JPS5831111B2 - Powder coating that can be chemically plated and its manufacturing method - Google Patents

Powder coating that can be chemically plated and its manufacturing method

Info

Publication number
JPS5831111B2
JPS5831111B2 JP54099148A JP9914879A JPS5831111B2 JP S5831111 B2 JPS5831111 B2 JP S5831111B2 JP 54099148 A JP54099148 A JP 54099148A JP 9914879 A JP9914879 A JP 9914879A JP S5831111 B2 JPS5831111 B2 JP S5831111B2
Authority
JP
Japan
Prior art keywords
parts
weight
powder coating
rubber
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54099148A
Other languages
Japanese (ja)
Other versions
JPS5624466A (en
Inventor
信夫 魚津
宏 高橋
宏一 津山
誠 藤倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP54099148A priority Critical patent/JPS5831111B2/en
Priority to US06/131,625 priority patent/US4315845A/en
Priority to DE3010982A priority patent/DE3010982C2/en
Publication of JPS5624466A publication Critical patent/JPS5624466A/en
Publication of JPS5831111B2 publication Critical patent/JPS5831111B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、金属芯入り印刷配線板の製造に好適に使用さ
れる、化学メッキ可能な粉体塗料及びその製造法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a powder coating material that can be chemically plated and that is suitably used in the production of printed wiring boards with a metal core, and a method for producing the same.

近年電子機器の小型化、高性能化にともない、印刷配線
板に対する性能要求が高度化し同時に経済効果も要求さ
れるようになってきた。
In recent years, with the miniaturization and higher performance of electronic devices, performance requirements for printed wiring boards have become more sophisticated, and at the same time, economic efficiency has also been required.

例えば、そり、ねじれのない高度の寸法安定性を有する
こと、多数の重量部品搭載に耐える剛性をもつこと、搭
載部品から発生する熱を速やかに除去するための高度な
熱伝導性を有すること、およびしかも安価に供給しうろ
ことなどである。
For example, it must have a high degree of dimensional stability without warping or twisting, it must have the rigidity to withstand the mounting of a large number of heavy parts, it must have a high degree of thermal conductivity to quickly remove the heat generated from the mounted parts, and scales that can be supplied at low cost.

このような要求に対して従来の合成樹脂積層板では十分
に満足できないため、鉄、ステンレス、アルミニウム、
銅などの金属芯入り印刷配線板への指向がなされている
Conventional synthetic resin laminates cannot fully meet these demands, so iron, stainless steel, aluminum,
The trend is toward printed wiring boards with metal cores such as copper.

金属芯入り印刷配線板では金属芯の絶縁化が必須であり
、この目的のために、均一厚みの絶縁樹脂層の形成が容
易である、耐熱性等必要とされる特性をもつ樹脂が広い
範囲で使用可能である、又無溶剤であり、省資源、公害
発生が少ない等の長所を生かして粉体塗装法が着目され
ている。
In printed wiring boards with metal cores, it is essential to insulate the metal core, and for this purpose, a wide range of resins are available that have the required properties such as heat resistance and the ability to easily form an insulating resin layer of uniform thickness. Powder coating methods are attracting attention because of their advantages such as being solvent-free, saving resources, and generating little pollution.

粉体塗装法は一般にエポキシ樹脂、フェノール樹脂、ア
クリル樹脂、ポリエステル樹脂などの熱硬化性樹脂に硬
化剤充填材、触媒、顔料および流展剤等を適宜配合し、
架橋反応の殆んど進行しない低い温度で熔融混練し、冷
却後粉砕して300μ程度以下の粒径に調整してつくら
れた粉体塗料を、■粉体塗料中に加熱した被塗物を浸漬
して付着させる方法、■被塗物の一端をアースさせスプ
レーノズルの先端に高電圧を印加しておいて粉体と空気
を同時に送り、帯電した粉体を飛走させて付着させる静
電スプレーによる方法、■底部が多孔板でつ(られた粉
体塗料槽上に、一端をアースした被塗物を配置し多孔板
下より高電圧電源によりイオン化した空気を送りこみ帯
電した浮遊粉体(クラウド)を形成させ、被塗物をクラ
ウド中に配置して粉体を付着させる静電流動浸漬法、あ
るいは■直流負電極と交流電極間の粉体な接触帯電させ
てクラウドを生成しアースした被塗物に静電付着させる
静電振動法などの方法で、粉体を被塗物に付着させ焼付
硬化させるものであり、この焼付硬化の工程で粉体が溶
融流動し平滑な硬化塗膜を得るものである。
The powder coating method generally involves blending thermosetting resins such as epoxy resins, phenolic resins, acrylic resins, and polyester resins with hardener fillers, catalysts, pigments, spreading agents, etc. as appropriate.
Powder coatings are made by melting and kneading at a low temperature where almost no crosslinking reaction occurs, and after cooling, are crushed to adjust the particle size to about 300μ or less. Method of immersing and attaching, ■Electrostatic method in which one end of the object to be coated is grounded, a high voltage is applied to the tip of the spray nozzle, and powder and air are sent at the same time, causing the charged powder to fly and adhere. Spraying method: ■ Place the object to be coated with one end grounded on top of a powder paint tank with a perforated plate at the bottom, and send ionized air from below the perforated plate using a high voltage power supply to produce charged floating powder. Electrostatic dynamic immersion method, in which the object to be coated is placed in the cloud and the powder is attached to it, or ■ Contact charging of the powder between a DC negative electrode and an AC electrode to generate a cloud and grounding. The powder is attached to the object to be coated using a method such as the electrostatic vibration method, which is used to electrostatically attach it to the object to be coated. A film is obtained.

