JPS5832590B2 - Diatom algae growth method - Google Patents

Diatom algae growth method

Info

Publication number
JPS5832590B2
JPS5832590B2 JP1504479A JP1504479A JPS5832590B2 JP S5832590 B2 JPS5832590 B2 JP S5832590B2 JP 1504479 A JP1504479 A JP 1504479A JP 1504479 A JP1504479 A JP 1504479A JP S5832590 B2 JPS5832590 B2 JP S5832590B2
Authority
JP
Japan
Prior art keywords
culture
amount
culture solution
2hpo4
instead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1504479A
Other languages
Japanese (ja)
Other versions
JPS55108285A (en
Inventor
遥 磯谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOGYO KAIHATSU KENKYUSHO KK
NISHAMA GOMU KK
Original Assignee
KOGYO KAIHATSU KENKYUSHO KK
NISHAMA GOMU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOGYO KAIHATSU KENKYUSHO KK, NISHAMA GOMU KK filed Critical KOGYO KAIHATSU KENKYUSHO KK
Priority to JP1504479A priority Critical patent/JPS5832590B2/en
Publication of JPS55108285A publication Critical patent/JPS55108285A/en
Publication of JPS5832590B2 publication Critical patent/JPS5832590B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳細な説明】 本発明は太陽エネルギーの有効利用法の一環として顕微
鏡観察により油滴を多く含むことが知られており炭素源
および窒素源に関して独立栄養である単細胞植物のけい
藻の効果的な増殖を行ない、これから有用な油分を抽出
してエネルギー源乃至資源とすることを目的としたもの
である。
DETAILED DESCRIPTION OF THE INVENTION As part of the method for effectively utilizing solar energy, the present invention aims to investigate the effects of diatoms, a single-celled plant known by microscopic observation to contain a large amount of oil droplets and which is autotrophic with respect to carbon and nitrogen sources. The purpose is to propagate them and extract useful oil from them to use as an energy source or resource.

本発明でとりあげたけい藻は耐着性けい藻Phaeod
actylum tricornutumである。
The diatom taken up in this invention is the resistant diatom Phaeod.
actylum tricornutum.

研究の当初においては数多くのけい藻の培養液の中から
ハクソスイ= (Haxo−8weeny )培養液
を選び51カブ型フラスコに31の培養液を入れ滅菌し
た後に、植次ぎ用けい藻を15〜181rLl接種し、
個体数約5万/mlにし、空気を通気(513/ym)
することにより空気中に含まれるCO2を供給し、主と
して下面から約8,000 luxの弱い(けい藻は従
来弱光下でよく増殖し、強光下ではかえって増殖が悪く
なるというのが定説であった)人工光(螢光灯+白熱電
灯)で連続照射しつつ約20℃の明室中(空気浴)で7
〜8日間培養を行なった。
At the beginning of the research, we selected a Haxo-8weeny culture solution from a large number of diatom culture solutions, poured 31 culture solutions into 51 turnip flasks, sterilized them, and then added 15 to 181 rL of diatoms for transplantation. inoculate,
The number of individuals is approximately 50,000/ml, and the air is aerated (513/ym).
By doing so, CO2 contained in the air is supplied, and a weak light of approximately 8,000 lux is supplied mainly from the bottom surface. 7 in a bright room (air bath) at approximately 20°C under continuous irradiation with artificial light (fluorescent lamp + incandescent lamp)
Culture was performed for ~8 days.

この間、毎日無菌的に培養液を一定量づつ取り出してコ
ールタ−カウンターおよび血球計を用いて個体数の増加
を測定し、培養終了後は全個体を遠心分離して集めて水
分を除いたけい藻藻体の圧縮量およびその乾燥重量を測
定し、これらのうち特に乾燥重量をもってけい藻の収集
とする方針をたてた。
During this period, a certain amount of the culture solution was removed aseptically every day and the increase in the number of diatoms was measured using a Coulter counter and a hemocytometer. After the culture was completed, all the diatoms were collected by centrifugation and the water was removed. We measured the amount of compressed algae and its dry weight, and decided to collect diatoms based on the dry weight.

尚ハクソスイニー培地の構成は次の通りである。The composition of the Haxosinii medium is as follows.

