JPH08148035A - Conductive material and conductive paste using this conductive material - Google Patents

Conductive material and conductive paste using this conductive material

Info

Publication number
JPH08148035A
JPH08148035A JP28963794A JP28963794A JPH08148035A JP H08148035 A JPH08148035 A JP H08148035A JP 28963794 A JP28963794 A JP 28963794A JP 28963794 A JP28963794 A JP 28963794A JP H08148035 A JPH08148035 A JP H08148035A
Authority
JP
Japan
Prior art keywords
silver
copper powder
weight
less
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28963794A
Other languages
Japanese (ja)
Inventor
Keizo Hirai
圭三 平井
Hiroshi Wada
和田  弘
Akihiro Sasaki
顕浩 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP28963794A priority Critical patent/JPH08148035A/en
Publication of JPH08148035A publication Critical patent/JPH08148035A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a couductive material inexpensive and excellent in conductivity and migration resistance by using silver coated copper powder obtained by coating a specific amount of silver in a surface of flake-shaped copper powder having a specific grain size. CONSTITUTION: This conductive material contains silver coated copper powder coating a surface of flake-shaped copper powder of a 20μm or less mean grain size with 5 to 30wt.% silver relating to this copper powder. For instance, less than 30 to 100 pts.wt. this silver coated copper powder and 70 pts.wt. or less (except 0) flake-shaped silver powder of 30μm or less mean grain size are used so as to obtain 100 pts.wt. in total. It is preferable to coat the surface of copper powder with silver by an electroless plating method. Conductive paste is formed by mixing a binder and a solvent added to the conductive material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気回路形成用の導電
性材料及びそれを用いた導電性ペーストに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive material for forming an electric circuit and a conductive paste using the same.

【0002】[0002]

【従来の技術】従来、配線板、電子部品等の配線導体を
形成する方法として、金、銀、パラジウム、銅、アルミ
ニウム、カーボン等の導電性材料をフィラーとし、これ
に結合剤及び溶剤を添加、混合して得られる導電性ペー
ストを塗布又は印刷して形成する方法が一般的に知られ
ており、各種の導電性ペーストにおいて、導電性材料の
中でも特に高い導電性が要求される分野では、金、銀等
の貴金属が用いられている。
2. Description of the Related Art Conventionally, as a method for forming a wiring conductor such as a wiring board or an electronic component, a conductive material such as gold, silver, palladium, copper, aluminum or carbon has been used as a filler, and a binder and a solvent have been added thereto. , A method of forming by coating or printing a conductive paste obtained by mixing is generally known, in various conductive paste, in the field where particularly high conductivity is required among the conductive materials, Noble metals such as gold and silver are used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、金は極
めて高価であり用途が制限される。このため銀粉を用い
た導電性材料が配線板、電子部品等の配線導体や電極と
して多用されている。ところが銀も非金属や他の金属に
比較して高価であると共に高温多湿の雰囲気下で電界が
印加されると、配線導体や電極にマイグレーションと称
する銀の電析が生じ、電極間又は配線間が短絡するとい
う欠点が生じる。
However, gold is extremely expensive and has limited applications. For this reason, conductive materials using silver powder are often used as wiring conductors and electrodes for wiring boards, electronic components and the like. However, silver is also more expensive than non-metals and other metals, and when an electric field is applied in a hot and humid atmosphere, silver electroplating called migration occurs on wiring conductors and electrodes, and it occurs between electrodes or between wirings. A short circuit occurs.

【0004】低価格化を目的として銅を混合する検討が
行われているが、導電性ペーストを加熱硬化する際、空
気及び結合剤中の酸素により銅粒子表面に酸化膜が形成
され導電性が悪くなる。このため、導体の表面に防湿塗
料を塗布するか又は導電性材料に腐食抑制剤を添加する
などの方策が検討されているが十分な効果が得られるも
のではなかった。
[0004] For the purpose of lowering the cost, studies have been made to mix copper, but when the conductive paste is heated and hardened, an oxide film is formed on the surfaces of the copper particles due to oxygen in the air and the binder, so that the conductive paste becomes conductive. Deteriorate. For this reason, measures such as applying a moisture-proof coating to the surface of the conductor or adding a corrosion inhibitor to the conductive material have been studied, but sufficient effects have not been obtained.