従来、印刷配線板の製造に於て化学メッキにより印刷回
路を形成する際、熱硬化性粉体塗膜上に直接化学メッキ
を行ったのでは十分な接着力が得られないために塗膜上
にさらに、接着性を向上させるためのゴム系組成物(接
着剤)層を設ける工程、即ち接着剤ワニスを塗布する工
程が必要不可欠であり、工程上の繁雑化、経済性の低下
が避けられない負枳であった。
Conventionally, when forming printed circuits by chemical plating in the production of printed wiring boards, chemical plating directly on the thermosetting powder coating did not provide sufficient adhesion, so Furthermore, a step of providing a rubber composition (adhesive) layer to improve adhesion, that is, a step of applying an adhesive varnish, is essential, which avoids complicating the process and reducing economic efficiency. There was no negative feeling.

又、熱硬化性粉体塗膜上に直接化学メッキを行う場合で
も、熱硬化させて得られた塗膜面に化学粗化を施して表
面粗化形状を形成したのち、センシタイジング、アクチ
ベイテイング処理を行ってSn十干、Pd十十などの化
学メッキ触媒能を有する貴金属イオンを吸着させ化学メ
ッキによる金属析出を行わせるものであるが、この場合
、該貴金属イオンを吸着させた状態で、つまり化学メッ
キ前の触媒活性状態を維持しながらネガティブパターン
のメツキレシストを印刷することは極めて困難であり、
したがって化学メッキは、触媒吸着面全域に析出(パネ
ルメッキ)させざるを得す、このあと必要な回路の形成
が行われ、必ず回路以外部分のパネルメッキの蝕刻(エ
ツチング)をともなう複雑な工程を必要とするものであ
る。
In addition, even when chemical plating is performed directly on a thermosetting powder coating, the coating surface obtained by thermosetting is chemically roughened to form a roughened surface shape, and then sensitizing and activating are performed. Baiting treatment is performed to adsorb noble metal ions that have chemical plating catalytic ability, such as Sn and Pd, and metal deposition is performed by chemical plating, but in this case, the state in which the noble metal ions are adsorbed In other words, it is extremely difficult to print a negative pattern of metallurgical resist while maintaining the catalytic activation state before chemical plating.
Therefore, chemical plating requires deposition (panel plating) over the entire area of the catalyst adsorption surface.After this, the necessary circuits are formed, which is a complicated process that always involves etching the panel plating in areas other than the circuits. It is what you need.

本発明はこのような点に鑑みてなされたもので、本発明
の化学メッキ可能な粉体塗料は熱硬化性樹脂100重量
部(以下単に部と略す)に対し、化学メッキ触媒0.0
06〜1.2部、分子中に共役二重結合並びに極性基を
有するゴム1〜30部を含み、加熱硬化段階の少なくと
も一時期において105センチポイズ以下の粘度をもつ
ことを特徴とし、又、本発明の粉体塗料の製造法は、最
終粉体塗料中に含有される化学メッキ触媒の50重量%
(以下単に%と略す)以上を、融点が150’C以下の
熱硬化性樹脂3〜50%、無機充填剤5〜60%、分子
中に共役二重結合並びに極性基を有するゴム80%以下
でかつ最終粉体塗料中の2倍以上を含む組成物と、混練
り工程の少なくとも一時期において前記融点が150℃
以下の熱硬化性樹脂の融点以上の温度であらかじめ混練
りし、この混練り組成物を熱硬化性樹脂と共に更に混練
り、微粉砕することを特徴とするものである。
The present invention has been made in view of these points, and the chemical plating powder coating of the present invention contains 0.0 parts by weight of a chemical plating catalyst per 100 parts by weight (hereinafter simply referred to as "parts") of a thermosetting resin.
06 to 1.2 parts, and 1 to 30 parts of a rubber having a conjugated double bond and a polar group in the molecule, and has a viscosity of 105 centipoise or less during at least one period of the heat curing step, and the present invention The method for producing powder coatings consists of 50% by weight of the chemical plating catalyst contained in the final powder coating.
(hereinafter simply abbreviated as %) The above includes 3 to 50% thermosetting resin with a melting point of 150'C or less, 5 to 60% inorganic filler, and 80% or less rubber having a conjugated double bond and a polar group in the molecule. and the melting point is 150°C during at least one period of the kneading process.
The composition is characterized in that it is kneaded in advance at a temperature equal to or higher than the melting point of the following thermosetting resin, and this kneaded composition is further kneaded together with the thermosetting resin and pulverized.

本発明で使用される熱硬化性樹脂は、エポキシ樹脂、フ
ェノール樹脂、アクリル樹脂、ポリエステル樹脂管一般
の粉体塗装で用いられるものである。
The thermosetting resin used in the present invention is one used in powder coating of epoxy resin, phenol resin, acrylic resin, and polyester resin pipes in general.

分子中に共役二重結合並びに極性基を有すゴムとしては
、アクリロニトリルブタジェン重合体、スチレンブタジ
ェン重合体、アクリロニトリルフタジエンスチレン樹脂
、ポリブタジェン樹脂の一種又はこの混合物が使用可能
で、極性基としては、二) IJル基、水酸基、カルボ
キシル基、酸アミド基等がある。
As the rubber having a conjugated double bond and a polar group in the molecule, one type or a mixture thereof of acrylonitrile butadiene polymer, styrene butadiene polymer, acrylonitrile phtadiene styrene resin, and polybutadiene resin can be used. 2) IJ groups, hydroxyl groups, carboxyl groups, acid amide groups, etc.