上述の方法によって31測定時では約2.711)の培
養液から得られた収量は次のとおりである。
The yield obtained from the culture solution of approximately 2.711) at the time of 31 measurements by the above method is as follows.

この間、培養液中の土壌浸出液の添加量を研究し、2%
添加を5%にあらためた。
During this time, we researched the amount of soil exudate added to the culture solution, and found that 2%
The addition was revised to 5%.

またN源はKNO3の代りにより廉価のNaNO3を用
いても効果は変らないことを確認して、変更をおこなっ
た。
In addition, the N source was changed after confirming that the effect remained the same even if cheaper NaNO3 was used instead of KNO3.

なお、N a NO3t K2 HPo 4の添加の量
は比較的少量のため、けい藻の多量培養の目的にはもう
少し多量に用いる方がよいように思われたため、倍加す
る実験を試みたが、この時の結果では収量がかえって低
下した。
Since the amount of NaNO3tK2HPo4 added was relatively small, it seemed better to use a slightly larger amount for the purpose of large-scale culture of diatoms, so we attempted an experiment to double the amount. However, the yield actually decreased.

その後の研究により培養日数を7〜8日から10〜13
日に延ばすと個体数は殆んど増加しないが、圧縮量や乾
燥重量は増加することがわかった。
Subsequent research has increased the number of culture days from 7 to 8 days to 10 to 13 days.
It was found that the number of individuals hardly increased when extended to a day, but the amount of compaction and dry weight increased.

これはけい藻の各個体が大きくなっていることを意味す
ると思われるが、この知見に基づいて以後の培養日数を
約10〜14日とした。
This seems to mean that each individual diatom is growing larger, and based on this finding, the number of days for subsequent culture was set at about 10 to 14 days.

又培養日数を10〜14田こ変更した後で改めてN a
No 3 z K2 HPO4の添加量の増量を検討
した結果、先に得た結果となり、NaNO3は2倍(N
2)、に2HPO4は3倍(P−3)の組合せが一番よ
いことがわかった。
Also, after changing the number of culture days from 10 to 14, Na
No 3 z K2 As a result of considering increasing the amount of HPO4 added, the result obtained earlier was obtained, and NaNO3 was doubled (N
2) It was found that the best combination of 2HPO4 was 3 times (P-3).

更に従来行なわれてきたけい藻の多量培養の研究になら
い研究の当初においては、培養液は全て圧力釜を用いて
滅菌を行ない無菌培養を行なってきた。
Furthermore, in line with conventional research on mass culture of diatoms, all culture solutions were sterilized using a pressure cooker and cultured aseptically at the beginning of the research.

この滅菌操作は将来屋外で開放のもとで行なわれる多量
生産の場合に最も困難な点となることが予想された。
It was predicted that this sterilization operation would be the most difficult point in the future when mass production is carried out outdoors in the open.

試みに2倍のNaN03(N 2)t 3倍のに2H
PO4(P−3)、土壌浸出液(S、E、)5%培地を
用いて無滅菌で培養を行なったところ(通気だけは除菌
しておこなった)、微生物によるコンタ□ネーション(
汚染)は全くおこらなかった。
Try 2x NaN03(N 2)t 3x 2H
When culturing was carried out without sterilization using PO4 (P-3) and 5% soil exudate (S, E,) medium (only aeration was performed with sterilization), microbial contamination (
contamination) did not occur at all.

これは、この状態でもなお貧栄養的であると考えられる
培養液の状態によるものと思われる。
This seems to be due to the condition of the culture solution, which is considered to be oligotrophic even in this state.

これによりその後金ての実験は滅菌をせずにおこなうよ
うになり、操作が簡単化されると共に将来の多量の可能
性が保証された。
This allowed subsequent experiments to be carried out without sterilization, simplifying the procedure and guaranteeing a large number of possibilities for the future.