【0005】一方、マイグレーションを防止する目的と
して、銀とパラジウムとの合金が使用されることがある
が、これもまた高価であるという欠点があった。
On the other hand, an alloy of silver and palladium is sometimes used for the purpose of preventing migration, but this also has the drawback of being expensive.

【0006】銅の耐酸化性と銀の耐マイグレーション性
という両欠点を解消する方法として、特開平3−247
702号公報、特開平4−268381号公報等に示さ
れるように、銅及び銀を溶解し、アトマイズ法で銅の表
面に銀を被覆する方法があるが、この方法では工程が複
雑であるためコスト高となり、また上記の導電性材料は
略球形の粒子であるため、フレーク状や樹枝状の粒子か
らなる導電性材料に比較して導電性が劣るという欠点が
ある。
As a method for solving both the defects of copper's oxidation resistance and silver's migration resistance, JP-A-3-247 is known.
As disclosed in Japanese Patent Application Laid-Open No. 702, Japanese Patent Application Laid-Open No. 4-268381, etc., there is a method of dissolving copper and silver and coating the surface of copper with silver by an atomizing method, but this method involves complicated steps. Since the cost is high and the above-mentioned conductive material is substantially spherical particles, there is a drawback that the conductivity is inferior to that of a conductive material composed of flaky or dendritic particles.

【0007】本発明は上記のような欠点が生ぜず、安価
で、かつ導電性及び耐マイグレーション性に優れる導電
性材料及びそれを用いた導電性ペーストを提供するもの
である。
The present invention provides a conductive material which does not cause the above-mentioned drawbacks, is inexpensive, and is excellent in conductivity and migration resistance, and a conductive paste using the same.

【0008】[0008]

【課題を解決するための手段】本発明は平均粒径が20
μm以下のフレーク状銅粉の表面に、該銅粉に対して5
〜30重量%の銀を被覆した銀被覆銅粉を含有してなる
導電性材料、該銅被覆銅粉30〜100重量部未満及び
平均粒径が30μm以下のフレーク状銀粉70重量部以
下(0を除く)を総量が100重量部となる量で含有し
てなる導電性材料並びに上記の導電性材料に結合剤及び
溶剤を添加、混合してなる導電性ペーストに関する。
The present invention has an average particle size of 20.
On the surface of flaky copper powder having a size of less than or equal to μm,
To 30% by weight of silver-coated copper powder coated with a conductive material, the copper-coated copper powder 30 to less than 100 parts by weight and an average particle size of 30 μm or less flaky silver powder 70 parts by weight or less (0 And a binder and a solvent are added to and mixed with the above-described conductive material.

【0009】フレーク状銅粉の表面に銀を被覆するに
は、銅と銀との付着力が高いこと及びランニングコスト
が安価であることから、無電解メッキ法で被覆すること
が好ましい。銀の被覆量は、フレーク状銅粉に対して5
〜30重量%、好ましくは10〜30重量%の範囲とさ
れ、5重量%未満であるとフレーク状銅粉が酸化されて
導電性が低下し、また30重量%を越えるとマイグレー
ションが生じると共に粒子が凝集し、印刷が困難にな
る。
In order to coat the surface of the flake-like copper powder with silver, it is preferable to coat it by an electroless plating method because the adhesion between copper and silver is high and the running cost is low. The silver coating amount is 5 with respect to the flake-shaped copper powder.
-30% by weight, preferably 10-30% by weight. When it is less than 5% by weight, the flaky copper powder is oxidized to lower the conductivity, and when it exceeds 30% by weight, migration occurs and particles are generated. Aggregate, which makes printing difficult.

【0010】本発明になる導電性材料は銀被覆銅粉を含
有するか又は銀被覆銅粉及びフレーク状銀粉の総量を1
00重量部として銀被覆銅粉の含有量は、30〜100
重量部未満、好ましくは30〜50重量部の範囲とさ
れ、一方フレーク状銀粉の含有量は、70重量部以下
(0を除く)、好ましくは70〜50重量部の範囲とさ
れる。銀被覆銅粉が30重量部未満でフレーク状銀粉が
70重量部を越えるとマイグレーションが生じ、かつ銀
の量が増加するため高価になるという欠点が生じる。
The conductive material according to the present invention contains silver-coated copper powder, or the total amount of silver-coated copper powder and flaky silver powder is 1%.
The content of the silver-coated copper powder as 00 parts by weight is 30 to 100.
It is less than 30 parts by weight, preferably in the range of 30 to 50 parts by weight, while the content of the flake silver powder is 70 parts by weight or less (excluding 0), preferably 70 to 50 parts by weight. If the amount of silver-coated copper powder is less than 30 parts by weight and the amount of flaky silver powder exceeds 70 parts by weight, migration occurs, and the amount of silver increases, so that the cost becomes high.

