるSm−Co−Fe−Cu−Mn−Ti−系の磁石
合金を提供するものであるが、これらの各パラメータ(
v 、 w 、 x 、 yおよび2)は、本発明者ら
の広範な研究結果すなわち最大エネルギー積(BH)m
axの特性と共に、磁石の代表的特性とされる残留磁化
Br1保磁力iHo等に基づいて決定されたもので、以
下これを添付図面を参照しながら具体的に説明する。
The present invention provides the above-mentioned v, w, x, y and 2
As can be seen from the values of , we are providing a Sm-Co-Fe-Cu-Mn-Ti-based magnet alloy with a completely new composition that has never existed before.
v, w, x, y and 2) are the results of our extensive research, namely the maximum energy product (BH) m
It is determined based on the characteristics of ax as well as the residual magnetization Br1 and the coercive force iHo, which are representative characteristics of a magnet, and will be specifically explained below with reference to the attached drawings.

まず、各図に示した組成の磁石合金はいずれもつぎのよ
うに製造した。
First, the magnetic alloys having the compositions shown in each figure were manufactured as follows.

すなわち、Sm、Co、Fe。Cu、Mn、Tiの金属
原料を所定の割合に配合したもの約5kyをアルミする
つぼに入へ真空炉内で高周波加熱により溶解し、これを
水冷した鉄の鋳型に鋳込んでインゴットとし、こうして
得たインゴットをブラウン式ミルにより粉砕しさらに窒
素気流によりジェット粉砕して粒子径l〜5μmの微粉
状物としtうこの微粉状物を金型に充填し約15KOe
の磁場中で容易磁化方向に磁気的に整列させた状態で
約1000kg/−の圧力で圧縮成型して成型体となし
、これを真空中1210〜1170℃の温度で焼結し焼
結後は別の真空炉室内で冷却した。
That is, Sm, Co, and Fe. Approximately 5 ky of metal raw materials of Cu, Mn, and Ti are mixed in a predetermined ratio into an aluminum crucible, melted by high-frequency heating in a vacuum furnace, and cast into a water-cooled iron mold to form an ingot. The obtained ingot was pulverized in a Brown type mill and further jet-pulverized with a nitrogen stream to obtain a fine powder with a particle size of 1 to 5 μm.The fine powder of catfish was filled into a mold to produce approximately 15 KOe.
The molded body is formed by compression molding at a pressure of about 1000 kg/- in a magnetic field aligned magnetically in the direction of easy magnetization, and then sintered in vacuum at a temperature of 1210 to 1170°C. After sintering, Cooled in a separate vacuum furnace chamber.

なお、焼結時間は1時間とし焼結温度は個々の場合に応
じ磁石特性、特に最大エネルギー積が最高となるように
設定し、また焼結後の時効処理は真空炉内で400〜s
oo’cの温度範囲で行うが、その具体的温度、時間の
条件は保磁力がなるべく大きくなるように設定した。
The sintering time was 1 hour, and the sintering temperature was set to maximize the magnet properties, especially the maximum energy product, depending on the individual case, and the aging treatment after sintering was performed in a vacuum furnace for 400 seconds.
Although the test was carried out in a temperature range of oo'c, the specific temperature and time conditions were set so that the coercive force was as large as possible.

本発明の磁石合金では700℃以下の時効処理温度とす
ると時効時間に対して保持力は最初増加しついで飽和を
示す。
In the magnet alloy of the present invention, when the aging temperature is 700° C. or less, the coercive force initially increases with aging time and then reaches saturation.

多くの場合650℃4時間の時効処理で良好な結果が得
られる。
In many cases, good results can be obtained by aging at 650° C. for 4 hours.

で示される組成の磁石合金において2の値を変化させた
ときの特性値を示したもので、これによればz = 6
.6〜7.0の範囲において最大エネルギー積が25M
GOe以上、特に最高値29 MGOeとなる領域が存
在すること、ならびにその領域では残留磁化および保持
力が共に良好な値を示すことが判る。
This shows the characteristic values when changing the value of 2 in a magnetic alloy with the composition shown by z = 6.
.. Maximum energy product is 25M in the range of 6 to 7.0
It can be seen that there is a region where the magnetization value is higher than GOe, especially the maximum value of 29 MGOe, and that both the residual magnetization and the coercive force exhibit good values in that region.