共役二重結合を有すゴムとしてはその構成するモノマ一
単位当り二重結合を30%以上有するものが粗化後の回
路接着性向上の点からは好ましい。
The rubber having conjugated double bonds is preferably one having 30% or more double bonds per monomer unit constituting it, from the viewpoint of improving circuit adhesion after roughening.

本発明で使用されるゴムは、分子中に極性基を持ってい
るので、熱硬化性樹脂と均一な混合が可能である。
Since the rubber used in the present invention has a polar group in its molecule, it can be uniformly mixed with the thermosetting resin.

均一な混合が出来ることは均質な粉体が得られ、均一な
帯電、従って均等付着がなされるためにきわめて重要な
事項である。
Uniform mixing is extremely important in order to obtain homogeneous powder, uniform charging, and therefore uniform adhesion.

熱硬化性樹脂と均一な混合を行うためには、ムーニー粘
度(ASTM D1646−63に準ず)90ML1
−)4 (100℃)以下のゴムを使用することが好ま
しい。
In order to achieve uniform mixing with the thermosetting resin, the Mooney viscosity (according to ASTM D1646-63) is 90ML1.
-) 4 (100°C) or less rubber is preferably used.

ムーニー粘度90以下のゴムは適宜選択することができ
るが、91以上のゴムでもロール素線り液状のものの使
用、溶剤に溶解させて使用などにより90以下に低下さ
せることは容易に出来る。
A rubber with a Mooney viscosity of 90 or lower can be selected as appropriate, but even rubbers with a Mooney viscosity of 91 or higher can be easily lowered to 90 or lower by using a roll wire, liquid, or dissolving in a solvent.

熱硬化性樹脂100部に対して、ゴムは1〜30部混合
される。
1 to 30 parts of rubber are mixed with 100 parts of thermosetting resin.

1部以下では、化学メッキによる回路の良好な接着性を
もつ粗化面が得られないためであり、30部以上では、
粉体塗料化が困難であり、かつ焼付硬化塗膜の平滑度が
著しく劣っていたり印刷回路板の塗膜として必要とされ
る耐熱性、絶縁性等の諸特性が低下するためである。
This is because if it is less than 1 part, a roughened surface with good adhesion of the circuit by chemical plating cannot be obtained, and if it is more than 30 parts,
This is because it is difficult to form into a powder coating, and the smoothness of the baked-cured coating film is extremely poor, and various properties such as heat resistance and insulation properties necessary for coating films on printed circuit boards are deteriorated.

粉体塗料が高度の耐熱性を要求される場合およびゴムと
して常態で液状のゴムを使用する場合、ゴムの補助材料
として硫黄、および硫黄化合物、油変性フェノールなど
の加硫剤、加硫助剤を用いることも出来る。
When powder coatings require a high degree of heat resistance or when normally liquid rubber is used, sulfur, sulfur compounds, vulcanizing agents such as oil-modified phenols, and vulcanization aids are used as auxiliary materials for the rubber. You can also use

化学メッキ触媒としては、元素周期律表の第■族および
第1B族に属する金属、たとえばニッケル、金、銀、プ
ラチナ、パラジウム、ロジウム、銅、イリジウム等又は
これらの酸化物、塩化物、臭化物、弗化物、エチルアセ
テート、フルオロポレート、硝酸塩、硫酸塩、アセテー
ト等がある。
As the chemical plating catalyst, metals belonging to Group Ⅰ and Group 1B of the Periodic Table of Elements, such as nickel, gold, silver, platinum, palladium, rhodium, copper, iridium, etc., or their oxides, chlorides, bromides, These include fluoride, ethyl acetate, fluoroporate, nitrate, sulfate, acetate, etc.

特に有用なのは、パラジウム、金、プラチナ、銅、塩化
パラジウム、塩化金、塩化プラチナ、酸化銅またはこれ
らと塩化第1錫を組合せたものである。
Particularly useful are palladium, gold, platinum, copper, palladium chloride, gold chloride, platinum chloride, copper oxide or their combinations with stannous chloride.

化学メッキを確実かつ安定的に析出するために必要な触
媒量は、本発明においては熱硬化性樹脂100部中0.
006〜1.2部、望ましくは0.02〜06部の範囲
が良好である。
In the present invention, the amount of catalyst required to deposit chemical plating reliably and stably is 0.00 parts per 100 parts of thermosetting resin.
A good range is 0.006 to 1.2 parts, preferably 0.02 to 0.06 parts.

0.006部以下では、メッキ析出の確実性が低下し、
1.2部以上では最終製品におよぼす経済的負担が無視
できなくなるからである。
If it is less than 0.006 part, the reliability of plating precipitation decreases,
This is because if the amount exceeds 1.2 parts, the economic burden on the final product cannot be ignored.

金属板表面に粉体塗装により平滑な塗膜を形成させるこ
とは、印刷配線板として必要とされる諸特性を向上させ
るためきわめて重要なことである。
Forming a smooth coating film on the surface of a metal plate by powder coating is extremely important in order to improve various properties required for a printed wiring board.

このためには、金属板表面に塗着された熱硬化性粉体塗
料を加熱して硬化塗膜とする加熱段階の少なくとも一時
期に於て、粉体の粘度が105センチポイズ以下、好ま
しくは103センチポイズ以下であることが必要である
For this purpose, the viscosity of the powder must be 105 centipoise or less, preferably 103 centipoise or less, during at least one period of the heating step in which the thermosetting powder coating applied to the surface of the metal plate is heated to form a cured coating film. It is necessary that the following is true.