【0011】フレーク状銅粉及びフレーク状銀粉はその
形状を制限するものでないが、アスペクト比は大略3以
上であることが好ましく、10以上であればさらに好ま
しい。フレーク状銅粉の平均粒径は、20μm以下、好
ましくは15μm以下、さらに好ましくは10μm以下
とされ、20μmを越えると印刷性及び導電性が悪くな
る。一方フレーク状銀粉の平均粒径は、30μm以下、
好ましくは20μm以下、さらに好ましくは10μm以
下とされ、30μmを越えると印刷性が悪くなる。
The flaky copper powder and the flaky silver powder do not limit the shape, but the aspect ratio is preferably about 3 or more, and more preferably 10 or more. The average particle size of the flaky copper powder is 20 μm or less, preferably 15 μm or less, more preferably 10 μm or less, and if it exceeds 20 μm, printability and conductivity deteriorate. On the other hand, the average particle size of the flake silver powder is 30 μm or less,
The thickness is preferably 20 μm or less, more preferably 10 μm or less, and if it exceeds 30 μm, the printability deteriorates.

【0012】導電性ペーストは、上記の導電性材料の他
にエポキシ樹脂、フェノール樹脂、不飽和ポリエステル
樹脂、ヘキサメチレンテトラミン等の結合剤、ブチルセ
ロソルブ、テルピネオール、エチレンカルビトール、カ
ルビトールアセテート等の溶剤及び必要に応じて微小黒
鉛粉末、ベンゾチアゾール、ベンズイミダゾール等の腐
食抑制剤などを添加して均一に混合して得られる。結合
剤及び溶剤の含有量は、導電性ペーストに対して結合剤
が10〜20重量%及び溶剤が10〜30重量%の範囲
であることが好ましい。
The conductive paste includes, in addition to the above-mentioned conductive materials, a binder such as epoxy resin, phenol resin, unsaturated polyester resin, hexamethylenetetramine, a solvent such as butyl cellosolve, terpineol, ethylene carbitol, carbitol acetate, and the like. It is obtained by adding fine graphite powder, a corrosion inhibitor such as benzothiazole or benzimidazole, etc., if necessary, and uniformly mixing. The content of the binder and the solvent is preferably 10 to 20% by weight of the binder and 10 to 30% by weight of the solvent with respect to the conductive paste.

【0013】[0013]

【実施例】以下本発明の実施例を説明する。 実施例1 平均粒径が12μmのフレーク状銅粉(福田金属箔工業
製フレーク状銅粉)を酸性クリーナ(日本マクダーミッ
ド製、商品名L−5B)で脱脂、水洗し、AgCN20
g/H2O1リットルとNaCN40g/H2O1リット
ルとの混合浴中で銀の量がフレーク状銅粉に対して10
重量%になるように無電解メッキを行い、水洗、乾燥し
て銀被覆銅粉を得た。
EXAMPLES Examples of the present invention will be described below. Example 1 Flake-shaped copper powder having an average particle diameter of 12 μm (flake-shaped copper powder manufactured by Fukuda Metal Foil Co., Ltd.) was degreased with an acidic cleaner (manufactured by Nippon MacDermid, trade name L-5B), washed with water, and AgCN20.
g / H the amount of silver in a mixed bath of 2 O1 liters and NaCN40g / H 2 O1 liter 10 relative to flaky copper powder
Electroless plating was performed so that the weight% was reached, followed by washing with water and drying to obtain silver-coated copper powder.

【0014】一方ノボラック型フェノール樹脂(群栄化
学工業製、商品名PS−2607)70重量部、ビスフ
ェノールA型エポキシ樹脂(油化シェルエポキシ製、商
品名エピコート828)20重量部、ヘキサメチレンテ
トラミン10重量部及び溶剤としてブチルセロソルブ1
00重量部を均一に混合して樹脂組成物を得た。
On the other hand, 70 parts by weight of novolac type phenol resin (manufactured by Gunei Chemical Industry Co., Ltd., trade name PS-2607), 20 parts by weight of bisphenol A type epoxy resin (manufactured by Yuka Shell Epoxy, trade name Epicoat 828), hexamethylenetetramine 10 Butyl cellosolve 1 as parts by weight and solvent
A resin composition was obtained by uniformly mixing 00 parts by weight.

