JPS5833869A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS5833869A
JPS5833869A JP13212381A JP13212381A JPS5833869A JP S5833869 A JPS5833869 A JP S5833869A JP 13212381 A JP13212381 A JP 13212381A JP 13212381 A JP13212381 A JP 13212381A JP S5833869 A JPS5833869 A JP S5833869A
Authority
JP
Japan
Prior art keywords
layer
region
wiring
diode
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13212381A
Other languages
Japanese (ja)
Inventor
Masayasu Abe
正泰 安部
Toshio Yonezawa
敏夫 米沢
Masaharu Aoyama
青山 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP13212381A priority Critical patent/JPS5833869A/en
Publication of JPS5833869A publication Critical patent/JPS5833869A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To improve operating speed of an element which is disposed in three dimensions and to increase the integration of a semiconductor device by connecting the element via a low resistance wire pattern, thereby decreasing the wiring capacity. CONSTITUTION:After an N type diffused layer 2 is formed on the main surface of a P type substrate 1, an N type first vapor growth region 3 is formed. A diode 5, a transistor 6 and a resistor 7 are respectively formed in isolated vapor growth layers 3', 3'', 3''' via P type diffused layers 4, 4', 4'' in the region 3. An aluminum or aluminum alloy series first wire pattern 9 is formed through the first insulating layer 8 on the layer 3, and are suitably connected to the layer 3. Subsequently, the second insulating layer 10 is formed on the upper surface. Then, the second vapor growth region 11 is formed on the upper surface, and a transistor 11' and a diode 11'' are formed. Further, similar formation is repeated, thereby forming the third and other layers which follow.

Description

【発明の詳細な説明】 この発明は半導体装置にかかシ、特に半導体装置の高集
積化をはかる改嵐構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and more particularly to a modified structure for increasing the degree of integration of a semiconductor device.

半導体集積−路装置扛半導体基板上に複数の能動素子を
酸化拡散技術、微細加工技術(各種のリングクフイ技術
)によって形成し、これらの素子を金属または低電気抵
抗部材、例えば不純物を拡散した多結晶シリコンまたは
金属とシリコンの化合物の如きで配線する方法がとられ
ている。配線抵抗はできるだけ低いことが好ましく、高
速動作素子娶るいは動作電流の多いバイポーラ素子では
特に重lIe景因になる。従ってこのような素子をもつ
集積回路装置でtio、03Ωん以下の低抵抗配線が必
要であり、現在配線材料としてはアルミニ9ム、アルミ
ニウム系合金が主に用いられている。
Semiconductor integrated circuit device: A plurality of active elements are formed on a semiconductor substrate using oxidation diffusion technology and microfabrication technology (various ring processing techniques). A method of wiring using silicon or a compound of metal and silicon is used. It is preferable that the wiring resistance be as low as possible, and it becomes a serious factor especially in high-speed operation devices or bipolar devices with a large operating current. Therefore, in an integrated circuit device having such an element, a low resistance wiring of less than 0.03Ω is required, and currently aluminum and aluminum alloys are mainly used as wiring materials.

しかし、これらの金属は融点が低く、配線を形成し九の
ちは高温(約500℃以上)工程を施せないので、配線
を施した上に別O素子を形成することができなかった。
However, these metals have low melting points and cannot be subjected to high-temperature (approximately 500° C. or higher) processes after forming wiring, so it has not been possible to form another O element on top of wiring.

一方、多結晶シリコン、高融点金属(Mo 、 W、 
TI W、 Ta )  などによる配線はよく高温に
耐えることができ、配線を施した上に絶縁膜を介して別
の素子を形成することが行なわれている。この技術につ
いては次の文献に詳しい。
On the other hand, polycrystalline silicon, high melting point metals (Mo, W,
Wiring made of TIW, Ta), etc. can withstand high temperatures well, and it is common practice to form another element on top of the wiring with an insulating film interposed therebetween. This technology is detailed in the following literature.

[A New Po1ysllicon Proces
s for a BipolarDevices −P
 S A Teehnology、 K、 0KADA
 et ml、 :I EEE Trans、 on 
Electron Devices、 Vol、E−2
6゜No、 4ムpril 1979. Jしかし、上
記材料はアルミニウムに比較して1桁以上電気抵抗か大
きく、通用できる素子が限定される上に動作速度などの
点で十分な特性が得られないなど重大な欠点がある。
[A New Polyslicon Process
s for a BipolarDevices-P
S A Tehnology, K, 0KADA
et ml, : IEEE Trans, on
Electron Devices, Vol, E-2
6°No, 4th pril 1979. However, the electrical resistance of the above materials is more than an order of magnitude higher than that of aluminum, which limits the types of devices that can be used, and has serious drawbacks such as insufficient characteristics in terms of operating speed and the like.

