JPS5832511B2 - vertical field effect transistor - Google Patents

vertical field effect transistor

Info

Publication number
JPS5832511B2
JPS5832511B2 JP51049006A JP4900676A JPS5832511B2 JP S5832511 B2 JPS5832511 B2 JP S5832511B2 JP 51049006 A JP51049006 A JP 51049006A JP 4900676 A JP4900676 A JP 4900676A JP S5832511 B2 JPS5832511 B2 JP S5832511B2
Authority
JP
Japan
Prior art keywords
gate region
gate
region
field effect
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51049006A
Other languages
Japanese (ja)
Other versions
JPS52131480A (en
Inventor
五郎 御手洗
宏 西海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP51049006A priority Critical patent/JPS5832511B2/en
Publication of JPS52131480A publication Critical patent/JPS52131480A/en
Publication of JPS5832511B2 publication Critical patent/JPS5832511B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 本発明は縦形電界効果トランジスタに関し、特に接合容
量を大幅に減少させた縦形電界効果トランジスタに関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vertical field effect transistor, and more particularly to a vertical field effect transistor with significantly reduced junction capacitance.

従来より三極前特性を示す縦形型彫効果トランジスタが
知られている、従来の縦形電界効果トランジスタは第1
図に示すようにドレイン領域となる高濃度の第1の導電
型不純物を有する半導体基板1上に、前記第1の導電型
不純物を有する高比抵抗層2をエピタキシャル成長によ
り形成し、これに第2の導電型不純物を有する網状のゲ
ート領域3を拡散にて形成すると共にチャネル領域4を
形成し、更にこの高比抵抗層2上に前記第1の導電型不
純物を有する低抵抗のソース領域5をエピタキシャル成
長により形成する。
Conventional vertical field effect transistors are known as vertical die-carving effect transistors that exhibit triode characteristics.
As shown in the figure, a high resistivity layer 2 containing impurities of the first conductivity type is formed by epitaxial growth on a semiconductor substrate 1 containing impurities of the first conductivity type and serving as a drain region. A net-shaped gate region 3 containing impurities of the first conductivity type is formed by diffusion, a channel region 4 is formed, and a low resistance source region 5 containing impurities of the first conductivity type is further formed on the high resistivity layer 2. Formed by epitaxial growth.

次にゲート電極取り出しの為の前記第2の導電型不純物
を有する領域6及び前記第1の導電型不純物を有する低
抵抗のソース領域7を形成した後ゲート電極8、ソース
電極9及びドレイン電極10を被着して得られるもので
ある。
Next, after forming a region 6 having the second conductivity type impurity and a low resistance source region 7 having the first conductivity type impurity for taking out the gate electrode, the gate electrode 8, the source electrode 9, and the drain electrode 10 are formed. It is obtained by coating.

ところで上述のようにして形成された縦形電界効果トラ
ンジスタにおいては接合容量が大きく高周波特性を良く
することが出来ないという欠点があった。
However, the vertical field effect transistor formed as described above has a drawback in that the junction capacitance is large and high frequency characteristics cannot be improved.

特に大電力用素子は接合容量が大きく現在はもっばらオ
ーディオ周波数領域までに使用されている。
In particular, high-power devices have a large junction capacitance and are currently used mostly in the audio frequency range.

そのオーディオ用においても音質、回路等の点から容量
は出来るだけ小さい方が有利である事は言うまでもない
Needless to say, for audio applications, it is advantageous to have as small a capacity as possible in terms of sound quality, circuitry, etc.

具体的には5徊口の素子で約700 pF〜800 p
Fもあり、この接合容量が大きい事が縦形電界効果トラ
ンジスタの適用範囲が狭い大きな原因であった。
Specifically, it is approximately 700 pF to 800 p with a 5-way element.
F is also present, and its large junction capacitance is a major reason why the range of application of vertical field effect transistors is narrow.

本発明はこの点に鑑みてなされたもので接合容量を大幅
に減少させた素子を提供するものである。
The present invention has been made in view of this point, and provides an element with significantly reduced junction capacitance.