以上の諸点の改良の結果、生産量は次に示すように研究
当初をはるかに凌駕するに至った〇従来用いてきた土壌
浸出液(S、E、)は1 kgの土壌を11の水で加熱
抽出して得た液で171!中に約100■の固形物しか
含まず、有効成分は極めて微量しか含まれない。
As a result of the improvements in the above points, the production volume has far exceeded that at the beginning of the research, as shown below. The soil leachate (S, E,) that has been used in the past is heated by heating 1 kg of soil with 11 parts of water. 171 with the extracted liquid! It contains only about 100 cubic centimeters of solid matter, and only a very small amount of active ingredients.

このものは、中にけい藻の増殖に必要な微量の要素(ホ
ルモンなど)を含むと考えられ、このホルモン様物質の
同定は研究の重要な1つの目的でもある。
This substance is thought to contain trace amounts of elements (hormones, etc.) necessary for the growth of diatoms, and the identification of this hormone-like substance is an important objective of research.

この目的のためにはたとえば種々の有機溶剤による多量
抽出処理が必要となるが、土壌は本来、このような方法
に適しない性格をもっている。
For this purpose, for example, large amounts of extraction treatment using various organic solvents are required, but soil inherently has characteristics that make it unsuitable for such methods.

よって1つの試みとして、イネのワラを水だけを用いて
堆肥とし、堆肥1 kgを11の水で加熱抽出した堆肥
浸出液(F、E、)を調整した。
Therefore, as an attempt, rice straw was composted using only water, and compost leachates (F, E,) were prepared by heating and extracting 1 kg of compost with 11 water.

堆肥浸出液(F、E、)はll中に約750即の固形物
を含み、土壌浸出液(S、E、)の固形物の等量にあた
る堆肥浸出液(F、E、)として使用した結果は極めて
良好で2倍のNaN0a (N 2 ) 、3倍のに
2HPO4(P−3)と組合せた結果、土壌浸出液(S
、E、)添加より収集があがることがわかった。
The compost leachate (F, E,) contains about 750 solids per liter, and when used as the compost leachate (F, E,), which has the same amount of solids as the soil leachate (S, E,), the results are extremely As a result, soil leachate (S
, E,) was found to improve the collection rate.

また堆肥はメタノール抽出も可能で、しかもこの場合、
沖過が簡単なため、有効成分の研究には好適であると考
えられる。
Compost can also be extracted with methanol, and in this case,
It is considered suitable for researching active ingredients because it is easy to analyze.

この2倍のNaN0s(N 2)、3倍のに2HPO4
(P−3)、堆肥浸出液(F、E、)を含む培養液を用
いることにより、収量は下記のようにさらに良好となっ
た。
Twice as much NaN0s (N2), three times as much as 2HPO4
(P-3) and a culture solution containing compost leachate (F, E,), the yield became even better as shown below.

又2倍のNaNOs (N 2 ) 、3倍のに2H
PO4(P−3)、5%の堆肥浸出液(F、E、)培養
液(以下これを改質ハクソスイニー培養液という)で、
6連式培養装置を用い211の扁平培養ビン(厚さ約4
crrt )に培養液を1.5β入れ、試みに20.
000,15,000,8,0001uxの人工光を用
いて培養をおこなってみたところ、従来の定説に全く反
する結果が得られ、強光の方がはるかに収量が多いこと
がわかった。
Also, 2 times NaNOs (N 2 ), 3 times 2H
PO4 (P-3), 5% compost leachate (F, E,) culture solution (hereinafter referred to as modified Haxosinii culture solution),
211 flat culture bottles (thickness approx. 4
crrt) with 1.5β of the culture solution and 20.
When culturing was performed using artificial light of 000, 15,000, and 8,0001 ux, results were obtained that completely contradicted conventional theory, and it was found that the yield was much higher with strong light.

このことは次のように考えられる。This can be considered as follows.