【0015】次に上記で得た樹脂組成物30重量部に、
上記で得た銀被覆銅粉を50重量部及び平均粒径が8.
5μmのフレーク状銀粉(徳力化学研究所製、商品名T
CG−1)を50重量部加えて均一に混合して導電性ペ
ーストを得た。
Next, to 30 parts by weight of the resin composition obtained above,
50 parts by weight of the silver-coated copper powder obtained above and an average particle size of 8.
5 μm flaky silver powder (Tokuriki Chemical Laboratory, trade name T
50 parts by weight of CG-1) was added and uniformly mixed to obtain a conductive paste.

【0016】次いで該導電性ペーストを厚さが1.6mm
の紙フェノール銅張積層板(日立化成工業製、商品名M
CL−437F)に200メッシュのスクリーンを通し
て幅0.4mm及び長さ100mmのテストパターンを印刷
し、大気中で150℃で30分の条件で加熱処理して配
線板を得た。得られた配線板のペースト硬化物の比抵抗
は0.95×10-4Ωcmであった。また配線板の湿中負
荷試験を実施した結果、抵抗変化率は、±1%の範囲内
であった。なお湿中負荷試験は、60℃95%相対湿度
中に1000時間保持後の比抵抗を測定した。
Next, the conductive paste is applied to a thickness of 1.6 mm.
Paper phenol copper clad laminate (Hitachi Chemical Co., Ltd., trade name M
A test pattern having a width of 0.4 mm and a length of 100 mm was printed on CL-437F) through a 200-mesh screen, and heat-treated in the atmosphere at 150 ° C. for 30 minutes to obtain a wiring board. The specific resistance of the paste cured product of the obtained wiring board was 0.95 × 10 −4 Ωcm. Further, as a result of performing a humidity and medium load test on the wiring board, the resistance change rate was within a range of ± 1%. In the wet and medium load test, the specific resistance was measured after the sample was held at 60 ° C and 95% relative humidity for 1000 hours.

【0017】一方上記とは別に導電性ペーストをガラス
プレパラート上に幅2mmの電極を互いに3mm間隔となる
ように上記と同様の方法で6本印刷し、大気中で150
℃で30分の条件で加熱処理して電極を硬化させた。こ
の後、電極間に幅3mmに切断したろ紙を配置し、イオン
交換水0.01ccをろ紙上に滴下して電極間に5Vの直
流電圧を印加し、100μAの電流が流れるまでに要し
た時間(以下100μA到達時間とする)を測定したと
ころ20分であった。
On the other hand, separately from the above, 6 pieces of the conductive paste were printed on the glass slide in the same manner as described above so that the electrodes having the width of 2 mm were spaced from each other by 3 mm, and the paste was printed at 150 in the atmosphere.
The electrode was cured by heat treatment at 30 ° C. for 30 minutes. After this, a filter paper cut into a width of 3 mm is placed between the electrodes, 0.01 cc of ion-exchanged water is dropped on the filter paper, a DC voltage of 5 V is applied between the electrodes, and the time required for a current of 100 μA to flow. It was 20 minutes when measured (hereinafter referred to as 100 μA arrival time).

【0018】比較例1 実施例1で得た樹脂組成物30重量部に、実施例1で用
いたフレーク状銀粉を100重量部加えて実施例1と同
様の方法で均一に混合して導電性ペーストを得た。以下
実施例1と同様の方法で特性を評価した。その結果、比
抵抗は1.0×10-4Ωcmと低いが、100μA到達時
間は3分と短く、マイグレーションが極めて容易に生じ
た。また抵抗変化率は−10%であった。
Comparative Example 1 To 30 parts by weight of the resin composition obtained in Example 1, 100 parts by weight of the flake silver powder used in Example 1 was added, and the mixture was uniformly mixed in the same manner as in Example 1 to obtain electroconductivity. I got a paste. The characteristics were evaluated in the same manner as in Example 1 below. As a result, the specific resistance was as low as 1.0 × 10 −4 Ωcm, but the arrival time at 100 μA was as short as 3 minutes, and migration was extremely easy to occur. The rate of resistance change was −10%.