上述の事情から従来各素子の配置は基板渋面に限定され
るので、単位面積当シの素子数に限界を生じていた。さ
らに最近は1つのチップらた少の機能の増加が畳望され
ているので、これに対応するには素子を構成するチップ
の面積を大きくする必要があるが、これにも素子の配置
、特に配線の長さに基因する電気的特性の面から問題が
多いなどの欠点がある。
Due to the above-mentioned circumstances, the arrangement of each element has conventionally been limited to the surface of the substrate, resulting in a limit to the number of elements per unit area. Furthermore, recently there has been a demand for an increase in the number of functions per chip, so in order to meet this demand it is necessary to increase the area of the chips that make up the elements. There are drawbacks such as many problems in terms of electrical characteristics due to the length of the wiring.

この発明は上述の従来の欠点を改良した半導体装置の構
造を提供する。
The present invention provides a semiconductor device structure that improves the above-mentioned conventional drawbacks.

この発明にかかる半導体装置は半導体基体と、これに相
互の間が電気絶縁層で絶縁されて設けられ九気相成長半
導体層に、能動素子、受動素子および低融点で低抵抗の
配線層を配し、かつ前記配線層間ないしは配線層と気相
成長半導体層との間に所望の接続が施されていることを
特徴とする。
A semiconductor device according to the present invention includes a semiconductor substrate, a vapor-phase grown semiconductor layer that is insulated from each other by an electrically insulating layer, and an active element, a passive element, and a low-melting-point, low-resistance wiring layer. The method is characterized in that a desired connection is made between the wiring layers or between the wiring layer and the vapor-phase grown semiconductor layer.

次にこの発明を1!J施例のバイポーラ(モス共び第2
図に示すバイポーラ集積回路(第2図は回路図)は3層
目の配線まで示し他を省略してろるが、同様の構造を繰
シ返すことによってさらに多層構造とすることもできる
。図において(1)はP導電型(以降P型と略称)の基
体で、その1主面の一部にのちに埋込層を形成するため
のN導電型(以降N型と略称)の拡散層(2)を設けた
のち、Nuの第1気相成長シリコン領域(以降気相成長
領域と略称)(3)が形成される。この第1気相成長領
域(31には部分的に設けられたP聾拡散層(4J 、
 (4’) 、 (4“)によって分離された気相成長
層(3’) 、 (3“)、(3”)にダイオード(5
)、トランジスタ(6)、抵抗体(73が形成され、さ
らKこれらの夫々にはダイオード(5)に7ノード[J
iR(5m)、)ランジスタ(6)にベース領域(6b
)、抵抗体(7)K抵抗領域(7r)がそれぞれP聾拡
散層で形成されている。また、上記P型拡散層の形成と
同様に部分的に形成されたN型拡散層がダイオード(5
)のカソード領域(5k)、トランジスタ(6)のエミ
ッタ領域(6・)とコレクタ(導出)領域(6c)等と
して形成されている。ついでζO第1気相成長層の表向
に被着された第1絶縁層(8)を介してアルミニウムま
たにアルミニウム系合金の第1配線パターン(9)が形
成される。
Next, try this invention! Bipolar of J case (2nd with Moss)
Although the bipolar integrated circuit shown in the figure (FIG. 2 is a circuit diagram) shows wiring up to the third layer and omits the others, it is also possible to obtain a multilayer structure by repeating the same structure. In the figure, (1) is a substrate of P conductivity type (hereinafter abbreviated as P type), and diffusion of N conductivity type (hereinafter abbreviated as N type) to form a buried layer later on a part of one main surface. After providing the layer (2), a first vapor growth silicon region (hereinafter abbreviated as vapor growth region) (3) of Nu is formed. This first vapor phase growth region (31 has a partially provided P deaf diffusion layer (4J,
A diode (5) is connected to the vapor growth layer (3'), (3"), (3") separated by
), a transistor (6), and a resistor (73) are formed, and each of these has a diode (5) connected to a 7 node [J
iR (5m),) base area (6b) on transistor (6)
), the resistor (7) and the K resistance region (7r) are each formed of a P deaf diffusion layer. Further, in the same way as the formation of the P-type diffusion layer, the N-type diffusion layer partially formed is a diode (5
), an emitter region (6.) and a collector (lead-out) region (6c) of the transistor (6), etc. Next, a first wiring pattern (9) of aluminum or an aluminum-based alloy is formed via a first insulating layer (8) deposited on the surface of the first ζO vapor growth layer.