即ち、従来用いられていた培養液の組成はけい藻の増殖
に最適とはいえず、何かが不足していたため、いわゆる
“L ieb ingの最少量の法則“により不足して
いた成分が律速的とたり、従っていくら光を強くしても
、光量に比例する増殖はかごらなかったが2倍のNaN
03(N−2)、3倍のに2HPO,(P−3)5%の
堆肥浸出液(F、E、)培養液はこの不足成分(おそら
く堆肥浸出液(F、E、)に含まれるモルモン様物質)
を十分含むため培養液の組成は完全に近くなり、光が律
速的になったものと思われる。
In other words, the composition of the culture solution used conventionally was not optimal for the growth of diatoms, and something was lacking, so the so-called "Liebing's law of least amount" determined that the missing ingredient was rate-limiting. Therefore, no matter how strong the light was, the proliferation in proportion to the amount of light did not increase, but twice as much NaN
03 (N-2), 3x 2HPO, (P-3) 5% compost leachate (F, E,) culture solution contains this deficient component (probably Mormon-like contained in the compost leachate (F, E,) material)
It is thought that the composition of the culture solution was close to perfect because it contained sufficient amount of light, and light became rate-limiting.

この20,000 luxの光条件下では収量は次のよ
うになった。
Under this light condition of 20,000 lux, the yield was as follows.

21の扁平培養ビンに1.51の培養液を入れて培養し
た時得た値を倍加して31の培養液あたりに換算した。
The value obtained when culturing 1.51 of the culture solution in 21 flat culture bottles was doubled and converted to 31 of the culture solution.

この結果は、けい藻は屋外の太陽光(冬の曇天でも30
,000 lux )の強光下では生育が悪くなるとの
予想が全く培養にすぎないことを示し、将来の多量生産
の可能性を保証するものと考えられるO 従来、けい藻は生育中に次第に目らの生育を阻害する物
質を生産するため増殖速度が落ちるという考えがあった
が、特にこの事が正しいか否かを証明する研究はされて
いない。
This result shows that diatoms can grow from sunlight outside (even on cloudy winter days).
This indicates that the prediction that growth would be poor under strong light (1,000 lux) indicates that this is just a culture, and this guarantees the possibility of mass production in the future. It has been thought that the growth rate is slowed down because they produce substances that inhibit their growth, but no research has been conducted to prove whether this is true or not.

この点に着目し、培養の途中で(7白目)活性炭50η
を31の培養液に添加してみることを繰り返し試みた結
果、ごくまれには添加区の収量が下がることもあるが。
Focusing on this point, in the middle of culturing (7 pewter) activated carbon was added using 50η
As a result of repeated attempts to add this to 31 culture solutions, in rare cases the yield of the added plots may be lower.

活性炭添加により平均約17.6%の乾燥重量の増加が
認められ、この処理を加えることにより、収量は飛躍的
に増加して下記の様になった。
By adding activated carbon, an increase in dry weight of about 17.6% on average was observed, and by adding this treatment, the yield increased dramatically, as shown below.

実験室内で人工光だけを用いる培養と平行して温室内に
設置したアクリル製水槽(20℃)を用い51のカブ型
フラスコを使用し、太陽光を利用する培養を試験的に行
なった。
In parallel to culturing using only artificial light in the laboratory, culturing using sunlight was experimentally carried out using 51 turnip flasks in an acrylic aquarium (20°C) installed in a greenhouse.

アクリル水槽中には、6個の54カブ型フラスコを入れ
、うち4個は、夜間(照度10,000 lux以下の
昼間も含まれる)には下面より螢光灯を照射するように
した。
Six 54-cubic flasks were placed in the acrylic water tank, and four of them were illuminated with a fluorescent light from the bottom at night (including during the day when the illuminance was 10,000 lux or less).

従って2個は昼間の太陽ぢけを利用し、残りの4個は昼
間は太陽光、夜間は人工光で照射するようにした。
Therefore, two lights were illuminated by sunlight during the day, and the remaining four lights were illuminated by sunlight during the day and artificial light at night.

この装置を設置して数回試行の後、次の組合せの実験を
2回行なった。
After installing this device and performing several trials, the following combination of experiments was conducted twice.

クロレラはクロレラ培養に最適といわれるMyers−
4NA5培地を用いた。
Chlorella is Myers-, which is said to be the best for chlorella culture.
4NA5 medium was used.

ただし、クロレラの生育適温は25℃であるので、20
℃はかなり低温と考えられる。
However, since the optimum temperature for growing chlorella is 25℃,
℃ is considered to be quite low.