以下第2図を用いてこの発明のn−チャネル縦形電界効
果トランジスタをその製造工程を追って説明する。
The manufacturing process of the n-channel vertical field effect transistor of the present invention will be explained below with reference to FIG.

まず第2図aに示すように最終的にドレイン領域となる
例えば0.01Ω備〜0.001Ωcm程度の低抵抗の
N型の半導体基板1上にエピタキシャル成長によって高
比抵抗のN型半導体2を形成する。
First, as shown in FIG. 2a, an N-type semiconductor 2 with a high specific resistance is formed by epitaxial growth on an N-type semiconductor substrate 1 with a low resistance of, for example, about 0.01Ω to 0.001Ωcm, which will eventually become a drain region. do.

次に第2図すに示す如くに前記高比抵抗半導体層2の所
定の部分にP型を与える不純物を選択拡散して網状の第
1ゲート領域3及び各第1ゲート領域3の間にチャネル
領域4を形成する。
Next, as shown in FIG. 2, an impurity imparting P type is selectively diffused into a predetermined portion of the high resistivity semiconductor layer 2 to form a channel between the net-shaped first gate region 3 and each first gate region 3. Region 4 is formed.

次いで第2図Cに示すように前記第1ゲート領域3を含
む前記高比抵抗半導体層2上にN型のエピタキシャル成
長を5μ〜15μ行い、N型半導体層5を形成する。
Next, as shown in FIG. 2C, N-type epitaxial growth is performed on the high resistivity semiconductor layer 2 including the first gate region 3 to a thickness of 5 to 15 μm to form an N-type semiconductor layer 5.

次いで第2図dに示すごとく半導体表面に酸化膜12を
形成した後写真製版技術を用いて所定の部分の酸化膜1
2を除去し選択拡散用の窓13をあける。
Next, as shown in FIG. 2d, an oxide film 12 is formed on the semiconductor surface, and then a predetermined portion of the oxide film 1 is formed using photolithography.
2 is removed to open a window 13 for selective diffusion.

この窓13を通してP型の伝導性を与える不純物を前記
第1ゲート領域3に接続はしないが近接した位置まで拡
散し第2のゲート領域11を形成する。
Through this window 13, an impurity imparting P-type conductivity is not connected to the first gate region 3 but is diffused to a position close to it to form the second gate region 11.

具体的には第1ゲート領域3と第2ゲート領域11との
距離は第2ゲート領域11からの空乏層が零バイアスで
すでに第1ゲート領域3に到達している程度の距離すな
わち2μ〜6μが適当である。
Specifically, the distance between the first gate region 3 and the second gate region 11 is such that the depletion layer from the second gate region 11 has already reached the first gate region 3 at zero bias, that is, 2 μ~ 6μ is appropriate.

次に第2図eに示すように前記N型半導体層5内に、ソ
ースコンタクトを取るためのN+ソース領域7を形成し
た後、前記N+ソース領域7、第2ゲート領域11及び
ドレイン領域1にそれぞれソース電極9、ゲート電極8
、ドレイン電極10を被着して目的とする縦形電界効果
トランジスタが得られる。
Next, as shown in FIG. 2e, an N+ source region 7 for making a source contact is formed in the N-type semiconductor layer 5, and then the N+ source region 7, second gate region 11 and drain region 1 are formed. Source electrode 9 and gate electrode 8, respectively.
, the drain electrode 10 is deposited to obtain the desired vertical field effect transistor.

かかる構造の素子においては、ゲート電極8とソース電
極9間に逆バイアスを印加すると第2ゲート領域11の
接合から空乏層が延び近接した第1ゲート領域3に到達
する。
In an element having such a structure, when a reverse bias is applied between the gate electrode 8 and the source electrode 9, the depletion layer extends from the junction of the second gate region 11 and reaches the adjacent first gate region 3.

空乏層が第1ゲート領域3に到達すると第2ゲート領域
11からの電界を打消す方向に電界がかかり、すなわち
第1ゲート領域3の接合からも空乏層が延びる事になる
When the depletion layer reaches the first gate region 3, an electric field is applied in a direction that cancels out the electric field from the second gate region 11, that is, the depletion layer also extends from the junction of the first gate region 3.