この加熱硬化段階に於る粘度は粉体の分子量、硬化速度
により必要な値に調整することが出来る。
The viscosity in this heat curing step can be adjusted to a required value depending on the molecular weight of the powder and the curing speed.

溶融粘度の測定は、HAAKE社POTOVISKO1
RV−2装置を使用し、昇温速度4.5℃/分、ロータ
ーPK−nにセットして回転数0.1〜10rpmの範
囲で流動トルクを測定することにより行う。
Measurement of melt viscosity is carried out using HAAKE's POTOVISKO1.
This is carried out by using an RV-2 device, setting the temperature increasing rate at 4.5° C./min to the rotor PK-n, and measuring the flow torque in the rotational speed range of 0.1 to 10 rpm.

充填材としては、ケイ酸ジルコニウム、炭酸カルシウム
、酸化ケイ素、亜鉛華、酸化マグネシウム、酸化チタン
などが使用でき、酸:アルカリに対して溶解性を異にす
る2種以上を併用することも効果的である。
As fillers, zirconium silicate, calcium carbonate, silicon oxide, zinc white, magnesium oxide, titanium oxide, etc. can be used, and it is also effective to use two or more types with different solubility in acids and alkalis. It is.

これらは化学粗化の工程で粗化形状をつくる補助的な作
用をもたらすのに重要であり、樹脂100部に対し20
0部以下好ましくは100部以下で使用することが出来
る。
These are important in providing an auxiliary effect to create a roughened shape in the chemical roughening process, and 20%
It can be used in an amount of 0 parts or less, preferably 100 parts or less.

本発明による化学メッキ可能な粉体塗料の製造法の特徴
は、メッキ触媒能を有する貴金属類等の化学メッキ触媒
が、最終粉体塗料中の主成分である熱硬化性樹脂の一部
と、比較的多量の高分子量ゴム、および無機充填剤との
強制混練り工程において含有せしめられ、混練り工程の
少なくとも一時期、系全体を熱硬化性樹脂の融点以上に
加熱して、これらを溶融液状化させることにより、高分
子量ゴムと化学メッキ触媒とが同時に高濃度で存在する
分散体を得るところにある。
The feature of the method for producing a chemically plateable powder coating according to the present invention is that a chemical plating catalyst such as a noble metal having plating catalytic ability is combined with a part of the thermosetting resin which is the main component in the final powder coating; A relatively large amount of high molecular weight rubber and an inorganic filler are included in the forced kneading process, and at least part of the kneading process heats the entire system above the melting point of the thermosetting resin to melt and liquefy them. By doing so, it is possible to obtain a dispersion in which the high molecular weight rubber and the chemical plating catalyst are simultaneously present at high concentrations.

この分散体が、最終粉体塗料中に均一に存在することに
より、絶縁塗膜はメッキ前処理工程において、塗膜中に
存在する分子中に共役二重結合並びに極性基を有すゴム
が、その不飽和性に基づいて、プロトン供与反応を受け
やすく酸化性酸によって攻撃をうげ粗化溶出を促進し、
容易に化学粗化をうけ、同時に存在する触媒の表面露出
が良好に行われる結果、メッキ析出効果は極めて顕著で
あり、かつ析出金属との接着は、高分子量ゴムの極性効
果により充分に発揮されるものである。
Due to the uniform presence of this dispersion in the final powder coating, the insulating coating film is formed during the plating pre-treatment step, so that the rubber having conjugated double bonds and polar groups in the molecules present in the coating film is Based on its unsaturation, it is susceptible to proton-donating reactions and is attacked by oxidizing acids, promoting roughening and elution.
As a result of easy chemical roughening and good surface exposure of the catalyst present at the same time, the plating precipitation effect is extremely remarkable, and the adhesion with the deposited metal is fully exerted due to the polarity effect of the high molecular weight rubber. It is something that

この場合、最終粉体塗料中に含有される高分子量ゴムと
化学メッキ触媒との量比は必らずしも常に一定である必
要はなく、塗料化の工程で両者の調整増減が図られるが
、少なくとも最終粉体塗料中に含有される触媒の50%
以上の量は、予め熱硬化性樹脂と無機充填剤および比較
的多量の高分子量ゴムと混練りされた組成物であること
が効果的なメッキの析出を行わせるのに必要である。
In this case, the ratio between the high molecular weight rubber and the chemical plating catalyst contained in the final powder coating does not necessarily have to be constant, and the ratio between the two can be adjusted during the coating process. , at least 50% of the catalyst contained in the final powder coating
The above amount is necessary for effective plating precipitation to be a composition in which the thermosetting resin, inorganic filler, and relatively large amount of high molecular weight rubber are kneaded in advance.

また、化学メッキ触媒は、高分子量ゴムあるいは無機充
填剤との分散混合を短時間のうちに充分に行わせるため
に、前もって化学メッキ触媒を熱硬化性樹脂の有機溶媒
溶液に分散させたり、またはメッキ触媒と坦体(アルミ
ナ、シリカ、クレー等)とを塩酸水溶液中に分散してお
くことが有効である。
In addition, in order to sufficiently disperse and mix the chemical plating catalyst with the high molecular weight rubber or inorganic filler in a short period of time, the chemical plating catalyst is first dispersed in an organic solvent solution of the thermosetting resin, or It is effective to disperse the plating catalyst and carrier (alumina, silica, clay, etc.) in an aqueous hydrochloric acid solution.