以上の結果から太陽光積算光量合計は全晴天の場合は7
日雨天、7日曇天の約1.4倍であるが、けい藻の収量
には殆んど差異がないこと、また夜間の人工光照射はあ
まり収量の増加に影響がないことを示す。
From the above results, the total cumulative amount of sunlight is 7 in the case of completely clear skies.
Although it is about 1.4 times the amount of rainy days and 7 days of cloudy weather, there is almost no difference in the yield of diatoms, and artificial light irradiation at night does not have much effect on the increase in yield.

即ち、けい藻の培養は粗放形態で昼間の太陽光だけによ
っても晴雨にかかわりなく、相当量の収量を期待できる
ことを示すといえよう。
In other words, it can be said that it is possible to expect a considerable yield by cultivating diatoms in an extensive manner and using only daytime sunlight, regardless of whether it is rain or shine.

S、E、の効果については、従来、S、E、に微量→半
合まれているビタ□ンBl (V Bl )あるいはビ
タ□ンB12(VBI□)にもとづくとの説があるので
VBl、VB1□添加の効果をみるため次のような培養
試験をおこなった。
Regarding the effects of S and E, there is a theory that it is based on vitamin Bl (V Bl ) or vitamin B12 (VBI In order to examine the effect of adding VB1□, the following culture test was conducted.

(I) 各種濃度のVB、およびV B、2の効果改
質ハケソスイニー培地(F、E、を含まず)使用〇六連
式培養装置(光源、白熱電灯 20.0OO1ux)10日間培養、活性炭無添加。
(I) Various concentrations of VB and VB, 2 effect-modified Hakeso Sini medium (does not contain F, E, etc.) 〇 Six-chain culture device (light source, incandescent lamp 20.0OO1ux) 10-day culture, no activated carbon Addition.

従来、けい藻の培養液に増殖促進要素として添加されて
いるVBlおよびVB1□の量はそれぞれ0.5ppm
、O,OO2ppmであり上記の結果と一致する。
Conventionally, the amount of VBl and VB1□ added to diatom culture solution as growth promoting elements is 0.5 ppm each.
, O,OO2 ppm, which agrees with the above results.

よってこの濃度のVB1 、VBl2を用いてさらに研
究を進めた。
Therefore, further research was carried out using VB1 and VBl2 at these concentrations.

(II)F、E、(5%) 2 V Bl (0,5p
pm) j VBl2(0,002ppm)の単独また
は組合せの効果F、E、がvBl 、■B12を含むか
否かはF、E、の分析(目下検討中)の結果をまたねば
ならないが、以上の結果は少なくとも強光条件下ではF
、E、添加区はVBl、VB1□単独添加区より収量が
良くまたVB1+F、E、区およびVVB1+VB1□
+F、E、区で最も高い収量が得られることを示しF、
E、、の含む有効成分中にはVBlあるいはvB12と
異なる成分が存在することを示すものと考えられる。
(II) F, E, (5%) 2 V Bl (0,5p
pm) j Effects of VBl2 (0,002 ppm) alone or in combination Whether or not F, E, includes vBl, ■B12 must go through the results of the analysis of F, E (currently under consideration), but the above The result is F at least under strong light conditions.
, E, added plot has better yield than VBl, VB1□ single addition plot, and VB1+F, E, plot and VVB1+VB1□
+F, E, indicates that the highest yield is obtained in the ward; F;
This is considered to indicate that there is a component different from VBl or vB12 among the active ingredients contained in E.

従って改質ハクソスイニー培養液にビタ□ンB1.ビタ
ミンB1□又はこれを含有する物質を添加して培養を行
なうことも本発明の1つである。
Therefore, vitamin B1. It is also an aspect of the present invention to perform culture by adding vitamin B1□ or a substance containing vitamin B1□.

なお、「これを含有する物質」としては、下水処理場廃
液が目下のところ有望であり、ここには窒素体、燐体も
含まれているので、本培養に適したものと推定される。
Currently, wastewater from sewage treatment plants is promising as a "substance containing this substance," and since it also contains nitrogen bodies and phosphorus bodies, it is presumed to be suitable for main culture.