第2図は、式 で示される組成の磁石合金においてXの値を変化させた
ときの特性値を示したもので、これによればx−0,0
17〜0.04の範囲において、最大エネルギー積が2
4 MGOe以上、特に最高値28.6MGOeとなる
領域が存在すること、ならびに保磁力6KOe以上が実
現することが判る。
Figure 2 shows the characteristic values when the value of X is changed in a magnetic alloy having the composition shown by the formula.
In the range of 17 to 0.04, the maximum energy product is 2
It can be seen that there is a region where the magnetic force is 4 MGOe or more, especially the maximum value of 28.6 MGOe, and that a coercive force of 6 KOe or more is realized.

第3図は、式 で示される組成の磁石合金においてyの値を変化させた
ときの%性値を示したもので、これによればy=o、o
ot〜0.012の範囲において、最大エネルギー積が
25 MGOe以上、特に最高値28.4MGOeとな
る領域が存在すること、ならびにy=0.01において
保磁力はほぼ飽和に達し、yが0.012を越えると残
留磁化が低下することが判る。
Figure 3 shows the % property value when the value of y is changed in a magnetic alloy having the composition shown by the formula, and according to this, y=o, o
In the range of ot to 0.012, there exists a region where the maximum energy product is 25 MGOe or more, especially the maximum value of 28.4 MGOe, and the coercive force almost reaches saturation at y = 0.01, and when y is 0. It can be seen that when the value exceeds 012, the residual magnetization decreases.

で示される組成の磁石合金においてyの値を変化させた
ときの特性値を示したもので、これによれば第3図にお
けるとほぼ同様にy=o、oot〜0.012の範囲に
最大エネルギー積のピークが存在し、yがO,015以
上になると残留磁化が低下する(この場合にはまた焼結
体の密度が著しく低下する)ことが判る。
This shows the characteristic values when the value of y is changed in a magnetic alloy with the composition shown by .According to this, almost the same as in Fig. 3, the maximum value is in the range of y=o, oot ~ 0.012. It can be seen that there is a peak in the energy product, and when y becomes O.015 or more, the residual magnetization decreases (in this case, the density of the sintered body also decreases significantly).

また、本発明で確認された効果はMnまたはTiの単独
添加では達成されず、それら両者を同時にしかもごく限
られた範囲で添加することによってのみ顕著な効果が達
成される。
Further, the effects confirmed in the present invention cannot be achieved by adding Mn or Ti alone, but significant effects can only be achieved by adding both at the same time and within a very limited range.

で示される組成の磁石合金においてVの値を変化させた
ときの特性値を示したもので、これによればv=0.1
2〜0.18の範囲に最大エネルギー積のピークが存在
し、Vがo、otsを越えると保磁力が急激に低下する
This shows the characteristic value when the value of V is changed in a magnetic alloy with the composition shown by, and according to this, v=0.1
The peak of the maximum energy product exists in the range of 2 to 0.18, and when V exceeds o, ots, the coercive force sharply decreases.

で示される組成の磁石合金においてWの値を変化させた
ときの特性値を示したもので、これによればw= 0.
075〜0.11の範囲に最大エネルギー積のピークが
存在し、Wが0.11を越えると残留磁化が急激に低下
する。
This shows the characteristic values when the value of W is changed in a magnetic alloy having the composition shown by, and according to this, w=0.
The peak of the maximum energy product exists in the range of 0.075 to 0.11, and when W exceeds 0.11, the residual magnetization decreases rapidly.

第7図および第8図はいずれも比較例としてあげたもの
で、第7図は式 で示される組成の磁石合金においてXまたはWを変化さ
せたときのそれぞれ特性値を示したものである。
Both FIGS. 7 and 8 are given as comparative examples, and FIG. 7 shows the respective characteristic values when X or W is changed in a magnetic alloy having the composition shown by the formula.

これらの場合には最大エネルギー積が最高の場合でも2
4 MGOeどまりであり、鉄含有量の多い組e、(v
=0.16 )において、W2O,14の”・領域では
充分な保持力を得ることはできない。
In these cases, even if the maximum energy product is 2
4 Group e, (v
=0.16), sufficient holding force cannot be obtained in the ``• region of W2O,14.

たとえば第7図にはw= 0.10においてx=0.0
2〜0.05の範囲では最大エネルギー積が20MGO
e以上となる領域が存在するが保磁力が不充分である。
For example, in Figure 7, when w = 0.10, x = 0.0
In the range of 2 to 0.05, the maximum energy product is 20MGO
Although there is a region where the coercive force is greater than e, the coercive force is insufficient.