これは高耐圧化をはかるためのガードリング構造と同じ
原理によるものである。
This is based on the same principle as the guard ring structure for achieving high voltage resistance.

第2ゲート領域11からの空乏層が零バイアスですでに
第1ゲート領域に到達していても伺らさしつかえない。
It is no problem even if the depletion layer from the second gate region 11 has already reached the first gate region at zero bias.

このようにして第2ゲート領域11の電界の強弱にした
がって第1ゲート領域3の電界も変化しそれにつれてチ
ャネル領域4の伝導度も変化するため電界効果トランジ
スタとしての動作を起すことが出来る。
In this way, the electric field in the first gate region 3 changes in accordance with the strength of the electric field in the second gate region 11, and the conductivity of the channel region 4 changes accordingly, so that operation as a field effect transistor can occur.

一方ゲート・ソース間容量CG、s及びゲート・ドレイ
ン間容量CODは第2ゲート領域11の接合面積によっ
てほとんど決定されゲート領域の大部分を占める第1ゲ
ート領域3の接合による容量の寄与は小さくなる。
On the other hand, the gate-source capacitance CG, s and the gate-drain capacitance COD are mostly determined by the junction area of the second gate region 11, and the contribution of capacitance by the junction of the first gate region 3, which occupies most of the gate region, is small. .

このため、ゲート・ソース間接合容量CGS及びゲート
・ドレイン間接合容量CODは大幅に減少する。
Therefore, the gate-source junction capacitance CGS and the gate-drain junction capacitance COD are significantly reduced.

試作の結果では5M[]のダイスで電圧増巾率が約8、
ゲート・ソース間容量CGSが107pF、ゲート・ド
レイン間容量CODが107pFの素子を得ている。
According to the results of the prototype, the voltage amplification rate is about 8 with a 5M[] die.
The device has a gate-source capacitance CGS of 107 pF and a gate-drain capacitance COD of 107 pF.

本発明の等何回路は、埋込みゲート形電界効果トランジ
スタのゲート入力部に単にコンデンサーが入ったのみで
なく、該コンデンサーに並列にPN接合の逆方向リーク
電流をもたらす抵抗が入ったものと等価と考えられるが
、この場合PN接合の逆方向リーク電流は非常に小さい
為、電圧降下は小さく、?mの低下はわずかである。
The circuit of the present invention is equivalent to not only having a capacitor inserted into the gate input part of a buried gate field effect transistor, but also having a resistor connected in parallel to the capacitor that causes a reverse leakage current of a PN junction. It is possible, but in this case the reverse leakage current of the PN junction is very small, so the voltage drop is small. The decrease in m is slight.

周知の通りFETの周波数特性を表わす性能指数Mは、
M−1m/C15s (1m:相互コンダクタンス、C
15s :ゲート・ソース間容量+ゲート・ドレイン間
容量)で表わされるが、本発明のものはC15sが大幅
に減少し、かつ′?mの低下はわずかであるからく性能
指数Mは大きくなるという利点がある。
As is well known, the figure of merit M, which represents the frequency characteristics of FET, is
M-1m/C15s (1m: mutual conductance, C
15s: capacitance between gate and source + capacitance between gate and drain), but in the case of the present invention, C15s is significantly reduced and '? Since the decrease in m is slight, there is an advantage that the figure of merit M becomes large.

以上のように従来ゲート領域の接合面積が大きい為にゲ
ート・ソース間及びゲート・ドレイン間の接合容量が大
きかったのに鑑み、本発明ではゲート領域を第1ゲート
領域と第2ゲート領域に分割し、ガードリング構造と同
じ原理で電界効果トランジスタの動作を起こさせる一方
接合容量を大幅に減少させることができる効果を有する
As mentioned above, in view of the fact that the junction capacitance between the gate and the source and between the gate and the drain was large due to the large junction area of the gate region, in the present invention, the gate region is divided into a first gate region and a second gate region. However, it has the effect of causing a field effect transistor to operate on the same principle as the guard ring structure, while significantly reducing the junction capacitance.