この場合、前分散を充分に行わせるには、熱硬化性樹脂
の溶液系の粘度が10”ポイズ以下が望ましい。
In this case, in order to perform sufficient pre-dispersion, it is desirable that the viscosity of the thermosetting resin solution system be 10'' poise or less.

また、前分散が充分に行われた後は、溶媒または水溶液
は、必要に応じて除去された状態で供試される。
Further, after the pre-dispersion has been sufficiently performed, the solvent or aqueous solution is removed as necessary before being tested.

メッキ触媒と、高分子量ゴムとを、最終粉体塗料におけ
るよりも高濃度な状態で予め熱硬化性樹脂および無機充
填剤と強制混練りすることを特徴とする本発明の粉体塗
料の製造法において、熱硬化性樹脂含量が、系の50%
以上多量に存在すると、高分子量ゴムが溶融樹脂相で容
易に流動して剪断力をうけなくなるため分散効果が低下
し、一方3%以下では潤滑作用が充分ではない。
A method for producing a powder coating of the present invention, which comprises forcibly kneading a plating catalyst and a high molecular weight rubber with a thermosetting resin and an inorganic filler in advance at a higher concentration than in the final powder coating. , the thermosetting resin content is 50% of the system.
If the amount is more than 3%, the high molecular weight rubber will easily flow in the molten resin phase and will not be subjected to shearing force, resulting in a reduced dispersion effect, while if it is less than 3%, the lubricating effect will not be sufficient.

熱硬化性樹脂の融点は、150℃以上であれば、混線時
にゴムの熱劣下がおこり、又混練操作に種種の困難が伴
い更には、得られた粉体塗料の粘度が高くなり、加熱硬
化の少なくとも1段階で105センチポイズ以下の粘度
を示さなくなるため、融点150°C以下のものが使用
される。
If the melting point of the thermosetting resin is 150°C or higher, thermal deterioration of the rubber will occur when the wires are mixed, various difficulties will arise in the kneading operation, and the viscosity of the resulting powder coating will increase. A resin having a melting point of 150° C. or lower is used because it does not exhibit a viscosity of 105 centipoise or lower during at least one stage of curing.

同様に充填剤含量も60%以上では、熱硬化性樹脂の潤
滑作用、溶媒作用を阻害し5%以下ではゴムとの舅断力
作用が不充分となる。
Similarly, if the filler content is 60% or more, the lubricating action and solvent action of the thermosetting resin will be inhibited, and if it is less than 5%, the shear force action with the rubber will be insufficient.

また、ゴム含量を80%以下に制限した理由は、相対的
に充填剤および熱硬化性樹脂含量を低下させることにな
り、前述の分散効果を低下させるためである。
Further, the reason why the rubber content is limited to 80% or less is that the filler and thermosetting resin contents are relatively reduced, which reduces the above-mentioned dispersion effect.

一方、最終粉体塗料中の2倍以下ではゴム分散の能率が
よくないので好ましくない。
On the other hand, if it is less than twice the amount in the final powder coating, the efficiency of rubber dispersion is not good, which is not preferable.

無機充填材としては、ケイ酸ジルコニウム、炭酸カルシ
ウム、酸化ケイ素、亜鉛華、酸化マグネシウム、酸化チ
タン、アルミニウムシリケーI・などが使用できる。
As the inorganic filler, zirconium silicate, calcium carbonate, silicon oxide, zinc white, magnesium oxide, titanium oxide, aluminum silicate I, etc. can be used.

これらは化学粗化の工程で粗化形状をつくる補助的な作
用をもたらすのに重要であり、かつ混練り工程において
高分子量ゴムおよび溶融した熱硬化樹脂に剪断力を与え
て成分相互の分散作用に寄与するものである。
These are important in providing an auxiliary effect to create a roughened shape in the chemical roughening process, and in the kneading process, they apply shearing force to the high molecular weight rubber and molten thermosetting resin to disperse the components. This contributes to

無機充填材を5〜60%混入する理由もここにあり、5
%以下では粗化作用に不充分であり、かつ剪断力付加作
用が不充分となるためである。
This is also the reason why 5 to 60% of inorganic fillers are mixed.
% or less, the roughening effect is insufficient and the shearing force application effect is insufficient.

一方、60%以上では分散混練り化が困難となり、かつ
相対的に他成分量が減じる結果、充分な塗膜性能が得ら
れなくなるためである。
On the other hand, if it exceeds 60%, dispersion and kneading becomes difficult and the amounts of other components are relatively reduced, making it impossible to obtain sufficient coating performance.

これら、化学メッキ触媒、ゴム、熱硬化性樹脂、無機充
填剤は、ニーダ−加圧ニーダ−ミキシングロール又は押
出式混練機などで混練し、メッキ触媒、ゴムの高濃度分
散体とする。
These chemical plating catalyst, rubber, thermosetting resin, and inorganic filler are kneaded using a kneader, a pressure kneader, a mixing roll, an extrusion kneader, or the like to form a highly concentrated dispersion of the plating catalyst and rubber.

こうして得られたメッキ触媒、ゴムの高濃度分散体は最
終粉体塗料に必要とされる他成分と共に再び混練りされ
た後、朝来式粉砕機、靴用マイクロパンタムミルなどの
粉砕機で粗粉砕、微粉砕する。
The high-concentration dispersion of plating catalyst and rubber thus obtained is kneaded again with other ingredients required for the final powder coating, and then coarsely milled using a pulverizer such as an Asago-type pulverizer or a micro pantum mill for shoes. Grind, pulverize.

粉砕は通常の方法で、300μ以下の粒子がほぼ全量得
られる程度行うことが好ましい。
It is preferable that the pulverization be carried out by a conventional method to the extent that substantially all particles of 300 μm or less are obtained.