【0019】比較例2 実施例1で得た樹脂組成物30重量部に、実施例1で得
た銀被覆銅粉を20重量部及び実施例1で用いたフレー
ク状銀粉を80重量部加えて均一に混合して導電性ペー
ストを得た。以下実施例1と同様の方法で特性を評価し
た。その結果、比抵抗は0.95×10-4Ωcmと低く、
また抵抗変化率は−5%であったが、100μA到達時
間は6分と短かった。
Comparative Example 2 To 30 parts by weight of the resin composition obtained in Example 1, 20 parts by weight of the silver-coated copper powder obtained in Example 1 and 80 parts by weight of the flaky silver powder used in Example 1 were added. The mixture was uniformly mixed to obtain a conductive paste. The characteristics were evaluated in the same manner as in Example 1 below. As a result, the specific resistance was as low as 0.95 × 10 -4 Ωcm,
The rate of resistance change was −5%, but the time required to reach 100 μA was as short as 6 minutes.

【0020】比較例3 実施例1で得た樹脂組成物30重量部に、銀の量をフレ
ーク状銅粉(福田金属箔工業製フレーク状銅粉)に対し
て2重量%とした以外は実施例1と同様の工程を経て得
られた銀被覆銅粉を50重量部及び実施例1で用いたフ
レーク状銀粉を50重量部加えて均一に混合して導電性
ペーストを得た。以下実施例1と同様の方法で特性を評
価した。その結果、100μA到達時間は30分と長
く、比抵抗は1.0×10-4Ωcmであったが、抵抗変化
率は+20%を越え、電極は酸化した。
Comparative Example 3 The procedure was carried out except that 30 parts by weight of the resin composition obtained in Example 1 had a silver content of 2% by weight based on the flake copper powder (flake copper powder manufactured by Fukuda Metal Foil Industry Co., Ltd.). 50 parts by weight of the silver-coated copper powder obtained through the same steps as in Example 1 and 50 parts by weight of the flaky silver powder used in Example 1 were added and uniformly mixed to obtain a conductive paste. The characteristics were evaluated in the same manner as in Example 1 below. As a result, the time required to reach 100 μA was as long as 30 minutes and the specific resistance was 1.0 × 10 −4 Ωcm, but the resistance change rate exceeded + 20%, and the electrode was oxidized.

【0021】実施例2 実施例1で得た銀被覆銅粉の配合量を30重量部及び実
施例1で用いたフレーク状銀粉の配合量を70重量部と
した以外は実施例1と同様の工程を経て導電性ペースト
を得た。以下実施例1と同様の方法で特性を評価した。
その結果、比抵抗は1.0×10-4Ωcm、100μA到
達時間は15分及び抵抗変化率は+1%であり、いずれ
も良好であった。
Example 2 The same as Example 1 except that the amount of the silver-coated copper powder obtained in Example 1 was 30 parts by weight and the amount of the flaky silver powder used in Example 1 was 70 parts by weight. A conductive paste was obtained through the steps. The characteristics were evaluated in the same manner as in Example 1 below.
As a result, the specific resistance was 1.0 × 10 −4 Ωcm, the arrival time at 100 μA was 15 minutes, and the resistance change rate was + 1%.

【0022】実施例3 実施例1で得た銀被覆銅粉の配合量を100重量部と
し、フレーク状銀粉を使用しない以外は実施例1と同様
の工程を経て導電性ペーストを得た。以下実施例1と同
様の方法で特性を評価した。その結果、比抵抗は1.1
×10-4Ωcm、100μA到達時間は40分及び抵抗変
化率は+5%であり、いずれも良好であった。
Example 3 A conductive paste was obtained through the same steps as in Example 1 except that the amount of the silver-coated copper powder obtained in Example 1 was 100 parts by weight and the flake silver powder was not used. The characteristics were evaluated in the same manner as in Example 1 below. As a result, the specific resistance is 1.1.
× 10 −4 Ωcm, arrival time at 100 μA was 40 minutes, and resistance change rate was + 5%, which were all favorable.