なお、上記実施例ではn−チャネル縦形電界効果トラン
ジスタについて説明したが、Pチャネル縦形電界効果ト
ランジスタに適用しても伺らさしつかえないものである
In the above embodiments, an n-channel vertical field effect transistor has been described, but the present invention may also be applied to a p-channel vertical field effect transistor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の縦形電界効果トランジスタの断面図、第
2図a、b、c、d、eは本発明に係る縦形電界効果ト
ランジスタをその製造工程順に示した断面図である。 図において、1は半導体基板、2は高比抵抗半導体層、
3は第1ゲート領域、4はチャネル領域、5は埋め込み
エピタキシャル成長層、11は第2ゲート領域である。 図中同一符号は同−又は相当部分を示している。
FIG. 1 is a sectional view of a conventional vertical field effect transistor, and FIGS. 2 a, b, c, d, and e are sectional views showing a vertical field effect transistor according to the present invention in the order of manufacturing steps. In the figure, 1 is a semiconductor substrate, 2 is a high resistivity semiconductor layer,
3 is a first gate region, 4 is a channel region, 5 is a buried epitaxial growth layer, and 11 is a second gate region. The same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 ソース・ドレイン領域を構成する所定導電型の半導
体層中にチャンネル領域を形成するためにこれと反対導
電型を有する網状ゲート領域を埋め込んでなる縦形電界
効果トランジスタにおいて、前記網状の埋込みゲート領
域に近接して配設されこれと同一導電型を有する第2の
ゲート領域をそなえ、かつこの第2のゲート領域上にゲ
ート電極を被着したことを特徴とする縦形電界効果トラ
ンジスタ。
1. In a vertical field effect transistor in which a net-shaped gate region having an opposite conductivity type is buried in a semiconductor layer of a predetermined conductivity type constituting a source/drain region to form a channel region, the net-shaped buried gate region is 1. A vertical field effect transistor, comprising a second gate region disposed adjacent to the second gate region and having the same conductivity type as the second gate region, and a gate electrode deposited on the second gate region.
JP51049006A 1976-04-27 1976-04-27 vertical field effect transistor Expired JPS5832511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51049006A JPS5832511B2 (en) 1976-04-27 1976-04-27 vertical field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51049006A JPS5832511B2 (en) 1976-04-27 1976-04-27 vertical field effect transistor

Publications (2)

Publication Number Publication Date
JPS52131480A JPS52131480A (en) 1977-11-04
JPS5832511B2 true JPS5832511B2 (en) 1983-07-13

Family

ID=12819076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51049006A Expired JPS5832511B2 (en) 1976-04-27 1976-04-27 vertical field effect transistor

Country Status (1)

Country Link
JP (1) JPS5832511B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48103276A (en) * 1972-03-10 1973-12-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48103276A (en) * 1972-03-10 1973-12-25

Also Published As

Publication number Publication date
JPS52131480A (en) 1977-11-04

Similar Documents

Publication Publication Date Title
EP0036887B1 (en) Semiconductor devices controlled by depletion regions
DE69728259D1 (en) SILICON CARBIDE CMOS AND PRODUCTION METHOD
JPS59193066A (en) Mos semiconductor device
US3946424A (en) High frequency field-effect transistors and method of making same
JP3470133B2 (en) Method for manufacturing semiconductor device
JPS5688354A (en) Semiconductor integrated circuit device
US3384792A (en) Stacked electrode field effect triode
JPS5846874B2 (en) Junction field effect transistor
US3296508A (en) Field-effect transistor with reduced capacitance between gate and channel
US3344322A (en) Metal-oxide-semiconductor field effect transistor
JPS5832511B2 (en) vertical field effect transistor
JPS5844771A (en) Junction type field effect transistor and manufacture thereof
JP3248791B2 (en) Semiconductor device
JPS6349392B2 (en)
JPS6017964A (en) Semiconductor device
JPS6378574A (en) Manufacture of semiconductor device
JPH0812917B2 (en) Method of operating MIS transistor and MIS transistor
JPS6329419B2 (en)
JPS61100975A (en) Junction type field-effect transistor
JPS592386B2 (en) Junction field effect transistor
JPH0121570Y2 (en)
JPS6262062B2 (en)
JPS6024593B2 (en) semiconductor equipment
JPS626670B2 (en)
JPS6054791B2 (en) Composite field effect transistor