化学メッキによる印刷回路の形成は、回路部以外の領域
にメツキレシストマイクを施したのち、化学粗化して化
学メッキ浴中に浸漬して行われる。
Formation of a printed circuit by chemical plating is carried out by applying a metal coating to areas other than the circuit portion, and then chemically roughening the area and immersing it in a chemical plating bath.

化学粗化は、クロム混酸などの通常の粗化液が使用でき
、化学メッキ液としては、例えばCUST201(日立
化成工業■製、無電解メッキ液)、CC−4メツキ液(
日立化成工業■無電解メッキ液)など通常のものが使用
できる。
For chemical roughening, ordinary roughening solutions such as chromium mixed acid can be used. Examples of chemical plating solutions include CUST201 (manufactured by Hitachi Chemical Co., Ltd., electroless plating solution), CC-4 plating solution (
Ordinary products such as Hitachi Chemical's electroless plating solution can be used.

また、化学粗化に先だって有機溶媒中へ前浸漬を行い、
塗膜表面を膨潤させると、架橋化樹脂に囲まれた不飽和
重合体の粗化を容易に行わせることができる。
In addition, prior to chemical roughening, pre-soaking in an organic solvent is performed,
When the coating surface is swollen, the unsaturated polymer surrounded by the crosslinked resin can be easily roughened.

これらの有機溶剤の例としてアルコール類とメチルエチ
ルケトン、ピリジン、ジメチルホルムアミド、トリクロ
ルエチレンなどとの混合溶媒がある。
Examples of these organic solvents include mixed solvents of alcohols and methyl ethyl ketone, pyridine, dimethylformamide, trichloroethylene, and the like.

以上説明したように本発明に於ては、金属板表面に、化
学粗化、親水性化が容易に行われ、化学メッキによる印
刷回路の回路接着性が向上した硬化塗膜を粉体塗装法に
より、優れた平滑度をもって形成させることが出来、化
学メッキ触媒が硬化塗膜中に均一に分散しているため、
化学メッキの析出が安定し、回路形成の信頼性が向上す
る。
As explained above, in the present invention, a hardened coating film that is easily chemically roughened and made hydrophilic and has improved circuit adhesion of printed circuits by chemical plating is applied to the surface of a metal plate using the powder coating method. Because the chemical plating catalyst is uniformly dispersed in the cured coating, it can be formed with excellent smoothness.
Deposition of chemical plating is stabilized and reliability of circuit formation is improved.

実施例 1 塩化パラジウム1部、アクリロニトリルブタジェンゴム
(日本ゼオン社製二ポール1032)250部、エポキ
シ樹脂(シェル化学社製エピコ−11004)150部
および充填材として炭酸カルシウム80部、ジルコニウ
ムシリケート20部とを70〜105℃に加温した加圧
式ニーグーに投入して20分間混練りした。
Example 1 1 part of palladium chloride, 250 parts of acrylonitrile butadiene rubber (Nipole 1032 manufactured by Nippon Zeon Co., Ltd.), 150 parts of epoxy resin (Epico-11004 manufactured by Shell Chemical Co., Ltd.), and 80 parts of calcium carbonate and 20 parts of zirconium silicate as fillers. and kneaded for 20 minutes.

取り出した混練り組成物はゴム50%および塩化パラジ
ウム0.2%を含有する分散体である。
The kneaded composition taken out is a dispersion containing 50% rubber and 0.2% palladium chloride.

前記塩化パラジウムおよびゴムの高濃度分散体22部、
炭酸カルシウム14部、エポキシ樹脂(シェル社製エピ
コー)1004)130部をミキシングロールで混練し
、冷却固化後粗粉砕して得た配合物166部にジシアン
ジアミド6.6部、微粉末シリカ1部、流れ調整剤(モ
ンサント社製モダフロー)1部を加え、この組成群をヘ
ンシェルミキサで乾式混合したのちブス社製コニーダー
PR−46にて溶融混練した。
22 parts of the high concentration dispersion of palladium chloride and rubber;
14 parts of calcium carbonate and 130 parts of epoxy resin (Epicor 1004 manufactured by Shell) were kneaded with a mixing roll, cooled and solidified, and then coarsely pulverized to 166 parts of the mixture, 6.6 parts of dicyandiamide, 1 part of finely powdered silica, One part of a flow control agent (Modaflow, manufactured by Monsanto) was added, and this composition was dry mixed using a Henschel mixer, and then melt-kneaded using a Co-kneader PR-46 manufactured by Buss.

冷却固化後粉砕して60メツシユの8(目開き250)
を通して粉体を作成した。
After cooling and solidifying, crush into 60 mesh 8 (mesh opening 250)
A powder was created through the process.

次に、静電流動塗装装置を使用して1.2mm厚さの鉄
板に前記粉体塗料を塗付蓋(080にV、10秒間)さ
せ180℃、60分間焼付硬化して150μ厚さの絶縁
塗膜を有する基板を作成した。
Next, the powder coating was applied to a 1.2 mm thick iron plate using an electrostatic dynamic coating device with a lid (080 V, 10 seconds), and baked at 180°C for 60 minutes to harden it to a thickness of 150 μm. A substrate with an insulating coating was created.

この基板に回路パターン部以外の部分をメツキレシスト
で以ってスクリーン印刷して被覆上、粗化液に浸漬して
表面粗化を行った。
The portions of this substrate other than the circuit pattern portion were screen-printed using a mesh resist to cover the substrate, and the surface was roughened by immersing it in a roughening solution.