次に、上面にStO,またはSi3N、などの第2絶縁
JIIQ(Iをプラズマ気相成長によ多層厚さほぼ1.
0μmに形成する。なお、上記第1配線パターン形成後
扛、このパターンに熱的損傷を与えないよう、例えば上
記配線パターンがアルミニウムの場合には500℃が上
限てめるので、気相成長にはプラズマ気相成長を、また
次に施される拡散不純柳の注入にはイオン注入を、アニ
ールにはレーザわるいに電子ビームアニールを用いてい
る。上記プラズマ気相成長は生成温[300℃、SIH
,ハH,=0.5、生成圧力0.2 )−ル(Torr
)、RFパワ500W、平行平板電極にて施すのがよい
、ついで、レーザアニール法によシ第2絶縁層にアニー
ルを施す。このレーザアニールにはアルゴンの雰囲気中
にて出力6W1ビーム径40μ舅、走査速[1051/
seeで施したのち、バターニングを施しコンタクト用
スルーホールが形成される。ついで、この上面に非晶質
シリコンをプラズマ気相成長法によシ例えば層厚0.5
μ禦の第2気相成長領域αυを形成する。上記プラズマ
気相成長法は8iH4によシ生成温f300℃、生成圧
力0.2トール、RFパワsoow、平行平版電極にて
施す。次に上記第2気相成員領域にフォトリングラフィ
(Ph@teli th@graphy )法、フォト
エフ f :/グ法(y v t y CF410t 
)郷により3 X Is〜3 X’204 O大きさの
多数の島領域(11’)、(11つにパターニングを施
す。ついで、上記の島領域にイオン注入法により、PW
不純物(例えばB)、またaNIl不純物(例えばP、
ムS等)を注入しておき、レーザアニールによって上記
不純物の活性化および各島領域の単結晶化を施す。上記
レーザアニール条件は例えばCW−ムrレーザによシ出
カIOW、ビームスポット径4011m5、走査速度的
0.3m/see程度でよい。
Next, a second insulating JIIQ (I) layer such as StO or Si3N is deposited on the upper surface by plasma vapor deposition to a thickness of approximately 1.
Formed to 0 μm. After forming the first wiring pattern, the upper limit is set at 500°C in order to prevent thermal damage to this pattern, for example, if the wiring pattern is made of aluminum, so plasma vapor deposition is used for vapor phase growth. In addition, ion implantation is used for the subsequent implantation of the diffused impurity, and electron beam annealing is used instead of laser for annealing. The above plasma vapor phase growth is performed at a formation temperature [300°C, SIH
, H = 0.5, generation pressure 0.2) Torr
), RF power of 500 W, preferably using parallel plate electrodes.Then, the second insulating layer is annealed by a laser annealing method. This laser annealing was performed in an argon atmosphere with an output of 6W, a beam diameter of 40μ, and a scanning speed of [1051/
After applying the see, patterning is applied to form contact through holes. Next, amorphous silicon is deposited on this upper surface by plasma vapor deposition to a layer thickness of, for example, 0.5.
A second vapor phase growth region αυ of the μ area is formed. The above plasma vapor phase growth method is carried out using 8iH4 at a formation temperature of f300° C., a formation pressure of 0.2 Torr, an RF power of 0, and parallel plate electrodes. Next, the second gas phase member region was subjected to photophosphorography (Ph@teli th@graphy) method and photophrographic method (y v t y CF410t).
) A large number of island regions (11') each having a size of 3 X Is to 3
impurities (e.g. B), also aNII impurities (e.g. P,
(S, etc.) is implanted, and the impurities are activated and each island region is made into a single crystal by laser annealing. The above laser annealing conditions may be, for example, a CW-MR laser output IOW, a beam spot diameter of 4011 m5, and a scanning speed of about 0.3 m/see.

このようKして、第2気相成長領域に形成される素子扛
前記第1気相成長領域に設けられた素子と同等の特性を
有する素子に形成することができる。
In this way, the element formed in the second vapor phase growth region can be formed into an element having the same characteristics as the element formed in the first vapor phase growth region.