【0023】実施例4 実施例1で用いたフレーク状銅粉に代えて、該フレーク
状銅粉を分級し、これによって得られた平均粒径が3.
5μmのフレーク状銅粉を用いた以外は実施例1と同配
合で、かつ実施例1と同様の工程を経て導電性ペースト
を得た、以下実施例1と同様の方法で特性を評価した。
その結果、比抵抗は0.6×10-4Ωcmに低下し、それ
以外の特性は実施例1とほぼ同等の値であった。
Example 4 Instead of the flaky copper powder used in Example 1, the flaky copper powder was classified, and the average particle size obtained by this was 3.
Properties were evaluated in the same manner as in Example 1 below, in which a conductive paste was obtained with the same composition as in Example 1 except that 5 μm flaky copper powder was used, and through the same steps as in Example 1.
As a result, the specific resistance was reduced to 0.6 × 10 −4 Ωcm, and the other characteristics were substantially the same as those in Example 1.

【0024】比較例4 実施例1で用いたフレーク状銅粉に代えて、該フレーク
状銅粉を分級し、これによって得られた平均粒径が22
μmのフレーク状銅粉を用いた以外は実施例1と同配合
で、かつ実施例1と同様の工程を経て導電性ペーストを
得た。以下実施例1と同様の方法で特性を評価した。そ
の結果、比抵抗は1.8×10-4Ωcmに増加した。しか
しそれ以外の特性は実施例1とほぼ同等の値であった。
Comparative Example 4 Instead of the flaky copper powder used in Example 1, the flaky copper powder was classified, and the average particle size obtained by this classification was 22.
A conductive paste was obtained in the same composition as in Example 1 except that the flaky copper powder of μm was used, and through the same steps as in Example 1. The characteristics were evaluated in the same manner as in Example 1 below. As a result, the specific resistance increased to 1.8 × 10 −4 Ωcm. However, the other properties were almost the same as those in Example 1.

【0025】比較例5 実施例1で用いたフレーク状銀粉に代えて、該フレーク
状銀粉を分級し、これによって得られた平均粒径が35
μmのフレーク状銀粉を用いた以外は実施例1と同配合
で、かつ実施例1と同様の工程を経て導電性ペーストを
得た。この導電性ペーストを用いて印刷しようとした
が、スクリーンのメッシュ間に目詰まりが生じて効率よ
く印刷ができなかった。
Comparative Example 5 Instead of the flaky silver powder used in Example 1, the flaky silver powder was classified, and the average particle size obtained by this classification was 35.
A conductive paste was obtained in the same composition as in Example 1 except that flake-shaped silver powder of μm was used, and through the same steps as in Example 1. When an attempt was made to print using this conductive paste, the mesh of the screen was clogged and printing could not be performed efficiently.

【0026】[0026]

【発明の効果】本発明によれば、銀の使用量を少なくで
き、また複雑な工程を必要としないため安価で、かつ導
電性及び耐マイグレーション性に優れ、工業的に極めて
好適な導電性材料及び導電性ペーストである。
According to the present invention, since the amount of silver used can be reduced and a complicated process is not required, the conductive material is inexpensive, excellent in conductivity and migration resistance, and industrially extremely suitable. And a conductive paste.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H05K 1/09 A 7726−4E ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H05K 1/09 A 7726-4E

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径が20μm以下のフレーク状銅
粉の表面に、該銅粉に対して5〜30重量%の銀を被覆
した銀被覆銅粉を含有してなる導電性材料。
1. A conductive material comprising a silver-coated copper powder in which the surface of flaky copper powder having an average particle diameter of 20 μm or less is coated with 5 to 30% by weight of silver with respect to the copper powder.
【請求項2】 平均粒径が20μm以下のフレーク状銅
粉の表面に、該銅粉に対して5〜30重量%の銀を被覆
した銀被覆銅粉30〜100重量部未満及び平均粒径が
30μm以下のフレーク状銀粉70重量部以下(0を除
く)を総量が100重量部となる量で含有してなる導電
性材料。
2. A silver-coated copper powder in which the surface of flaky copper powder having an average particle size of 20 μm or less is coated with 5 to 30% by weight of silver with respect to the copper powder, 30 to less than 100 parts by weight, and an average particle size. A conductive material containing 70 parts by weight or less (excluding 0) of flake-shaped silver powder having a particle size of 30 μm or less in a total amount of 100 parts by weight.
【請求項3】 銀が無電解メッキ法で銅粉の表面に被覆
された請求項1記載の導電性材料。
3. The conductive material according to claim 1, wherein the surface of the copper powder is coated with silver by electroless plating.
【請求項4】 請求項1、2又は3記載の導電性材料に
結合剤及び溶剤を添加、混合してなる導電性ペースト。
4. A conductive paste obtained by adding and mixing a binder and a solvent to the conductive material according to claim 1, 2 or 3.
JP28963794A 1994-11-24 1994-11-24 Conductive material and conductive paste using this conductive material Pending JPH08148035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28963794A JPH08148035A (en) 1994-11-24 1994-11-24 Conductive material and conductive paste using this conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28963794A JPH08148035A (en) 1994-11-24 1994-11-24 Conductive material and conductive paste using this conductive material