浸漬条件は40部1℃で15分間行い、取り出して中和
、水洗を2回くりかえして行った。
The immersion conditions were as follows: 40 parts were soaked at 1° C. for 15 minutes, and then taken out, neutralized, and washed with water twice.

次いで、化学メッキ浴としてCC−4メツキ液(日立化
成工業■製無電解銅メッキ液)にそのまま浸漬して35
μ肌厚さに銅メッキを行った。
Next, it was directly immersed in CC-4 plating solution (electroless copper plating solution manufactured by Hitachi Chemical Co., Ltd.) as a chemical plating bath for 35 minutes.
Copper plating was performed to μ skin thickness.

なお、メッキ回路面積は基板全域中およそ30%であっ
た。
Note that the plating circuit area was approximately 30% of the entire board area.

メッキの析出は均一に行われており、倍率60倍の顕微
鏡を使用してメッキ状態を観察したが、回路部分にメッ
キ未析出部分は見られなかった。
The plating was deposited uniformly, and when the state of the plating was observed using a microscope with a magnification of 60 times, no unplated portion was observed in the circuit portion.

また、この試料を160°Cで60分間ポストキュア乾
燥を行ったのち回路部分の引き剥し強さを測定したとこ
ろ1.65〜1.85 kg/cmの値を有していた。
Further, when this sample was subjected to post-cure drying at 160° C. for 60 minutes, the peel strength of the circuit portion was measured and found to have a value of 1.65 to 1.85 kg/cm.

実施例 2 塩化パラジウム0.3部、塩化第一錫2.7部をアルミ
ニウムシリケート100部に塩酸水溶液中で均一に分散
吸着させたメッキ触媒をアクリロニトリルフ゛タジエン
コ゛ム(日本ゼオン社製ニポールDN−401)100
部、スチレンブタジェン重合体(フィリップス社製ツル
プレン406)180部充填材として炭酸カルシウム5
0部、アルミニウムシリケート15部およびエポキシ樹
脂(シェル社製エピコート1004)100部と90℃
に加温した加圧式ニーダ−で混練りして触媒およびゴム
の高濃度分散体を作成した。
Example 2 A plating catalyst prepared by uniformly dispersing and adsorbing 0.3 parts of palladium chloride and 2.7 parts of stannous chloride on 100 parts of aluminum silicate in an aqueous solution of hydrochloric acid was applied to an acrylonitrile phytadiene column (Nipole DN-401 manufactured by Nippon Zeon Co., Ltd.). 100
180 parts of styrene-butadiene polymer (Turprene 406 manufactured by Philips) 5 parts of calcium carbonate as a filler
0 parts, 15 parts of aluminum silicate, and 100 parts of epoxy resin (Epicoat 1004 manufactured by Shell) at 90°C.
A high-concentration dispersion of catalyst and rubber was prepared by kneading in a pressurized kneader heated to .

次いで、前記分散体54.5部に炭酸カルシウム10部
、エポキシ樹脂(シェル社製エピコート1004)12
0部にジシアンジアミド6.3部、微粉末シリカ1部、
流れ調整剤モダフロー1部および前記貴金属含有充填材
5部を加え、その他は実施例1に述べたと同様にして粉
体塗料の作成および回路形成のためのメッキを行い、メ
ッキの析出状態を観察したが均一なメッキ析出状態が確
認され、このものの回路部分の引き剥し強さは1.60
〜1.85kg/Cmの値を有していた。
Next, 10 parts of calcium carbonate and 12 parts of epoxy resin (Epicoat 1004 manufactured by Shell) were added to 54.5 parts of the dispersion.
0 parts, 6.3 parts of dicyandiamide, 1 part of finely powdered silica,
1 part of the flow control agent Modaflow and 5 parts of the above-mentioned noble metal-containing filler were added, and the other steps were the same as described in Example 1 to prepare a powder coating and perform plating for forming a circuit, and observe the precipitation state of the plating. It was confirmed that the plating was deposited uniformly, and the peel strength of the circuit part of this product was 1.60.
It had a value of ~1.85 kg/Cm.

比較例 l 最終粉体塗料の組成は実施例1に述べたと全く同一であ
るが、触媒を粉体塗料作成の段階において添加して作成
した基板の場合は、メッキの析出が充分でなく、必要と
する回路部分の一部に未析出部分を生じていた。
Comparative Example l The composition of the final powder coating is exactly the same as that described in Example 1, but in the case of a substrate made by adding a catalyst at the stage of preparing the powder coating, the plating precipitation was not sufficient and it was not necessary. There were undeposited parts in some parts of the circuit.

また、析出部分の引き剥し強さは1.2〜1.5 kg
/crnであった。
In addition, the peel strength of the precipitated part is 1.2 to 1.5 kg.
/crn.