(I[) 最後に、六連式培養装置を用い、光源とし
て20.000 lux相当の白熱電灯を用い、活性炭
を添加(前記と同様の方法)して10日間培養(強光下
)したところ、次の結果が得られ、培養液31当りの乾
量は実に5.52.!9に藻し、VBl 、VB、2.
F、E、、活性炭の組合せが最高収量をもたらした。
(I [) Finally, using a six-chain culture device, using an incandescent lamp equivalent to 20.000 lux as a light source, and adding activated carbon (same method as above), the cells were cultured for 10 days (under strong light). The following results were obtained, and the dry amount per 31 culture fluids was actually 5.52. ! 9, VBl, VB, 2.
The combination of F, E, and activated carbon gave the highest yield.

Claims (1)

【特許請求の範囲】 1 ハクソスイニー培養液中の土壌浸出液の代りに堆肥
浸出液を用い、KNO3の代りにその2倍の量のNaN
Osを用い、更にに2HPO4のかわりにその3倍の量
のに2HPO4をそれぞれ含む改質ハタソスイニー培養
液を用いこれにCO2を供給し、人工光又は太陽光の照
射下でけい藻を培養することを特徴とするけい藻類の増
殖法。 2 前記照射の照度が20,000 lux程度又はそ
れ以上のような強照度である特許請求の範囲第1項記載
の方法。 3 培養を10〜14日程度の長期間行なう特許請求の
範囲第1項記載の方法。 4 前記CO2の供給を除菌した空気で行なう特許請求
の範囲第1項記載の方法0 5 前記CO2の供給を除菌した空気で行なう以外は無
滅菌で培養を行なう特許請求の範囲第1項記載の方法。 6 ハクソスイニー培養液中の土壌浸出液の代りに堆肥
浸出液を用い、KNO3の代りにその2倍の量のNaN
o3を用い、更にに2HPO4のかわりにその3倍の量
のに2HPO4をそれぞれ含む改質ハクソスイニー培養
液に活性炭を添加したものを用い、これにCO2を供給
し、人工光又は太陽光の照射下でけい藻を培養すること
を特徴とするけい藻類の増殖法。 7 前記照射の照度が20,000 lux程度又はそ
れ以上のような強照度である特許請求の範囲第6項記載
の方法。 8 培養を10〜14日程度の長期間行なう特許請求の
範囲第6項記載の方法。 9 前記CO2の供給を除菌した空気で行なう特許請求
の範囲第6項記載の方法。 10 前記CO2の供給を除菌した空気で行なう以外は
無滅菌で培養を行なう特許請求の範囲第6項記載の方法
。 11 ハクソスイニー培養液中の土壌浸出液の代りに
堆肥出液を用い、KNO3の代りにその2倍の量(7)
N a NOaを用い、更にに2HPO4のかわりに
その3倍の量のに2HPO4をそれぞれ含む改質ハクソ
スイニー培養液にビタ□ンB1、ビタ□ンB12又はこ
れを含有する物質を添加したものを用い、これにCO2
を供給し、人工光又は太陽光の照射下でけい藻を培養す
ることを特徴とtmい藻類の増殖法。
[Claims] 1. Compost leachate is used instead of soil leachate in the culture solution of Haxosinii, and twice the amount of NaN is used instead of KNO3.
Using Os, and using a modified Hatasosinii culture solution containing three times the amount of 2HPO4 instead of 2HPO4, supplying CO2 to this, and culturing diatoms under irradiation with artificial light or sunlight. A method for growing diatoms characterized by 2. The method according to claim 1, wherein the illuminance of the irradiation is strong, such as about 20,000 lux or more. 3. The method according to claim 1, wherein the culturing is carried out for a long period of about 10 to 14 days. 4. The method according to claim 1, in which the CO2 is supplied with sterilized air. 5. The method according to claim 1, in which the culture is performed without sterilization, except that the CO2 is supplied with sterilized air. Method described. 6. Compost leachate was used instead of soil leachate in the Haxosinii culture solution, and twice the amount of NaN was used instead of KNO3.
O3 was used, and activated carbon was added to a modified Haxosinii culture solution containing three times the amount of 2HPO4 instead of 2HPO4, and CO2 was supplied to this, and the culture was incubated under irradiation with artificial light or sunlight. A method for growing diatoms, which is characterized by culturing diatoms. 7. The method according to claim 6, wherein the illuminance of the irradiation is strong, such as about 20,000 lux or more. 8. The method according to claim 6, wherein the culturing is carried out for a long period of time, about 10 to 14 days. 9. The method according to claim 6, wherein the CO2 is supplied using sterilized air. 10. The method according to claim 6, wherein the culture is carried out without sterilization, except that the CO2 is supplied with sterilized air. 11 Use compost exudate instead of soil exudate in the culture solution of Haxosinii, and double the amount instead of KNO3 (7)
Using N a NOa, and adding vitamin B1, vitamin B12, or a substance containing them to a modified Haxosinii culture solution containing three times the amount of 2HPO4 instead of 2HPO4. , and CO2
A method for growing diatom algae, which comprises supplying diatom and culturing diatom algae under irradiation with artificial light or sunlight.
JP1504479A 1979-02-14 1979-02-14 Diatom algae growth method Expired JPS5832590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1504479A JPS5832590B2 (en) 1979-02-14 1979-02-14 Diatom algae growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1504479A JPS5832590B2 (en) 1979-02-14 1979-02-14 Diatom algae growth method