ついでこのII2気相成長領域のj!面に第2絶縁層(
IIを介してアルミニウムまたはアルミニウム糸合金の
第2配線パターン0が形成される。なお、上記一方の島
領域(11’)はPNP)ランジスタで、その(lie
’)はコレクタ領域、(ltb’)はベース領域、(1
1@’)はエミッタ領域で、そのコレクタ領域は配*/
’eターンにより絶縁層−を貫通して第1気相成長領域
のトランジスタ慢)のベース領域(6b)に接続されて
いる。を九、他方の島領域(11“)はアノード領域(
ll/)とカンード領域(llkl)とが形成されたダ
イオードで、そOカノード領域は配!I/リーン鱈によ
り絶縁層αQを貫通して第1気相成長領域の抵抗層(7
r)に接続されている。
Next, j! of this II2 vapor phase growth region! A second insulating layer (
A second wiring pattern 0 of aluminum or aluminum thread alloy is formed via II. Note that one of the above island regions (11') is a PNP transistor, and its (lie
') is the collector area, (ltb') is the base area, (1
1@') is the emitter region, and its collector region is the array */
It penetrates through the insulating layer by an e-turn and is connected to the base region (6b) of the transistor in the first vapor phase growth region. 9, and the other island region (11") is the anode region (
A diode in which a canode region (ll/) and a canode region (llkl) are formed, and a canode region (ll/) is formed. The resistance layer (7) of the first vapor phase growth region is formed by penetrating the insulating layer
r).

さらに上記第2層目の素子の形成と同様に繰返しg3層
以降も形成することができる。なお、第1図では第3鳩
までが示され、輸は絶縁層、翰は配線パターン、シυは
島領域でダイオードが形成されている。このように形成
されるICの回路は第2−〇如くなる。を九、第3図な
いし第6図には第2層目以降の気相成長領域に形成され
るモス型素子(!!13図)、ダイオード(第4図)、
バイポーラ型素子(第5図、第6図)の各基本構造を例
示し、各図において艶は絶縁層、(31m)Uンース領
域、(31礁)はドレイン領域、(31g)はゲーF領
域、01は配線パターンで、第6図はコレクタ電極を下
部から導出するように形成されている。
Further, layers g3 and subsequent layers can be formed repeatedly in the same manner as the formation of the second layer element. In addition, in FIG. 1, up to the third dove is shown, in which the diode is formed by the insulating layer, the wiring pattern, and the island region. The circuit of the IC formed in this way is as shown in No. 2-0. 9. Figures 3 to 6 show a moss type element (!!13), a diode (Figure 4), and a diode (Figure 4) formed in the vapor phase growth region after the second layer.
Each basic structure of a bipolar type element (Figures 5 and 6) is illustrated, and in each figure, gloss is an insulating layer, (31m) is an unsu region, (31 reef) is a drain region, and (31g) is a gate F region. , 01 is a wiring pattern, and in FIG. 6, it is formed so that the collector electrode is led out from the bottom.

この発明によシ総素子数が約7000個にのほるバイポ
ーラ/モス共存2Pt11.デバイスが形成できた。
According to this invention, the total number of elements increases to approximately 7000.Bipolar/MOS coexistence 2Pt11. The device has been formed.

そして、リニア回路は主として基板上に、ロジック回路
は主として2N1目に配置するのがよい。この発明を従
来と比較すると次表の如くなる。IIにおいてAは1′
lL子当シの面積、Bは最小伝播遅延時間(7段リング
オシレータ:ロジック部、Nチャンネルモストランジス
タ)を示すものとする。
It is preferable that the linear circuit is mainly placed on the substrate, and the logic circuit is mainly placed on the 2N1 position. A comparison of this invention with the conventional technology is as shown in the following table. In II, A is 1'
The area of the 1L element and B indicate the minimum propagation delay time (7-stage ring oscillator: logic section, N-channel MOS transistor).