つぎに、各パラメータ(v 、 w 、 x 、 yお
よび2)をそれぞれ具体的値に定め、焼結および時効処
理をそれぞれ最適条件で行った場合(実験/161〜1
0)に得られる磁石合金の密度および磁石特性を第1表
に示す。
Next, we set each parameter (v, w, x, y, and 2) to a specific value, and performed the sintering and aging treatments under the optimal conditions (Experiments/161-1).
Table 1 shows the density and magnetic properties of the magnetic alloy obtained in Example 0).

実験/167および/168は本発明を、それ以外はい
ずれも比較f11を示したものである。
Experiments /167 and /168 show the present invention, and all the others show comparison f11.

その特性は予想外のものである。Its properties are unexpected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図、第4図、第5図、第6図、第
7図および第8図は、磁石組成と磁石特性との関係を示
したものである。
FIG. 1, FIG. 2, FIG. 3, FIG. 4, FIG. 5, FIG. 6, FIG. 7, and FIG. 8 show the relationship between magnet composition and magnet characteristics.

Claims (1)

【特許請求の範囲】[Claims] 1 式R(Co1−v−w−x−yFevCuwMnx
Tiy)z(ただし、0.12≦v≦0.18、0.0
75≦W≦0.11、0.017≦x≦0.04、0.
001≦y≦0.012、6.6≦τ≦7.0、Rは実
質的にサマリウムよりなる希土類金属)で示される組織
を有する事を特徴とする希土類金属含有永久磁石合金。
1 Formula R(Co1-v-w-x-yFevCuwMnx
Tiy)z (however, 0.12≦v≦0.18, 0.0
75≦W≦0.11, 0.017≦x≦0.04, 0.
A permanent magnet alloy containing a rare earth metal, characterized in that it has a structure represented by 001≦y≦0.012, 6.6≦τ≦7.0, R is a rare earth metal consisting essentially of samarium.
JP53081200A 1978-07-04 1978-07-04 Permanent magnetic alloy containing rare earth metals Expired JPS5835251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53081200A JPS5835251B2 (en) 1978-07-04 1978-07-04 Permanent magnetic alloy containing rare earth metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53081200A JPS5835251B2 (en) 1978-07-04 1978-07-04 Permanent magnetic alloy containing rare earth metals

Publications (2)

Publication Number Publication Date
JPS558468A JPS558468A (en) 1980-01-22
JPS5835251B2 true JPS5835251B2 (en) 1983-08-01

Family

ID=13739825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53081200A Expired JPS5835251B2 (en) 1978-07-04 1978-07-04 Permanent magnetic alloy containing rare earth metals

Country Status (1)

Country Link
JP (1) JPS5835251B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52109191A (en) * 1976-03-10 1977-09-13 Toshiba Corp Permanent magnet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52109191A (en) * 1976-03-10 1977-09-13 Toshiba Corp Permanent magnet

Also Published As

Publication number Publication date
JPS558468A (en) 1980-01-22

Similar Documents

Publication Publication Date Title
EP0126802B1 (en) Process for producing of a permanent magnet
JPH06340902A (en) Production of sintered rare earth base permanent magnet
JP2002038245A (en) Rare earth alloy powder for rermanent magnet and method for manufacturing rare earth permanent magnet
JP3121824B2 (en) Sintered permanent magnet
JPH0551656B2 (en)
JP3222482B2 (en) Manufacturing method of permanent magnet
JP3524941B2 (en) Method for producing permanent magnet containing NdFeB as a main component
JPH0352529B2 (en)
US5057165A (en) Rare earth permanent magnet and a method for manufacture thereof
JPH0146575B2 (en)
JPH0146574B2 (en)
JPS5835251B2 (en) Permanent magnetic alloy containing rare earth metals
JPH0252412B2 (en)
JPH01155603A (en) Manufacture of oxidation-resistant rare-earth permanent magnet
JPS6386502A (en) Rare earth magnet and manufacture thereof
JPS619551A (en) Rare earth element-iron type permanent magnet alloy
JPS63216307A (en) Alloy powder for magnet
JPH0477066B2 (en)
JPS5921943B2 (en) Rare earth cobalt permanent magnet alloy
JPH0252411B2 (en)
JPS6119084B2 (en)
JP2648422B2 (en) permanent magnet
JPS62136550A (en) Permanent magnet material
JPS58157941A (en) Permanent magnet alloy
JPS62163303A (en) Permanent magnet