Publications (2)

Publication Number Publication Date
JPS55108285A JPS55108285A (en) 1980-08-20
JPS5832590B2 true JPS5832590B2 (en) 1983-07-14

Family

ID=11877828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1504479A Expired JPS5832590B2 (en) 1979-02-14 1979-02-14 Diatom algae growth method

Country Status (1)

Country Link
JP (1) JPS5832590B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054675A (en) * 1983-09-05 1985-03-29 Kogyo Kaihatsu Kenkyusho Treatment of diatom

Also Published As

Publication number Publication date
JPS55108285A (en) 1980-08-20

Similar Documents

Publication Publication Date Title
Fallowfield et al. The photosynthetic treatment of pig slurry in temperate climatic conditions: a pilot-plant study
CN104630295B (en) A kind of method for handling city secondary waste water using immobilized microalgae and producing grease
CN105638412A (en) Culturing method for orchid
CN109626584A (en) A kind of method of microalgae processing sauce waste water
PT1227714E (en) PROCESS FOR THE PRODUCTION OF METABOLITES FROM PLANTS IN CULTURE OUTSIDE THE SOIL
CN109220810A (en) A kind of method of tree peony embryo high-effective root-growing under aseptic condition
CN102090295A (en) Technology for improving fruit setting rate of greenhouse fruit trees
CN103039366B (en) Industrial production method of mycorrhizal seedlings of Changbai Mountain rhododendron plants
CN105850729A (en) Verbena bonariensis cultivation method
Hariz et al. Effects of operational parameters on the performance of unialgal Oedogonium sp. filamentous algae nutrient scrubbers under controlled environmental conditions
CN106701641B (en) The bacterium LRP3 of the fixed heavy metal ion of energy mineralising and its application
CN1695427A (en) Method for cultivating oriental lily test tube bulb
CN109429927B (en) Method for improving high-temperature resistance of moss crust artificially cultured in sand area
CN114958819B (en) Quick culture method for periphyton of rice field
CN116493405A (en) Method for repairing tailings by combining blue algae-moss crust and biochar-semi-carbonized sludge modifier
CN102668991B (en) Application of penicillin to simple test-tube breeding of grapes and novel technology for test-tube breeding of grapes
JPS5832590B2 (en) Diatom algae growth method
CN100493336C (en) Cultivation process of Mnium cuspidaum Hedw
CN110073913A (en) A kind of industrial crops cultural method of reduced application of phosphate fertilizer
CN115417708A (en) Water culture nutrient solution and method for promoting growth of pepper seedlings
ATE58453T1 (en) METHODS OF CULTURE OF WATER HYACINTHS, PLANTS OBTAINED AND THEIR USES.
CN111004053A (en) Chlorella hydrothermal charcoal and preparation method and application thereof
CN112385546B (en) Method for promoting growth of sphagnum pseudorhizoid
KR100239220B1 (en) Culture medium auto-recyling bioreactor for plant tissue or organ cultivation
CN114431101B (en) Sugarcane 13 Method and device for marking C isotope