Claims (1)

【特許請求の範囲】 1 熱硬化性樹脂100重量部に対し、化学メッキ触媒
0.006〜1.2重量部、分子中に共役二重結合並び
に極性基を有するゴム1〜30重量部を含み、加熱硬化
段階の少なくとも一時期において105センチポイズ以
下の粘度をもつことを特徴とする化学メッキ可能な粉体
塗料。 2 次の工程を含む熱硬化性樹脂100重量部に対し、
化学メッキ触媒0.006〜1.2重量部、分子中に共
役二重結合並びに極性基を有するゴム1〜30重量部を
含み、加熱硬化段階の少なくとも一時期において105
センチポイズ以下の粘度をもつ化学メッキ可能な粉体塗
料の製造法。 A、最終粉体塗料中に含有される化学メッキ触媒の50
重量%以上を、融点が150℃以下の熱硬化性樹脂3〜
50重量%、無機充填剤5〜60重量%、分子中に共役
二重結合並びに極性基を有するゴム80重量%以下で、
かつ最終粉体塗料中の2倍以上を含む組成物と、混練り
工程の少なくとも一時期において前記融点が150℃以
下の熱硬化性樹脂の融点以上の温度であらかじめ混練り
する。 B、この混練り組成物を熱硬化性樹脂と共に更に混練り
、微粉砕する。
[Claims] 1. Contains 0.006 to 1.2 parts by weight of a chemical plating catalyst and 1 to 30 parts by weight of a rubber having a conjugated double bond and a polar group in the molecule, based on 100 parts by weight of a thermosetting resin. A chemically plateable powder coating having a viscosity of 105 centipoise or less during at least part of the heat curing step. 2 For 100 parts by weight of thermosetting resin including the following steps,
Contains 0.006 to 1.2 parts by weight of a chemical plating catalyst, 1 to 30 parts by weight of a rubber having a conjugated double bond and a polar group in the molecule, and 105
A method for producing a powder coating that can be chemically plated and has a viscosity below centipoise. A, 50% of the chemical plating catalyst contained in the final powder coating
At least 3% by weight of thermosetting resin with a melting point of 150°C or less
50% by weight, 5 to 60% by weight of inorganic filler, 80% by weight or less of rubber having a conjugated double bond and a polar group in the molecule,
In addition, at least one period of the kneading process, the composition is pre-kneaded at a temperature equal to or higher than the melting point of the thermosetting resin having a melting point of 150° C. or lower, with a composition containing twice as much as the final powder coating. B. This kneaded composition is further kneaded with a thermosetting resin and pulverized.
JP54099148A 1979-03-22 1979-08-02 Powder coating that can be chemically plated and its manufacturing method Expired JPS5831111B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP54099148A JPS5831111B2 (en) 1979-08-02 1979-08-02 Powder coating that can be chemically plated and its manufacturing method
US06/131,625 US4315845A (en) 1979-03-22 1980-03-19 Process for preparing chemically platable thermosetting powder coating
DE3010982A DE3010982C2 (en) 1979-03-22 1980-03-21 Powder coating compositions and their use for producing hardened coating layers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54099148A JPS5831111B2 (en) 1979-08-02 1979-08-02 Powder coating that can be chemically plated and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS5624466A JPS5624466A (en) 1981-03-09
JPS5831111B2 true JPS5831111B2 (en) 1983-07-04

Family

ID=14239599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54099148A Expired JPS5831111B2 (en) 1979-03-22 1979-08-02 Powder coating that can be chemically plated and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS5831111B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896660A (en) * 1981-12-03 1983-06-08 Mitsubishi Chem Ind Ltd Powder coating compound composition of epoxy resin for insulating metal core circuit base
JPH07103343B2 (en) * 1987-03-20 1995-11-08 ソマール株式会社 Epoxy resin powder coating suitable for slot insulation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128167A (en) * 1974-09-02 1976-03-09 Hitachi Chemical Co Ltd KAGAKUDOMETSUKYOSETSUCHAKUZAISOSEIBUTSU
JPS52133385A (en) * 1976-04-30 1977-11-08 Matsushita Electric Works Ltd Method of manufacturing substrate for chemical plating

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128167A (en) * 1974-09-02 1976-03-09 Hitachi Chemical Co Ltd KAGAKUDOMETSUKYOSETSUCHAKUZAISOSEIBUTSU
JPS52133385A (en) * 1976-04-30 1977-11-08 Matsushita Electric Works Ltd Method of manufacturing substrate for chemical plating

Also Published As

Publication number Publication date
JPS5624466A (en) 1981-03-09

Similar Documents

Publication Publication Date Title
WO1996024938A1 (en) Composite conductive powder, conductive paste, method of producing conductive paste, electric circuit and method of fabricating electric circuit
GB2037488A (en) Thermoplastics printed circuit board material
US4315845A (en) Process for preparing chemically platable thermosetting powder coating
JPH0734505B2 (en) Multilayer printed wiring board and manufacturing method thereof
JPH0617255A (en) Method for improving adhesiveness of electroless plated metal film
JPS6164882A (en) Manufacture of plated material
JPS5831111B2 (en) Powder coating that can be chemically plated and its manufacturing method
JPH10158526A (en) Resin composition and formation of conductor on the surface of molding product
JPS5853673B2 (en) Manufacturing method of powder coating for chemical plating
JPH0992026A (en) Complex conductive powder, conductive paste, manufacture of conductive paste, electric circuit, and manufacture of electric circuit
JP5939386B2 (en) Conductive ink composition
JP3373164B2 (en) Method for producing prepreg and laminate
JPH07220540A (en) Manufacture of anisotropic conductive sheet
JPS5831075A (en) Local electroless plating method
JP3007648B2 (en) Method for manufacturing adhesive printed wiring board for electroless plating and printed wiring board
JPH08148035A (en) Conductive material and conductive paste using this conductive material
JPS6350389B2 (en)
JP2010277992A (en) Conductive particle and its manufacturing method
JPH0358198B2 (en)
JPH11240967A (en) Production of prepreg and laminate
JPH028283A (en) Adhesive for nonelectrolytic plating
JPH08138437A (en) Conductive material and conductive paste using it
JP3952004B2 (en) Conductive paste
JPH028281A (en) Adhesive for nonelectrolytic plating
JPS608375A (en) Aqueous coating compound of electrodeposition coating for metallic core print substrate