懺 上に述べたようにこの発明によれば三次元的に配置され
た素子を低抵抗配線パターンで接続することによ)、配
線容量O低下に伴なう素子動作速度の向上および飛躍的
な集積度の増大が期待できる。
As stated above, according to the present invention, by connecting three-dimensionally arranged elements with a low-resistance wiring pattern, the operation speed of the elements can be improved dramatically as the wiring capacitance O decreases. We can expect an increase in the degree of integration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図株この発明の1実施例の断面図、第2図は第1図
のICによって形成された回路図、第3図ないし第6図
はこの発明Kかかる素子をさらに説明するための素子の
断面図で6る。 l       シリコン基体 3       第1気相成長領域 5.11”、21     ダイオード6      
  トランジスタ 7       抵抗′ 8.10,20,30    絶縁層 9.19,29,39    配線パターン11’  
     モストランジスタ代理人 弁理士  井 上
 −男 第2図
Figure 1 is a sectional view of one embodiment of the present invention, Figure 2 is a circuit diagram formed by the IC of Figure 1, and Figures 3 to 6 are elements for further explaining the device of this invention. 6 in a cross-sectional view. l Silicon substrate 3 First vapor growth region 5.11", 21 Diode 6
Transistor 7 Resistor' 8.10, 20, 30 Insulating layer 9.19, 29, 39 Wiring pattern 11'
MOS Transistor Representative Patent Attorney Inoue - Male Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)  半導体基体上に、相互の間が電気絶縁層で絶
縁されて設けられ膜中導体層に、能動素子、受動素子お
よび低融点で低抵抗の配線層を配し、かつ前記配線層間
ないし嬬配線層と半導体層との間に所望O!I絖が施さ
れていることを特徴とする半導体装置。
(1) An active element, a passive element, and a low-melting-point, low-resistance wiring layer are disposed on a semiconductor substrate and are insulated from each other by an electrically insulating layer, and an in-film conductor layer is provided, and between the wiring layers or Desired O! between the wiring layer and the semiconductor layer! A semiconductor device characterized by being provided with an I-line.
(2)配線層が金属であることを特徴とする特許請求の
範S第1項記載の半導体装置。
(2) The semiconductor device according to claim S, wherein the wiring layer is made of metal.
JP13212381A 1981-08-25 1981-08-25 Semiconductor device Pending JPS5833869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13212381A JPS5833869A (en) 1981-08-25 1981-08-25 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13212381A JPS5833869A (en) 1981-08-25 1981-08-25 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS5833869A true JPS5833869A (en) 1983-02-28

Family

ID=15073941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13212381A Pending JPS5833869A (en) 1981-08-25 1981-08-25 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5833869A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5678155A (en) * 1979-11-30 1981-06-26 Hitachi Ltd Semiconductor device and manufacture thereof
JPS5687361A (en) * 1979-12-19 1981-07-15 Hitachi Ltd Semiconductor device and its manufacture
JPS5743455A (en) * 1980-08-29 1982-03-11 Fujitsu Ltd Complementary type semiconductor device
JPS5793562A (en) * 1980-12-03 1982-06-10 Hitachi Ltd Semiconductor device
JPS57173958A (en) * 1981-04-17 1982-10-26 Nippon Telegr & Teleph Corp <Ntt> Semiconductor ic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5678155A (en) * 1979-11-30 1981-06-26 Hitachi Ltd Semiconductor device and manufacture thereof
JPS5687361A (en) * 1979-12-19 1981-07-15 Hitachi Ltd Semiconductor device and its manufacture
JPS5743455A (en) * 1980-08-29 1982-03-11 Fujitsu Ltd Complementary type semiconductor device
JPS5793562A (en) * 1980-12-03 1982-06-10 Hitachi Ltd Semiconductor device
JPS57173958A (en) * 1981-04-17 1982-10-26 Nippon Telegr & Teleph Corp <Ntt> Semiconductor ic device

Similar Documents

Publication Publication Date Title
USRE26778E (en) Dielectric isolation for monolithic circuit
KR950006472B1 (en) Semiconductor memory device
JPH11233727A (en) Inductor on silicon substrate and its manufacture
US3518506A (en) Semiconductor device with contact metallurgy thereon,and method for making same
JPH0558266B2 (en)
JP2605030B2 (en) Quadrature bipolar transistor
JPS6256670B2 (en)
US4628339A (en) Polycrystalline silicon Schottky diode array
JPS5833869A (en) Semiconductor device
JPS62123764A (en) Semiconductor device
US5111267A (en) Semiconductor device having a multilayer electrode structure and method for fabricating the same
JPS60225467A (en) Vertical mos gate input semiconductor device
JP2668528B2 (en) Method for manufacturing semiconductor device
JPS5984468A (en) Semiconductor device
JPS62229974A (en) Schottky diode and manufacture thereof
JPS6322068B2 (en)
JPS6231154A (en) Semiconductor device
JPS58164241A (en) Manufacture of semiconductor device
JPS6258670A (en) Manufacture of semiconductor device
JPS6298660A (en) Semiconductor device
JPS61292956A (en) Semiconductor device
JPS6252958A (en) Manufacture of semiconductor device
JPS6267838A (en) Manufacture of semiconductor device
JPS60170268A (en) Schottky barrier diode
JPH02184036A (en) Manufacture of bipolar semiconductor integrated circuit device