Publications (1)

Publication Number Publication Date
JPH08148035A true JPH08148035A (en) 1996-06-07

Family

ID=17745819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28963794A Pending JPH08148035A (en) 1994-11-24 1994-11-24 Conductive material and conductive paste using this conductive material

Country Status (1)

Country Link
JP (1) JPH08148035A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6164056A (en) * 1996-07-24 2000-12-26 Mitsubishi Heavy Industries, Ltd. Combined cycle electric power plant
WO2010110626A3 (en) * 2009-03-27 2010-12-09 Ls Cable Ltd. Composition for conductive paste containing nanometer-thick metal microplates with surface-modifying metal nano particles
WO2010101418A3 (en) * 2009-03-04 2010-12-09 Ls Cable Ltd. Composition for conductive paste containing nanometer-thick metal microplates
WO2016199678A1 (en) * 2015-06-09 2016-12-15 タツタ電線株式会社 Conductive paste
CN109360673A (en) * 2018-10-24 2019-02-19 焦作市高森建电子科技有限公司 A kind of wicker copper conductive copper paste and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6164056A (en) * 1996-07-24 2000-12-26 Mitsubishi Heavy Industries, Ltd. Combined cycle electric power plant
WO2010101418A3 (en) * 2009-03-04 2010-12-09 Ls Cable Ltd. Composition for conductive paste containing nanometer-thick metal microplates
WO2010110626A3 (en) * 2009-03-27 2010-12-09 Ls Cable Ltd. Composition for conductive paste containing nanometer-thick metal microplates with surface-modifying metal nano particles
WO2016199678A1 (en) * 2015-06-09 2016-12-15 タツタ電線株式会社 Conductive paste
JP2017004732A (en) * 2015-06-09 2017-01-05 タツタ電線株式会社 Conductive paste
CN109360673A (en) * 2018-10-24 2019-02-19 焦作市高森建电子科技有限公司 A kind of wicker copper conductive copper paste and preparation method thereof
CN109360673B (en) * 2018-10-24 2020-04-10 焦作市高森建电子科技有限公司 Silver-coated copper conductive copper paste and preparation method thereof

Similar Documents

Publication Publication Date Title
US5951918A (en) Composite electroconductive powder, electroconductive paste, process for producing electroconductive paste, electric circuit and process for producing electric circuit
JP4972955B2 (en) Conductive paste and printed wiring board using the same
JPH08148035A (en) Conductive material and conductive paste using this conductive material
JPH08138437A (en) Conductive material and conductive paste using it
JP3598631B2 (en) Conductive paste, method for producing the same, electric circuit device using conductive paste, and method for producing the same
JPH0992026A (en) Complex conductive powder, conductive paste, manufacture of conductive paste, electric circuit, and manufacture of electric circuit
JPH10152630A (en) Conductive paste and composite conductive powder
JP3596563B2 (en) Conductive paste
JPH08161929A (en) Conductive material and conductive paste using it
JP2000322933A (en) Conductive paste and its manufacture
JP3618441B2 (en) Conductive metal composite powder and manufacturing method thereof
JPH09282935A (en) Silver-plated copper powder
JPH10134636A (en) Conductive powder, conductive paste, and electric circuit using conductive paste
JPH06333417A (en) Conductive paste
JPH06336563A (en) Conductive coating material
JPH0415270A (en) Electrically conductive paste
JP2003068139A (en) Conductive paste
JP3952004B2 (en) Conductive paste
JP3316746B2 (en) Conductive paint
JPH06338216A (en) Conductive paste
JPH0714423A (en) Conductive paste
JPH03152803A (en) Solderable conductive paste
JPH0714425A (en) Conductive paste
JPH07307110A (en) Conductive paste
JPS60233166A (en) Electrically conductive coating material